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Vrije Universiteit Brussel

Computational Modeling Lab
Pleinlaan 2

1050 Brussel
Email: mjpeeter@vub.ac.be, kaverbee@vub.ac.be, ann.nowe@vub.ac.be

Abstract— Learning Automata are shown to be an excellent
tool for creating learning multi-agent systems. Most algorithms
used in current automata research expect the environment to
end in an explicit end-stage. In this end-stage the rewards are
given to the learning automata (i.e. Monte Carlo updating).
This is however unfeasible in sequential decision problems with
infinite horizon where no such end-stage exists. In this paper
we propose a new algorithm based on one-step returns that
uses bootstrapping to find good equilibrium paths in multi-stage
games.

I. INTRODUCTION

The research on the learning behaviors of automata started
with the work of Tsetlin [1] in the 1960’s. In his research
Tsetslin and co-workers, introduced finite action deterministic
automata in stationary random environments. It was shown that
under certain conditions the automata behaved asymptotically
optimal. Further research [2]–[4] looked at more challenging
problems such as non-deterministic environments and variable-
structure, continuous action learning automata. Learning au-
tomata (LA) research led to many practical applications in the
engineering field.

Recently, learning automata became also popular in the
field of Multi-Agent Reinforcement Learning [5]. Early on,
researchers looked at how multiple automata in a single envi-
ronment could be interconnected and still find stable solutions
[6]. One of the advantages of using learning automata in this
field is that they operate without information concerning the
number of other participants or their strategies, which is a
problem for many multi-agent reinforcement learning tech-
niques. In [7], results on learning automata games formed the
basis for a new multi-agent reinforcement learning approach to
learning single stage, repeated normal form games. Many real-
world problems, however, are naturally translated into multi-
stage problems. Therefore in this paper we are concerned with
learning a sequence of games.

Thathachar and Ramakrishnan [8], [9] introduced the con-
cept of a hierarchical LA in which the actions where dis-
tributed over a tree-structured hierarchy of LA. In such a
hierarchy different actions have to be taken before an explicit
end-stage is reached. Games between hierarchical learning
automata agents can then be represented by multi-stage games
or multi-agent Markov decision problems [10]. In [11] it

was shown that hierarchical learning automata agents can
solve (certain) multi-stage games with episodic tasks by using
Monte Carlo rewards constructed along the path of the multi-
stage game. However for now only episodic tasks could be
considered.

Standard single agent reinforcement learning techniques,
such as Q-learning [12], which are by nature constructed
to solve sequential decision problems, use the mechanism
of bootstrapping to handle non-episodic tasks. Bootstrapping
means that values or estimates are learned on the basis of
other estimates [6]. The use of estimates eliminates the need
for episodic tasks where rewards are only given in explicit
end-states.

Multi-agent learning approaches that bootstrap do exists;
an overview of approaches based on Q-learning and through
it on the Bellman equations is given in [13]. However in
these approaches, agents cannot be independent anymore, they
need to know the actions taken by other agents and their
associated rewards to learn joint Q-values. Besides this, only
weak convergence assurances are shown.

In this paper, we introduce bootstrapping for independent
hierachical LA agents in multi-stage games. The learning
automata in the hierarchy will be updated on the basis of
estimates, and these estimates will be propagated from child to
parent in the LA hierarchy. Just as in single agent learning, we
can develop updates going from one-step back-up mechansims
to the complete Monte Carlo update mechanism. Empirical
results show that hierarchical LA agents based on one-step
backups are capable of solving multi-stage games in a non-
episodic way. Furthermore they do this with less communica-
tion compared to the Monte Carlo updating. The results also
show a higher percentage of convergence to the optimal path
in large multi-stage games and a faster convergence.

In the next section we repeat the concept of bootstrapping
in classical single agent reinforcement learning. We continue
in Section 3 with multi-stage games, the LA model and
its properties. In Section 4 we explain how we can add
boostrapping to our learning automata model. In Section 5
we discuss the effect of boostrapping on several multi-stage
games, including games with a coordination problem and large
random generated multi-stage games. In the last section we
conclude.
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II. BOOTSTRAPPING IN SINGLE-AGENT LEARNING

Reinforcement learning is the problem faced by an agent
that learns behavior through trial-and-error interactions with
a dynamic environment, see [6]. To obtain a lot of reward
from the environment it is operating in, the agent should
exploit actions that it has learned in the past and that were
found to be good. However discovering better actions is only
possible by trying out new ones, thus exploring. This trade-
off is fundamental and in the stationary case convergence to
the optimal policy1 can be guaranteed by different classes of
methods.

