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Abstract— We propose a provably optimal approximate dy-
namic programming algorithm for a class of multistage stochastic
problems, taking into account that the probability distribution
of the underlying stochastic process is not known and the state
space is too large to be explored entirely. The algorithm and
its proof of convergence rely on the fact that the optimal value
functions of the problems within the problem class are concave
and piecewise linear. The algorithm is a combination of Monte
Carlo simulation, pure exploitation, stochastic approximation and
a projection operation. Several applications, in areas like energy,
control, inventory and finance, fall under the framework.

I. INTRODUCTION

We consider a class of multistage stochastic problems called
the concave single asset acquisition class. The objective is to
act on a single type of asset in order to maximize expected
contributions in discrete time over a finite horizon.

New information exogenous to the system becomes avail-
able at every time period and the probability distribution
of the underlying stochastic process is not known, not even
parametrically. It is only assumed to be Markov. The new
exogenous information at time period t is a possibly cor-
related vector in IRm, denoted by Ŵt, that only depends
on Wt−1 ∈ IRn, a vector containing all the relevant past
information. We denote by Rx

t−1 the asset level in the system
after the decision at period t − 1 is taken and let Rt be
the asset level just before a decision is made at time t. The
information Ŵt leads the system to the pre-decision state
St = (Wt, Rt) = (f1(Wt−1, Ŵt), f2(Rx

t−1, Ŵt)), where f1

and f2 are deterministic functions.
After St is observed, a decision xt ∈ IRl, restricted to

a convex constraint set X (St), is taken and a contribution
Ct(St, xt), linear in xt, is produced. The asset level changes
after the decision and is given by Rx

t = g(St) + A ·xt, where
g is a deterministic scalar function, A is a 1 × l input-output
vector and A · x is an inner product operation that translates
the effect the decision has on the asset level.

The most important feature of problems in this class is that
their optimal value functions are concave and piecewise linear
in the asset dimension.

This problem class covers a number of practical applica-
tions. We may have an energy company purchasing forward
contracts for gas to satisfy an unknown demand for energy
for a particular time period in the future. Another example
is companies purchasing expensive equipment in advance
expecting to lock in lower prices, without knowing the exact
amount of equipment necessary in the future. It also falls under
the framework a single asset inventory system where demand,
selling and replenishing prices fluctuate over time.

The framework generalizes to a broad class of control
problems that have a system evolution that depends on both an
exogenous process and on a manageable process governed by
a scalar such as temperature, flow or concentration. We require
only that the contribution (or utility) function be concave,
which would occur if there were diminishing returns from the
controllable scalar variable.

Since the probability distribution of the underlying stochas-
tic process is not known, standard methods that require the
computation of expected values, such as classical backward
dynamic programming and multistage stochastic program-
ming, can not be applied, unless the distributions are esti-
mated. Lately, solving stochastic optimization problems with
a distribution free approach has been attracting considerable
interest. Nonparametric methods for revenue management,
multiproduct pricing and single-period newsvendor with its
multi-period extension can be found in [1], [2] and [3],
respectively. In the latter, bounds were established on the
number of samples required to guarantee that the expected
cost of the policies is arbitrarily close to the optimal one.

We encounter computational problems even if the distribu-
tion of Ŵt is known. Wt may be a vector which, combined
with the scalar controllable state variable Rt, can produce
extremely large state spaces which can make classical dynamic
programming recursions impractical. In section VI, we report
on experiments where the state space has as many as 16 mil-
lion possible values. If we assume the probability distributions
are known, exact solutions using classical methods require
over 6 hours to compute, while policies that are within .001 of
the optimal could be found in a matter of minutes. Q-learning
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[4], which is often proposed for model-free applications, is
even more difficult since the state space is enlarged with all
possible actions.

We propose an approximate dynamic programming algo-
rithm that exploits the structural properties of the optimal value
functions of this problem class. It combines Monte Carlo sim-
ulation, a pure exploitation scheme, stochastic approximation
and a projection operation. It is a generalization of the SPAR
( [5]) algorithm, which is presented in the context of a two-
stage problem. The proposed algorithm provably converges to
an optimal policy and scales to large state spaces.

The optimal value function V ∗
t (Wt, ·), which is unknown,

is piecewise linear, concave and can be represented by its
decreasing slopes v∗

t (Wt, Rt1), . . . , v∗t (Wt, RtN ) and its cor-
responding break points Rt1, . . . , RtN . The main idea of
the algorithm is to construct concave and piecewise lin-
ear function approximations V̄ n

t (Wt, ·), learning its slopes
v̄n

t (Wt, Rt1), . . . , v̄n
t (Wt, RtN ) over the iterations. The catch

is that the algorithm does not try to learn the slopes for
the whole state space, only for parts close to optimal asset
levels, which are determined by the algorithm itself. Figure 1
illustrates the idea.
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Fig. 1. Optimal value function and the constructed approximation

At each iteration n, the algorithm observes a sample real-
ization of the stochastic process and at each time period t,
it uses the sample realization and the current value function
approximation to take the decision xn

t , which is an optimal
solution to the following optimization problem:

max
x∈X (Sn

t )
Ct(S

n
t , x) + γV̄ n−1

t (W n
t , g(Sn

t ) + A · x)
� �� �

Ft(S
n
t ,V̄ n−1

t ,x)

,

where Sn
t = (Wn

t , Rn
t ) is the state at period t before the

decision is taken, representing a sample realization of the
information process and the asset level, respectively. Moreover,
γ is a discount factor and V̄ n−1

t (Sn
t ) is the current value

function approximation. The slopes of Ft(Sn
t , V̄ n−1

t , ·) to the
left and right of xn

t are used to update the approximate
slopes v̄n−1

t−1 and a projection operation is performed in case a
violation of the concavity property occurs.

The proof of convergence of our algorithm to an optimal
policy follows ideas from the field of approximate dynamic
programming ( [6]) as well as the proof of the SPAR algorithm

in [5]. Proofs of convergence for Q-learning ( [7], [8]) and
optimistic policy iteration ( [9]) require the sampling of all
states and possibly all actions. A convergence proof for a Real
Time Dynamic Programming ( [10]) algorithm that considers
a pure exploitation scheme is provided in [6], but it assumes
that the distribution of the random variables is known.

The proposition of a provably optimal approximate dynamic
programming algorithm for a class of multistage stochastic
problems is the main contribution of this work. Our algorithm
handles at the same time the unknown probability distribution
of the underlying stochastic process and the curse of the
dimensionality that may arise when trying to solve problems
within this problem class. This is accomplished by exploiting
the structural properties of the optimal value functions.

The algorithm also has applications in different areas like
inventory management, finance, energy and control. We also
demonstrate experimentally that it outperforms competing al-
gorithms, and, in particular, dramatically outperforms standard
backward dynamic programming when the distributions are
assumed known.

This paper is organized as follows. Section II describes the
problem class and the corresponding dynamic programming
model, while section III presents some applications. Section
IV describes the algorithm and section V gives a summary
of the convergence proof. Section VI presents experimental
results associated with one of the applications. Finally, the
conclusions are presented in section VII.

II. THE PROBLEM CLASS

A single type of asset must be acquired to maximize the ex-
pected discounted contributions over the horizon t = 0, . . . , T .
The discount factor is denoted by γ.

During time period t, new information exogenous to the
system becomes available. The exogenous process is denoted
by Ŵ = (Ŵ0, . . . , ŴT ). Its underlying distribution is not
known. However, each Ŵt ∈ Rm is a random variable with
finite support that may depend only on W x

t−1, where W x
t−1 ∈

Rn is the information given by the exogenous process up until
time t − 1 that is relevant for Ŵt.

The state of the system before a decision is taken is

St = (Wt, Rt) = (f1(W
x
t−1, Ŵt), f2(R

x
t−1, Ŵt)),

where Wt is the information relevant for Ŵt+1 and for taking
a decision at t, Rt is the asset level in the system just before a
decision at t is taken and Rx

t−1 is the asset level in the system
right after a decision at t − 1 was taken. The information
process, is completely exogenous to the system, while the
asset level is influenced by the decisions. Both f1 and f2 are
deterministic functions that have a bounded and finite image
set. The image set of f2 is also integer and positive. The finite
support set of W x

t is denoted by Wt.
The decision xt ∈ IRl is integer, positive and bounded by a

constant Mt. After the decision, the asset level is given by

Rx
t = g(St) + A · xt,

where g is an integer bounded function and A ∈ ZZl is
an input-output vector. We thus obtain the post-decision state
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Sx
t = (W x

t , Rx
t ). The difference between Wt and W x

t is that
Wt may contain information relevant for taking the decision
xt in addition to the information relevant for Ŵt+1, while W x

t

only contains the information relevant for Ŵt+1. It should be
clear that the decision xt does not affect W x

t .
Clearly, the asset level Rx

t is integer and bounded. In our
problem class, it is also positive. Thus, Sx

t ∈ St = Wt ×
{0, . . . , Bt}, where Bt depends on g, A and Mt′ - the bound
on the decision vector xt′ for t′ ≤ t.

The decision must satisfy a set of constraints that may
depend on the pre-decision state St. Formally, xt ∈ X (St) ⊂
{x ∈ IRl : 0 ≤ x ≤ Mt}, where X (St) is a convex set.

The contribution in period t, for t = 1, . . . , T , is given by

Ct(St, xt) = ct0(St) +

l�
i=1

cti(St)xti,

where, for i = 0, . . . , l, cti(St) is a bounded scalar function.
We construct the optimal value functions V ∗

t : St → IR
around the post-decision state variables, taking advantage of
the fact that Sx

t is a deterministic function of xt. For Sx
T ∈ ST ,

we have that V ∗
T (Sx

T ) = 0. For t = 1, . . . , T and Sx
t−1 ∈ St−1

it is given by

V ∗
t−1(S

x
t−1) = IE

�
max

xt∈X (St)
Ct(St, xt) + γV ∗

t (Sx
t )|Sx

t−1

�
.

We now address the key property of this problem
class. The convex constraint set X (ST ) is such that

IE

�
max

xT ∈X (ST )
CT (ST , xT )|Sx

T−1

�
is a concave function of Rx

T−1

and the optimal decision x∗
T is integer without imposing

integrality. Therefore, for t = 0, . . . , T , V ∗
t (Sx

t ) is concave
and piecewise linear with integer break points in Rx

t .
Given the information W x

t−1, if we disregard the val-
ues at asset level zero, the optimal value functions
V ∗

t−1(S
x
t−1) can be uniquely identified by its decreasing slopes(

v∗
t−1(W

x
t−1, 1), . . . , v∗t−1(W

x
t−1, Bt−1)

)
, where

v∗
t−1(S

x
t−1) = V ∗

t−1(W
x
t−1, R

x
t−1) − V ∗

t−1(W
x
t−1, R

x
t − 1)

= IE
�
Ĝt(St, v

∗
t )|Sx

t−1

�
. (1)

The actual representation of the random variable Ĝt(St, v
∗
t )

is problem dependent, but based on our assumptions, we
can infer that v∗

t−1(S
x
t−1) is bounded. Therefore, given

a bound B big enough, we have that, v∗
t−1(W

x
t−1) =(

v∗
t−1(W

x
t−1, 1), . . . , v∗t−1(W

x
t−1, Bt−1)

) ∈ Ct−1, where

Ct−1 =
�

v ∈ IRBt−1 : |vi| ≤ 3B, vi+1 ≤ vi for i ≥ 1
�

.