Single agent control problems in stationary environments
are successfully modeled as Markov decision processes
(MDPs). An MDP is defined by a set of states S, a set of
actions A, a transition function2 T : S × A → P (S) that
outputs a probability distribution on S and a reward function
R : S×A→ P (R) which implicitly specifies the agent’s task.

Without prior knowledge of the transition probabilities or
rewards, an MDP can be solved online by the theory of
Reinforcement Learning [6].

Common reinforcement learning methods, which can be
found in [6], [14] are structured around estimating value
functions. A value of a state or state-action pair, is the total
amount of reward an agent can expect to accumulate over the
future, starting from that state. One way to find the optimal
policy is to find the optimal value function. If a perfect model
of the environment as a Markov decision process is known,
the optimal value function can be learned with an algorithm
called value iteration. An adaptive version of this algorithm
exists for situations were a model of the environment is not
known in advance.

One feature used for distinguishing algorithms is by their
degree of bootstrapping in their evaluation process. Following
the generalized policy iteration framework of [6] a method for
solving the RL problem can be described by 2 simultaneous
interacting processes, namely policy improvement and policy
evaluation. In the evaluation phase the algorithm tries to learn
values for a state or state action-pair for the current policy. In
the improvement phase the current policy is being improved
with respect to the values learned. The evaluation process
can be accomplished by bootstrapping, meaning that values
or estimates are learned on the basis of other estimates.

For instance the Q-learning algorithm, which is an adaptive
value iteration method (see [6], [15]) bootstraps its estimate for
the state-action value Qt+1(s, a) at time t+1 upon its estimate
for Qt(s′, a′) with s′ the state where the learner arrives after
taking action a in state s:

Qt+1(s, a)← (1− α)Qt(s, a) + α(rt + γ maxa′Qt(s′, a′))
(1)

With α the usual step size parameter, γ a discount factor
and rt the immediate reinforcement.

1A policy is a mapping from states to actions. An optimal policy is a
mapping which maximizes some long-run measure of reinforcement.

2This function models the probability of ending up in a next state when an
agent takes an action in a certain state.

Non-bootstrapping evaluation methods as Monte Carlo
methods update their estimates based on actual returns only.
For instance the every-visit Monte Carlo method updates a
state-action value Q(s, a) at time t + n (with n the time for
one episode to finish) based on the actual return Rt and the
previous value:

Qt+n(s, a)← (1− α)Qt(s, a) + αRt

with

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . + γT−t−1rT

and t is the time at which (s, a) occurred.
Methods that learn their estimates in part on the basis of

other estimates,(i.e. they bootstrap) are called Temporal Differ-
ence Learning Methods. The Q-learning algorithm (equation
1) can be classified as a TD(0) algorithm. The back-up for
each state is based on just the next reward, an estimation of
the remaining rewards is given by the value of the state one
step later. One says that Q-learning is therefore a one-step TD
method. However, one could also consider backups based on
any intermediate number of rewards:

R
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γVt(st+n) (2)

In the limit, all real rewards up-until-termination are used
and no bootstrapping is necessary, this is the Monte Carlo
method. So, there is a spectrum ranging from using simple
one-step returns to using full-backup returns. However, in
general, backups can then also be done toward any average
of n-step returns, as shown in Figure 1.

TD(!), !-return

1-!

(1-!) !

(1-!) !2

 !T-t-1

Fig. 1. The backup diagram for TD(λ) [6]. If λ = 0 all the weight is
put on the first reward (= immediate reward). However if λ = 1, the backup
corresponds to the Monte Carlo backup.

Methods using these complex backup schemes are denoted
as TD(λ) methods, where parameter λ weights the contribu-
tions of the n-step returns R

(n)
t .

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t
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In a sense, TD(λ) methods form a bridge from simple one-step
TD(0) methods to Monte Carlo methods. What is presented
here is the so-called theoretical or forward view of TD(λ)
methods. An equivalent backward view exists, which allows
for an on-line implementation.