We simplify notation letting S̄t = Wt × {1, . . . , Bt}, the
post-decision state space minus the state pairs (W x

t , 0).

III. APPLICATIONS

In order to make the previous section concrete, we describe
two practical applications emphasizing their main elements, as
the information process, the pre and post-state variables, the
decision, its constraint set and the one period contribution. We
also give the specific form of the random variable Ĝt(St, v

∗
t ),

omitting its derivation.

A. Forward Contracts

At each period, it must be determined the amount of forward
contracts of gas that should be purchased in order to meet a
positive discrete integer random demand D̂ for energy at time
T . The energy price at T is also a random variable given by
P̂E . The forward price for gas at t is denoted by PG

t and its
increment is denoted by P̂G

t . The demand is independent of
the energy and gas prices. We have that W x

t−1 = PG
t−1, while

Wt = (P G
t , 0, 0)1{t<T} + (P G

t , D̂, P̂ E)1{t=T}

The expression for Ŵt is obtained replacing PG
t for P̂G

t in
the expression for Wt.

The decision xt is a scalar denoting the number of forward
contracts purchased at t. We have that Rt (Rx

t ) is the amount of
contracts purchased up until time t before (after) the decision
at t is taken. Clearly, Rt = Rx

t−1 and Rx
t = Rt + xt.

Function f1 can take different forms, depending on the price
process. In section VI, we will consider three different forms.
It follows that f2(R, Ŵt) = g(Wt, R) = R and A is a scalar
equal to 1.

The states St and Sx
t are given by the current prices/demand

and the amount of contracts purchased so far. The constraint
set is given by X (St) = {0 ≤ xt ≤ Mt}.

The contribution in period t, for t = 1, . . . , T , is given by

Ct(St, xt) = −P G
t xt1{t<T} + P̂ E min(D̂, RT )1{t=T}.

Finally, the random variable Ĝt(St, v
∗
t ) is given by

Ĝ∗
t (St, v

∗
t ) = max

�
min

�
P G

t , v∗
t (P G

t , Rt)
	

, v∗
t (P G

t , Rt + Mt)
	

× 1{t<T} + P̂ E1{D̂≥RT }1{t=T}.

B. Inventory System

At each period, the inventory manager must determine the
number of assets to sell and the number of assets to be
purchased in order to replenish the inventory, given the current
inventory level. There are no holding costs and unsatisfied
demand is lost. Moreover, assets not sold remain in the system.
However, inventory items can be stolen (or otherwise lost from
the system).

The exogenous process is given by Ŵt = (P̂ s
t , P̂ r

t , D̂t, R̂t),
denoting selling and replenishing price increments, demand
increments and missing items, respectively. The information
variable Wt is given by (P s

t , P r
t , Dt, R̂t), while W x

t is given
by (P s

t , P r
t , Dt), as the number of missing items is indepen-

dent of any previous information. The demand Dt is assumed
to be integer valued and the selling price is greater than the
replenishing price. Like the former application, function f1

can take different forms.
The decision xt = (xt1, xt2) is the amount of sold assets

and the amount of purchased assets to replenish the inventory,
respectively. The state variable Rt (Rx

t ) denotes the inventory
level before (after) the decision. We have that

Rt = max(0, Rx
t−1 − R̂t) and Rx

t = Rt − xt1 + xt2,

implying f2(R, Ŵt) = max(0, R − R̂t), g(Wt, R) = R and
the input-output vector A = (−1, 1).
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The constraint set is

X (St) = {0 ≤ xt1 ≤ min(Dt, Rt), 0 ≤ xt2 ≤ Mt}.
The contribution in each period is

Ct(St, xt) = P s
t xt1 − P r

t xt2,

and the random variable Ĝt(St, v
∗
t ) is

Ĝt(St, v
∗
t ) = v∗

t (W x
t , Rt + Mt)1{v∗

t (W x
t ,Rt+Mt)>P s

t }
+ P s

t 1{v∗
t (W x

t ,Rt+Mt)≤P s
t }

× [1{Dt≥Rt} + 1{Dt<Rt}1{v∗
t (W x

t ,Rt−Dt+Mt)>P s
t }]

+ min (P r
t , v∗

t (W x
t , Rt − Dt)) 1{Dt<Rt}1{v∗

t (W x
t ,Rt−Dt+Mt)≤P r

t }
+ v∗

t (W x
t , Rt − Dt + Mt)1{Dt<Rt}1{P r

t <v∗
t (W x

t ,Rt−Dt+Mt)≤P s
t }.

IV. THE SPAR-MULTIPERIOD ALGORITHM

We propose an algorithm that makes use of the properties of
our problem class in order to learn an optimal policy. It com-
bines Monte Carlo simulation in a pure exploitation scheme, in
order to construct concave piecewise linear functions approx-
imations. The function slopes are updated through stochastic
approximation integrated with a projection operation.