Advantages of TD methods over Monte Carlo methods
include the fact that TD methods can be naturally implemented
in an on-line, fully incremental fashion. With Monte Carlo
methods only off-line updating is possible, since only at the
end of an episode the actual full return is known. This makes
the latter method also unsuited for contuining tasks. Moreover,
TD methods learn from each transition, which can sometimes
speed-up learning time.

Convergence results for the control problem exists in the
extreme bootstrapping cases, meaning that estimates can only
be based on current estimates. An elegant proof of convergence
for Q-learning is given in [15] in case the problem is Marko-
vian. Monte Carlo methods have asymptotic convergence
guarantees for the evaluation problem however not for the
control problem.

III. MULTI-AGENT LEARNING IN MULTI-STAGE GAMES

A. Multi-Stage Game

A multi-stage game is a game where the participating agents
have to take a sequence of actions. An MDP can be extended
to the multi-agent case, a Multi-agent Markov decision process
(MMDP). Formally we can define an MMDP as a five-tuple,
M = 〈A, {Ai}∀i∈A, S, T, R〉 where:

• A is the set of agents participating in the game,
• {Ai}i∈A is the sets of actions available to agent i,
• S is the set of states (same as defined with an MDP),
• T (s,~a, s′) is the transition function stating the probability

that a joint-action ~a will lead the agents from state s to
state s′,

• and R : S → R is the reward function denoting the
reward the agents get for entering a certain state.

In the remainder of this paper we limited ourselves to tree-
structured multi-stage games. This means that there are no
loops possible between the game stages and once branches
are separated their paths will never be joined again.

An example of such a tree-structured multi-stage game can
be seen in Figure 2. In this particular example, the MMDP
consists of 6 states. The game starts in state s1. Here, both
agents have to take an action resulting in the joint-action
(a1

i ,b1
j ). Based on this joint-action the game continues to either

state s2 or s3 (both states give a numerical feedback of 0). In
this second stage, again, both agents must choose an action
a2

k and b2
l . If the agents are in state s3 no matter how the

joint-action (a2
k,b2

l ) looks like, the agent will always end up
in state s6 resulting in a payoff of 0.75 (chance of receiving
reward 1) for both agents. However if the agents ended up in
state s2 after the first stage then the agents have to deal with
a coordination problem. If the agents can coordinate on either
joint-actions (a2

1, b
2
1) or (a2

2, b
2
2) they both receive a pay-off

of 1.0 (chance of receiving reward 1). Miscoordination on the
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Fig. 2. An example of a simple MMPD, the Opt-In Opt-Out game [10]

other hand will be penalized heavily with a penalty of 0.0
(chance of receiving reward 1). When the agents end up in
state s4, s5 or s6 the game ends. Based on the rewards rm

obtained in process of reaching an end state a weighted reward
can be formed: rtotal = θ1r1 + · · · + θsrs. The weights can
be adjusted to completely in- or exclude a reward at a certain
stage. In our example it would be useful to exclude the reward
given at the first stage since this is always 0.0. After the reward
is given, the agents will be transported back to the startstate
s1 and the game can restart.

We can view a multi-stage game as a sequence of single
state games. The reward matrices for the 2 stages of the
game of Figure 2 are given in Figure 3. Note that in this

M1 =
(

0.0 0.0
0.0 0.0

)
M2 =


1.0 0.0 0.75 0.75
0.0 1.0 0.75 0.75
0.75 0.75 1.0 0.0
0.75 0.75 0.0 1.0


Fig. 3. Reward matrices of the Opt-In Opt-Out multistage decision problem
from Figure 2 with the rewards scaled to the interval [0, 1].

multistage decision problem, we have a coordination problem
at the second stage. Also note that the second matrix is divided
into 4 separate sub-matrices. We do this to depict that when
the agents reach the second stage, they don’t play the complete
game, only a part of it. Which part is decided by the actions
in the first stage. For instance if at the first stage, both agents
select their first actions, in the second stage the sub-matrix in
the upper-left corner is played. If the agents in the first stage
both play their second action, the sub-matrix in the lower-right
corner is activated in the second stage and so on.

B. Learning Automata Model

A learning automaton is an independent entity that is
situated in a random environment and is capable of taking
actions autonomously. The random environment is responsible
for generating a scalar value indicating the quality of the action
taken by the learning automaton. This scalar value, which we
call reward, is then fed back into the learning automaton.