The SPAR-MultiPeriod algorithm is presented in figure 2.
As described in STEP 0, the algorithm inputs are piecewise
linear value function approximations represented by their
slopes v̄0 and a starting value for the pre-decision state at 0.
The initial slopes must be decreasing in the asset dimension
and bounded between −B and B. A slope vector that is equal
to zero for all states and time periods is a valid input. We refer
interchangeably to the value function itself V̄ n

t (W x
t , ·) and its

slopes v̄n
t (W x

t ). We assume that v̄n
T (Sx

T ) = 0 for all iterations
n and states Sx

T ∈ S̄T .
At each iteration n the algorithm samples Ŵn

0 , . . . , Ŵn
t , as

shown in STEP 1. Then, at each time period t, a decision
xn

t is taken. This decision is the optimal solution within the
constraint set X (Sn

t ), with respect to the current state Sn
t

and value function approximation V̄ n−1
t (W x,n

t , ·), as stated
in STEP 2a. The decision xn

t brings the system to the post-
decision asset level Rx,n

t = g(Sn
t )+A ·xn

t , as shown in STEP
2b. Then, the exogenous information for period t+1 becomes
available and the next pre-decision state is computed following
STEP 2c. Sample slopes are observed (see STEP 2d) and are
used to update the approximation slopes v̄n−1

t (W x,n
t ) (see

STEP 2e). This step requires the use of a stepsize rule that is
state dependent, denoted by ᾱn

t (Sx
t ). The updating procedure

leads to a temporary slope vector zn
t that may violate the

concavity property. Thus, a projection operation is performed
(STEP 2f). Then, the iteration counter is incremented and the
algorithm is repeated.

A general post-decision state at t is denoted by Sx
t or

(W x
t , Rx

t ). The two of them are used interchangeably. We use
Sx,n

t to denote the actual state visited by the algorithm at iter-
ation n and time t. Furthermore, {Sx,n

t }n≥0 is the sequence of
states visited by the algorithm. The same notation convention
holds for the pre-decision states St, Sn

t and {Sn
t }n≥0 and the

decisions xt, xn
t and {xn

t }n≥0. The sequences of slopes are

STEP 0: Initialization:
STEP 0a: Initialize v̄0

t (Sx
t ) for all t and Sx

t to be
monotone decreasing in Rx

t .
STEP 0b: Initialize Sn

0 , for n ≥ 0.
STEP 0c: Set n = 1.

STEP 1: Sample the exogenous process Ŵn
0 , . . . , Ŵn

T .
STEP 2: Do for t = 0, . . . , T :

STEP 2a: Find the optimal solution xn
t of

max
x∈X (Sn

t )
Ct(S

n
t , x) + γV̄ n−1

t (W x,n
t , Rx

t ).

If t < T then
STEP 2b: Find the post-decision state

(W x,n
t , Rx,n

t ) = (W x,n
t , g(Sn

t ) + A · xn
t ).

STEP 2c: Find the next pre-decision state

(W n
t+1, R

n
t+1) = (f1(W

x,n
t , Ŵ n

t+1), f2(R
x,n
t , Ŵ n

t+1)).

STEP 2d: Observe v̂n
t+1(R

x,n
t ) and v̂n

t+1(R
x,n
t + 1).

STEP 2e: For Sx
t ∈ S̄t,

zn
t (Sx

t ) = (1 − ᾱn
t (Sx

t ))v̄n−1
t (Sx

t ) + ᾱn
t (Sx

t )v̂n
t+1(R

x
t )

STEP 2f: v̄n
t = ΠC(zn

t ).
STEP 3: Increase n by one and go to step 1.

Fig. 2. SPAR-MultiPeriod Algorithm

denoted by {v̄n
t (Sx

t )}n≥0. It is straightforward to see that all
these sequences generated by the algorithm have at least one
accumulation point. We denote by Sx,∗

t , S∗
t , x∗

t and v̄∗
t (Sx

t )
the respective accumulation points.

We obtain sample slopes by replacing the expectation and
the optimal slope v∗

t in (1) by the sample realization of
the information Wn

t and the current approximation v̄n−1
t ,

respectively. Thus, for t = 1 . . . , T , the sample slope is

v̂n
t (R) = Ĝt

�
f1(W

x,n
t−1, Ŵ

n
t ), f2(R, Ŵ n

t )), v̄n−1
t

�
. (2)

The projection operator ΠC maps a vector zn
t that may not be

monotone decreasing in the asset dimension, into another vec-
tor v̄n

t , such that, for W x
t ∈ Wt, (v̄n

t (W x
t , 1), . . . , v̄n

t (W x
t , Bt)) ∈

Ct. A slight variation of the Level projection operator (intro-
duced in [11]) is used. It imposes concavity by forcing the
newly updated slope at (Wn

t , Rx,n
t ) to be greater or equal to

the newly updated slope at (Wn
t , Rx,n

t + 1) and then forcing
the other violating slopes to be equal to the newly updated
ones. Then, for Sx

t ∈ S̄t, the projection is given by

ΠC(zn
t )(Sx

t ) =

�����
����

zn
t (W

x,n
t ,R

x,n
t )+zn

t (W
x,n
t ,R

x,n
t +1)

2
, if C1

ΠC(zn
t )(W x,n

t , Rx,n
t ), if C2

ΠC(zn
t )(W x,n

t , Rx,n
t + 1), if C3

zn
t (Sx

t ), otherwise,
(3)

where the conditions C1, C2 and C3 are

C1: W x
t = W x,n

t , Rx
t = (Rx,n

t or Rx,n
t + 1),

zn
t (W x,n

t , Rx,n
t ) < zn

t (W x,n
t , Rx,n

t + 1);

C2: W x
t = W x,n

t , Rx
t < Rx,n

t , zn
t (Sx

t ) ≤ ΠC(zn
t )(W x,n

t , Rx,n
t );

C3: W x
t = W x,n

t , Rx
t > Rx,n

t + 1, zn
t (Sx

t ) ≥ ΠC(zn
t )(W x,n

t , Rx,n
t + 1).
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We move on to the stepsizes ᾱn
t (Sx

t ). Let

ᾱn
t (Sx

t ) = αn
t 1{W x

t =W
x,n
t }(1{Rx

t =R
x,n
t } + 1{Rx

t =R
x,n
t +1}),

where αn
t is a scalar between 0 and 1, measurable with respect

to Fn
t and has the following properties

∞�
n=0

(αn
t )2 ≤ B̄ < ∞ and

∞�
n=0

αn
t 1{S

x,n
t =S

x,∗
t } = ∞ a.s.,

where B̄ is a constant and Sx,∗
t is an accumulation point of the

sequence {Sx,n
t }n≥0. Clearly, the stepsize rule αn

t = 1
N(Sx,n

t )

satisfies all the conditions, where N(Sx,n
t ) is the number of

visits to state Sx,n
t up until iteration n.

V. CONVERGENCE ANALYSIS

The dynamic programming operator H maps a vector v into
a new vector Hv. For t = 0, . . . , T and Sx

t ∈ S̄t,

(Hv)t(S
x
t ) =

�
IE
�
Ĝt+1(St+1, vt+1)|Sx

t

�
, if t < T

0, if t = T.

Clearly, the vector of slopes of the optimal value functions
v∗ is the unique fixed point of H .

Using the operator H , we define two deterministic bounding
sequences. For all k ≥ 0 and states Sx

T ∈ S̄T , Lk
T (Sx

T ) =
Uk

T (Sx
T ) = 0. For t = 0, . . . , T − 1 and states Sx

t ∈ S̄t,

L0
t (S

x
t ) = v∗

t (Sx
t ) − 2B and U0

t (Sx
t ) = v∗

t (Sx
t ) + 2B,

and, for all k ≥ 0,

Lk+1
t (Sx

t ) =
Lk

t (Sx
t ) + (HLk)t(S

x
t )

2

Uk+1
t (Sx

t ) =
Uk

t (Sx
t ) + (HUk)t(S

x
t )

2
.

Under very mild assumptions on H , {Lk
t (Sx

t )}k≥0 is a
increasing sequence that bounds v∗

t (Sx
t ) from below while

{Uk
t (Sx

t )}k≥0 is a decreasing sequence that bounds v∗
t (Sx

t )
from above. Moreover, both sequences converge to v∗

t (Sx
t ).

Having defining these elements, we are ready to introduce
our main theorem. We give a summary of its proof.

Theorem 1: For k ≥ 0 and t = 0, . . . , T , there exists an
integer N∗,k

t such that, for all n ≥ N∗,k
t and S̄x,∗

t ∈ S̄∗
t ,

Lk
t (S̄x,∗

t ) ≤ v̄n−1
t (S̄x,∗

t ) ≤ Uk
t (S̄x,∗

t ) a.s., (4)

where S̄∗
t is the set of all states that are either equal to an

accumulation point (W x,∗
t , Rx,∗

t ) of {Sx,n
t }n≥0 or are equal

to (W x,∗
t , Rx,∗

t + 1) and 0 < Rx,∗
t < Bt. Therefore,

v̄n
t (S̄x,∗

t ) → v∗
t (S̄x,∗

t ) a.s.
Proof: The proof of the theorem is by backward induc-

tion on t. The base case is t = T . As v∗
T (Sx

T ) = Uk
T (Sx

T ) =
Lk

T (Sx
T ) = v̄n

T (Sx
T ) = 0 for all states Sx

T ∈ S̄T , integers
k ≥ 0 and iterations n ≥ 0, the inequalities in (4) are trivial
for t = T . In particular, we can take N∗,k

T = N̄ .
The backward induction proof is completed when we prove

(4) for a general t, t = 0, . . . , T − 1. Given the induction
hypothesis for t+1, the proof for time period t is divided into

two parts. In the first part, we prove for all k ≥ 0 that there
exists an integer Nk

t such that, for all n ≥ Nk
t ,

v̄n−1
t (S̃x,∗

t ) ≥ Lk
t (S̃x,∗

t ), if S̃x,∗
t ∈ S̃+

t (5)

v̄n−1
t (S̃x,∗

t ) ≤ Uk
t (S̃x,∗

t ), if S̃x,∗
t ∈ S̃−

t . (6)

Note that these inequalities only apply to states in the sets S̃−
t

and S̃+
t , which are proper subsets of S̄∗

t . A state Sx
t is in S̃−

t

(S̃+
t ) if the projection operation decreased (increased) or kept

the same the corresponding temporary slope infinitely often,
i.e., zn

t (Sx
t ) ≤ v̄n

t (Sx
t ) for an infinite number of iterations n.

The proof of inequalities (5-6) is by induction on k and
requires several intermediate results. We concentrate on the
main elements of the proof of (5). The arguments for (6) are
symmetrical.

We omit the base case, k = 0, and assume there exists Nk
t

such that (5) holds for n ≥ Nk
t . We shall show the existence

of Nk+1
t such that v̄n−1

t (S̃x,∗
t ) ≥ Lk+1

t (S̃x,∗
t ), for n ≥ Nk+1

t .
We define a stochastic bounding sequence, namely,

{l̄nt (Sx
t )}n≥0, for each Sx

t ∈ S̄t. For n ≤ Nk
t , let l̄nt (Sx

t ) =
Lk

t (Sx
t ), and, for n ≥ Nk

t , let

l̄nt (Sx
t ) = (1 − ᾱn

t (Sx
t )) l̄n−1

t (Sx
t ) + ᾱn

t (Sx
t )(HLk)t(S

x
t ).