Let us first describe the environment formally. An environ-
ment is a triple 〈A, c,R〉 with A the possible sets of inputs
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into the environment, c = [c(1) . . . c(n)] the penalty vector
storing a chance of success (= c(i)) for each action i, and
R the set of possible scalar rewards the environment can
generate (based on at ∈ A the action taken at time step t and
c(at) the probability of success for that action). Depending on
the output set, we can identify three different environments.
If R ∈ {0, 1}, we say the environment is of the P-model.
If the input is taken from a finite number of values in the
closed interval [0, 1], the environment is called a Q-model.
And finally, if the reward value is an arbitrary number in the
interval [0, 1] it is a S-model. In this paper, we use the Q-
model. Our results however, can be transfered to any of the
two other models without loss of generality.

A learning automaton can be expressed as a quadruple
〈A,R,p, U〉. A = {a(1), . . . , a(n)} denotes the set of actions
the learning automaton can take. Rt(at(i)) ∈ R is the input
that is given to the LA to indicate the quality of the chosen
action. Note that we deliberately reused the symbols A and R
because the output from the environment is the input into the
LA and vice versa.

The probabilities for selecting action at(i) are stored in the
vector pt = [pt(1), . . . , pt(n)]. The restrictions on pt(i) are
the following:

n∑
i=1

pt(i) = 1 and 0 ≤ pt(i) ≤ 1.

Thus all the probabilities sum up to 1 and each probability
lays within the interval [0, 1]. Note that at the beginning of
the game all action probabilities are chosen equal:

p0(1) = p0(1) = · · · = p0(n) =
1
n

.

Each iteration the action probabilities get updated by the rein-
forcement obtained from the environment. For the experiments
in this paper, we used the Linear Reward-Inaction [3] scheme.
Let at = a(i) be the action chosen at time step t. Then the
action probability vector p is updated according to

pt+1(i) = pt(i) + αrt(1− pt(i)) (3)
pt+1(j) = pt(j)− αrtpt(j),∀j 6= i. (4)

with α the step size parameter. The LR−I has been studied
widely and has several nice properties such as ε-optimality and
absolute expediency. For more details we refer to [2]–[4].

C. Hierarchies of Learning Automata

One problem often reoccurring in reinforcement learning is
that the agents learn too slow. One way to tackle this problem
was given by Thathachar and Sastry [16] and Ramakrishnan
[9]. They constructed an agent by connecting multiple learning
automata in a tree structured hierarchy and distributing the
total action set between the automata at the bottom level (see
Figure 4).

A hierarchical LA works as follows. The first automaton
that is active is the root at the top of the hierarchy: LA. This
automaton selects one of its n actions. If for example the
automaton selects action 2, the learning automaton that will

Environment

. . . . . . . . . . . .

LA 

LA 0 LA n

LA 00 LA 0m LA n0 LA nm

0 n

0 m 0 m

. . .

. . .. . .

Fig. 4. An agent constructed in with a hierarchy of learning automata

become active is learning automaton LA2. Then this active
learning automaton is eligible for selecting an action. Based
on this action, another learning automaton on the next level
will become active. This process repeats itself until one of the
learning automata at the bottom of the hierarchy is reached.

Using a hierarchy of learning automata is especially useful
when dealing with large actions spaces. One of the advantages
is computational. Suppose that the number of actions at level l
is nl and there are r levels in the hierarchy. The total number
of probabilities that get updated is n1 + n2 + · · ·+ nr. If we
had used a single automaton, this automaton would have had
n1 × n2 × · · · × nr actions and each all these actions would
have to be updated each iteration.

D. An interaction between learning automata hierarchies

The interaction of the two hierarchical agents of Figure 5
goes as follows. At the top level (or in the first stage) Agent 1
and Agent 2 meet each other in the stochastic game. They both
take an action using their top level learning automata LA A
and LA B. Performing actions ai by LA A and bk by LA B
is equivalent to choosing automata LA Ai and LA Bj to take
actions at the next level. The response of environment E1, rt ∈
{0, 1}, is a success or failure, where the probability of success
is given by c1

ik . At the second level the learning automata LA
Ai and LA Bk choose their actions aij and bkl respectively
and these will elicit a response from environment of which the
probability of getting a positive reward is given by c2

ij,kl. At
the end of the episode all the automata which were involved in
the games, update their action selection probabilities based on
the actions performed and the responses of the environments.