A simple inductive argument proves that l̄nt (Sx
t ) is a convex

combination of Lk
t (Sx

t ) and (HLk)t(Sx
t ). Using this fact, it

can be shown, for all n big enough, that

l̄n−1
t (S̃x,∗

t ) ≥ Lk+1
t (S̃x,∗

t ) + δk, (7)

where δk is a positive number.
We also define a variable ŝn

t+1, that represents the error
incurred by observing a sample slope instead of a true expec-
tation. For R = 1, . . . , Bt,

ŝn
t+1(R) = (Hv̄n−1)t(W

x,n
t , R) − v̂n

t+1(R).

For each Sx
t ∈ S̄t, we use ŝn

t+1 to define a stochastic
noise sequence represented by {s̄n

t (Sx
t )}n≥0. For n ≤ Nk

t ,
let s̄n

t (Sx
t ) = 0, and, for n ≥ Nk

t , let

s̄n
t (Sx

t ) = max(0, (1 − ᾱn
t (Sx

t )) s̄n−1
t (Sx

t ) + ᾱn
t (Sx

t )

× ŝn
t+1+(Rx,n

t 1{R≤R
x,n
t } + (Rx,n

t + 1)1{R>R
x,n
t })).

The sample slopes were defined in a way such that

IE [ŝn
t+1(R)|Fn

t ] = 0.

This last equation, the stepsize assumptions, the martingale
convergence theorem and the boundedness of both the sample
slopes and the approximate slopes are crucial for proving that
the noise introduced by the observation of the sample slopes,
which replace the observation of true expectations, go to zero
as the number of iterations of the algorithm goes to infinity,
i.e., for all S̄x,∗

t ∈ S̄∗
t , {s̄n

t (S̄x,∗
t )}n≥0 → 0 a.s.

Using the concavity of the value function approximations it
can also be shown, for all n big enough, that

v̄n−1
t (S̃x,∗

t ) ≥ l̄n−1
t (S̃x,∗

t ) − s̄n−1
t (S̃x,∗

t ). (8)

Combining (7), (8) and convergence to zero of the stochastic
noise sequence, we obtain, for all n big enough that

v̄n−1
t (S̃x,∗

t ) ≥ Lk+1
t (S̃x,∗

t ) + δk − δk

= Lk+1
t (S̃x,∗

t ),
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proving the existence of a integer Nk+1
t such that (5) is true

for k + 1.
Still considering time period t, we take on the second part,

which proves the existence of an integer N∗,k
t such that (4) is

true for all states in S̄∗
t and iterations n ≥ N∗,k

t . In this part,
we take care of the states S̄x,∗

t ∈ S̄∗
t \(S̃+

t

⋂ S̃−
t ), In contrast

to part 1, the proof technique here is not by forward induction
on k and depends heavily on the projection operation.

An important property of the projection operator is that
all the slopes to the left of Rx,n

t , changed by the projection
operation are increased to be equal to the new slope at Rx,n

t .
Similarly, all the slopes to the right of Rx,n

t +1, changed by the
projection operation, are decreased to be equal to the slope at
Rx,n

t +1. Another property, that is not hard to prove, is that for
states (W̄ x,∗

t , R̄x,∗
t ) ∈ S̄∗

t \ S̃+
t , the state (W̄ x,∗

t , R̃x,∗
+ ) where

R̃x,∗
+ is the maximum asset level smaller than R̄x,∗

t such that
(W̄ x,∗

t , R̃x,∗
+ ) ∈ S̃+

t is well defined. Moreover, the projection
operation decreased the slopes of (W̄ x,∗

t , R) infinitely many
times, where R̃x,∗

+ ≤ R ≤ R̄x,∗
t .

These projection properties and the result of part 1 are then
used to show the existence of a integer N∗,k

t such that, for
all n ≥ N∗,k

t , Lk
t (S̄x,∗

t ) ≤ v̄n−1
t (S̄x,∗

t ). The inequality for
Uk

t (S̄x,∗
t ) is obtained using a symmetrical property of the

projection operation.
We finish the convergence analysis proving that, with prob-

ability one, the algorithm learns an optimal decision for all
states that can be reached by an optimal policy.

Theorem 2: For t = 0, . . . , T , let (S∗
t , v̄∗t , x∗

t , W
x,∗
t )

be an accumulation point of the sequence
{(Sn

t , v̄n−1
t , xn

t , W x,n
t )}n≥1 generated by the algorithm.

With probability one, x∗
t is an optimal solution of

max
x∈X (S∗

t )
Ct(S

∗
t , x) + γV ∗

t (W x,∗
t , g(S∗

t ) + A · x)
� �� �

Ft(S
∗
t ,V ∗

t ,x)

. (9)

Proof: The solution xn
t in STEP 2a of the algorithm, as

it is optimal, satisfies

0 ∈ ∂Ft(S
n
t , V̄ n−1

t , xn
t ) + XN (Sn

t , xn
t ),

where ∂Ft(Sn
t , V̄ n−1

t , xn
t ) is the subdifferential of

Ft(Sn
t , V̄ n−1

t , ·) at xn
t and XN (Sn

t , xn
t ) is the normal

cone of X (Sn
t ) at xn

t .
Then, by passing to the limit, we can conclude

that each accumulation point (S∗
t , v̄∗t , x∗

t ) of the se-
quence {(Sn

t , v̄n−1
t , xn

t )}n≥1 satisfies the condition 0 ∈
∂Ft(S∗

t , V̄ ∗
t , x∗

t ) + XN (S∗
t , x∗

t ).
Let Rx,∗

t = g(S∗
t ) + A · x∗

t . It is not hard to show that

∂Ft(S
∗
t , V̄ ∗

t , x∗
t ) =

{(ct1(S
∗
t ) + γA1y, . . . , ctl(S

∗
t ) + γAly)T :

y ∈ [v̄∗
t (W ∗

t , Rx,∗
t + 1), v̄∗

t (W ∗
t , Rx,∗

t )]}.

Since (W x,∗
t , Rx,∗

t ) is an accumulation point of {Sx,n
t }n≥0,

it follows from theorem 1 that

v̄∗
t (W x,∗

t , Rx,∗
t ) = v∗

t (W x,∗
t , Rx,∗

t ) a.s.
v̄∗

t (W x,∗
t , Rx,∗

t + 1) = v∗
t (W x,∗

t , Rx,∗
t + 1) a.s.,

proving the theorem.

VI. EXPERIMENTAL RESULTS

We want to establish the computational benefits of our
algorithm relative to other Monte Carlo-based algorithms as
well as classical backward dynamic programming. We provide
a short description of each approach.

In a Batch-mode Monte-Carlo-based value iteration algo-
rithm (Batch), at each iteration n, once a sample for the infor-
mation process is gathered, sample slopes at all possible asset
levels Rx

t are observed and used to update the corresponding
slopes. That is, steps 2d and 2e are replaced by
STEP 2d: Observe v̂n

t+1(R
x
t ) for all Rx

t ∈ {1, . . . , Bt}.
STEP 2e: For Sx

t ∈ S̄t,

zn
t (Sx

t ) = (1−αn
t 1{W x

t =W
x,n
t })v̄

n−1
t (Sx

t )+αn
t 1{W x

t =W
x,n
t }v̂

n
t+1(R

x
t ).

Applying this method, which is synchronous in the sense that
all the slopes for the observed W x,n

t are updated at once, we
wish to see how it compares to an asynchronous approach (our
algorithm).

A Real Time Dynamic Programming (RTDP) approach [10]
assumes the knowledge of the probability distribution. Instead
of using the sample slope given by (2), our RTDP algorithm
uses

v̂n
t+1(R

x
t ) = (Hv̄n)t(W

x,n
t , Rx

t ).

When we compare this algorithm against ours, we are
measuring the tradeoff between more information given by
the expectation versus the time spent to do this operation.

A standard Q-learning algorithm [4] stores all possible
State-Action pairs making this approach impossible to be
implemented for our problem class. Therefore, instead of im-
plementing a Q-learning approach, we propose and implement
an algorithm that only stores the state after the decision is
made and samples all possible actions infinitely often in a
uniform way. This implies that all states are sampled infinitely
often as well. This algorithm should be at least as good as
standard Q-learning, due to a smaller state space. Step 2a of
our algorithm thus is replaced by
STEP 2a: Sample xn

t according to a discrete uniform distri-
bution between 0 and Mt.

With this algorithm, we try to infer how a pure exploitation
scheme (our approach) compares to a pure exploration one.

We show experimental results for some instances of the
forward contract application described in section III. The
considered instances are described in table I. We randomly
generated problems using different distributions for the energy
price P̂E and for the initial prices of forward contracts PG

0 .
Moreover, both discrete uniform (DiscU) and Poisson demand
distributions with different parameters were used.

We also created different processes for the prices of the
forward contracts, namely random walk (RW), mean reversion
(MR) and geometric Brownian motion (GBM), all of which
are described below. Even though all price processes are
continuous, we use a discretization increment of 0.1 for
all instances. We emphasize that when using our algorithm,
the discretization only occurs when representing the value
functions, the simulated paths are still continuous.
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For all instances, the number of time periods is 10, implying
that both the demand D̂ and the energy price P̂E are observed
at T = 10. Moreover, the initial number of forward contracts
is R0 = 0 and the amount of contracts that can be purchased
are bounded by 0 and 400, that is, 0 ≤ xt ≤ Mt = 400. The
state space size of each instance is also shown in table I.

TABLE I
INSTANCES DESCRIPTION

Inst. State Space Initial Price Energy Price Demand Price Proc.
1 580000 Constant 20 U(50,60) DiscU(180,250) RW
2 580000 Constant 20 U(50,60) Poisson(200) RW
3 4114800 1.7*U(1,12) PT−1*U(1.03,1.15) Poisson(250) MR
4 4114800 1.7*U(1,12) PT−1*U(1.03,1.15) DiscU(180,220) MR
5 1608000 Constant 40 Constant 25 Poisson(300) GBM
6 1608000 Constant 45 Constant 15 DiscU(225,375) GBM

The random walk price process is given by PG
t = PG

t−1 +
P̂G

t , where the price increment P̂G
t has the normal distribution

with mean μ = 0.02 and standard deviation σ = 1.5.
The mean reversion price process is given by PG

t = PG
t−1+

P̂G
t + 0.5(Bt − PG

t−1), where P̂G
t is uniformly distributed

between 0.9 and 1.2. Moreover, Bt is a deterministic process
where B0 = 1.7Ū(1, 12), Bt = Bt−1Ū(0.9, 1.2) and Ū is the
mean of the corresponding uniform distribution.

Finally, the geometric Brownian motion process is given by
PG

t = PG
t−1e

P̂ G
t , where P̂G

t is normally distributed with mean
μ = 0.0125 and standard deviation σ = 0.087.

It can be shown that when the random walk and the geomet-
ric Brownian motion are considered, the optimal slopes v∗t are
monotone increasing in PG

t . Therefore, in order to improve
the rate of convergence, the algorithms enforce this property
while updating the approximating slopes when instances 1, 2,
5, 6 are considered.

Knowing the underlying distributions, as described in table
I, we computed a policy using a classical backward dynamic
programming (CDP) technique. A discretization increment of
0.01 was used. We also computed a policy using our algorithm
(ADP) and the other approximate methods described in the
beginning of this section. Except for the RTDP method, the
distributions were assumed unknown.

Table II shows the time (in seconds) that took each method
to be 10%, 1%, . . . , 10−3% away from the solution given by
the classical dynamic programming technique. It also shows
the time to compute the CDP solution. All approximate
methods were limited to 2 million iterations.

The error is measured according to

ηn =
|F̄ ∗ − F̄ n|

F̄ ∗ × 100, (10)

where F̄ ∗ is the average value of following the CDP policy
while F̄n is the average value of following the policy obtained
after n iterations of the given approximate algorithm. Both
averages were taken considering 800 randomly generated
sample paths.

The results for the method that samples uniformly the
actions are not displayed in the table, since more than 2 million

TABLE II
TIME IN SECONDS TO REACH SOLUTION QUALITY LEVELS

Instance Method % away from CDP
101 100 10−1 10−2 10−3

1 ADP 0.25 0.25 1.62 14.83 –
CDP Time Batch 0.27 0.27 2.39 30.02 –
6.92 × 103 RTDP 0.81 0.81 2.65 – –

2 ADP 0.26 0.26 0.26 6.66 –
CDP Time Batch 0.21 0.21 0.21 – –

6842.21 secs RTDP 0.81 0.81 0.81 20.36 –

3 ADP 3.69 29.72 460.79 – –
CDP Time Batch 5921.77 – – – –

7658.94 secs RTDP 21.88 30.7 – – –

4 ADP 3.46 20.62 691.25 – –
CDP Time Batch 11816.34 – – – –

7548.53 secs RTDP 20.96 29.38 – – –

5 ADP 10.53 17.12 27.77 46.83 216.48
CDP Time Batch 129 194.13 – – –

24149.52 secs RTDP 406.34 677.7 812.85 812.85 948.04

6 ADP 0.34 4.9 9.52 206.47 236.63
CDP time Batch 12.46 31.93 – – –

10766.61 secs RTDP 9.18 376.77 376.77 564.38 –

iterations of this method were required to be within 10% from
the CDP solution, implying that using pure exploitation instead
of pure exploration pays off.

Instances 3 and 4 did not reach the .01% level. Since these
instances use the mean reversion price process the algorithm
could not impose the monotone increasing property of the
slopes in the information dimension. Hence, we can infer that
the more structure we impose, the more we speed up the rate
of convergence.

We can also see that the computational time for the Batch
approach is much higher than the computational time of our
approach. Even though the Batch method makes better use
of the information in each sample realization, since all the
slopes associated with the given price realization are updated,
it does not translate into better solutions in competitive time,
showing that our asynchronous algorithm performs better than
the synchronous one.

The same behavior was observed with the RTDP approach.
More information given by the expectation instead of a sample
realization does not result in an improvement in the solutions,
when the same amount of time is considered for both our
algorithm and the RTDP approach.

We can also infer from table II the computational advantage
of using our method instead of a classical backward dynamic
programm algorithm. For the instances considered in the ex-
periment, even with a scalar decision and a scalar controllable
state Rx

t , we can easily run into a curse of dimensionality.
Thus, our algorithm is a reasonable method of choice even
when the probability distribution of the underlying stochastic
process is known, since we can obtain pretty good policies
within very small computational time.
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We now analyze the influence of the discretization of the
forward prices when computing an exact policy and when
computing a policy with our algorithm. Figure 3 shows the
percentage away from the CDP solution (computed for incre-
ment 0.01), computed using 10, as a function of time for levels
of discretization that go from 0.025 to 1. It also shows the
corresponding state space size. The problem instance used in
this experiment used the same settings as instance 5, except of
course that the level of discretization varied. The discretization
increment is shown next to the corresponding error. The results
are for our method and for an exact dynamic programming
algorithm that assumes the distributions are known.
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Fig. 3. Quality versus time (in log scale) frontier for different levels of
discretization.

We can see from this figure that for larger discretization
increments, our method produced better results than the exact
method with competitive computational times. This can be
explained by the fact that, for our method, the discretization
only occurs when representing the value functions. On the
other hand, when computing the expectations for the exact
method, the prices are indeed discrete and the probability mass
of a whole interval is assigned to one point.

We can also observe that the smaller the increment, the more
time it took the exact method to come up with a solution, since
the expectation operation becomes more expensive (note that a
log scale is used for time). For example, there is a substantial
increase in CPU times when the discretization is reduced
from .05 to .025. The computational time of our method
does increase, but for a different reason. As the discretiza-
tion becomes finer, our algorithm requires more iterations to
produce better results, since we only update the value function
approximation for the observed price. These results emphasize
the previous conclusion that our method is a reasonable choice
even for problems with known probability distributions. The
only caveat is that the discretization increment should be
wisely chosen, as there is a clear tradeoff between accuracy
and time to obtain a good policy.

VII. CONCLUSIONS

We proposed an approximate dynamic programming algo-
rithm for a class of multistage stochastic control problems. The
state variable of the problems in this problem class is decom-
posed into a multi-dimensional information component and a
controllable scalar component. Moreover, the optimal value
functions are piecewise linear and concave in the controllable
component, reflecting diminishing gains as the controllable
scalar is increased. The distribution of the stochastic process
generating the information component may be unknown.

Our algorithm is a combination of Monte Carlo simulation,
stochastic approximation and a projection operation. It con-
verges to an optimal policy and scales to high-dimensional
problems. The main idea is to learn the slopes of the optimal
value functions only for important regions of the state space,
which are determined by the algorithm itself.

We demonstrated experimentally that our approach outper-
forms other provably convergent approximate approaches in
the sense that less computational time is required in order
to find a good policy. We also showed that our method is a
good choice even when the distribution is known and classical
backward dynamic programming could be applied. Finally, we
also addressed the discretization of the state space issue and
showed that our method handles it in a much better way than
an exact method.
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