IV. BOOTSTRAPPING WITH LEARNING AUTOMATA

A. Monte Carlo

In the Monte Carlo method, the updating of the probabilities
is based on averaged sample returns. This averaged return
is ideally generated at the end of an episode. Monte Carlo
methods thus work best in episodic tasks where eventually
each strategy leads to a clear end state. Each time such a
clear end state is reached, an averaged return is generated by
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Fig. 5. An interaction of two agents constructed by learning automata
hierarchies. The top-level automata play a single stage game and produce
a reward r1. Then one learning automata of each hierarchy at the second
level play another single stage game, resulting in reward r2.

creating a weighted sum of all the returns. This sum is then
given to all learning automata that were active during the last
episode so they can update their action probabilities. Thus
when we reach an end stage at time step t we generate the
following sum:

R = θ1r1 + θ2r2 + · · ·+ θtrt

where ri is the reward generated at time step i. Note that the
following restrictions apply on the weights

t∑
i=1

θi = 1 and 0 ≤ θi ≤ 1.

These restrictions ensure that the averaged reward is within
the [0,1] interval, a condition necessary for the linear reward-
inaction update scheme.

In [17] the authors proof that if all the automata of the
hierarchical learning automata update their action probabilities
at each stage using the LR−I update scheme and if the
composite reward is constructed as a Monte Carlo reward
(described above) and at each level the step sizes of the au-
tomata are chosen sufficiently small then the expected payoff
of the overall system is non-decreasing. This result means
that the hierarchical learning automata will always converge to
an equilibrium path in an identical pay-off multi-stage game.
To which path the automata will converge to however is not
known. Neither is known how (sub-)optimal this path is. This
largely depends on the initial settings of the action probability
distribution and on the step size used.

B. Forward Monte Carlo

In [18], [19] we introduced an update mechansim based on
Intermediate Rewards (which we call Forward Monte Carlo
in this paper). With this technique the learning automata at
level l only get informed about the immediate reward and the
rewards on the remainder of the path. It doesn’t get informed
about the rewards that are given to automata on the levels
above him because he has no direct influence over them and
they would clutter up his combined reward. While the rewards
are still given at an explicit end-stages and while the automata
receive less rewards compared to the traditional Monte Carlo
technique, we still were able to construct a theoretical proof
that hierarchical learning automata using the Forward Monte
Carlo technique will converge to an equilibrium path in an
identical pay-off multi-stage game (under the same conditions
we described above for the traditional Monte Carlo technique).

The complete algorithm can be found in Algorithm 1. When

Algorithm 1 Forward Monte Carlo
1: All the learning automata: initialise action probabilities:
∀a ∈ A : p0(a) = 1

|A|
2: for each trial do
3: Activate the top LA of the hierarchies
4: for each level l in hierarchy h do
5: The active learning automata take action al

t(h)
6: ⇒ joint-action a = [al

t(1), . . . , al
t(h), . . . ]

7: Store immediate reward rt (team reward based on a)
8: end for
9: for each level l in hierarchy h do

10: Compute combined reward
11: Rl(h) = θtrt + θt+1rt+1 + · · ·+ θT rT

12: Update the automaton that was active at level l in
hierarchy h with reward Rl(h)

13: end for
14: end for

rewards are used unweighted (only normalized to the interval
[0, 1]), this technique based on intermediate rewards coincides
with the Monte Carlo version of the forward TD(λ) view, [6].
Because the learning automata get updated at the end of an
episode, the Forward Monte Carlo technique is still an off-line
algorithm.

C. One-Step Estimates

In the One-Step Estimates technique, the updating of the
learning automata will no longer take place at an explicit
end-stage. The automata get informed immediately about the
local reward they receive for their actions. Each automaton has
estimates about the long term reward for each of its actions.
These estimates are updated by combing the local rewards
with an estimate of possible rewards that this action might
give on the remainder of the path (see Line 10 and 11 in
Algorithm 2). The behavior of the algorithm is controlled by
four parameters: α, ρ, σ and τ . α is the step size parameter
from Eq. (1)-(2). σ is used to normalize the combined reward
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Algorithm 2 One-Step Estimates
1: All the learning automata: Initialise action probabilities:
∀a ∈ A : p0(a) = 1

|A|
2: Initialise my-estimates: ∀a ∈ A : myest(a) = 0 (esti-

mates for all my actions, meaning: what is the long term
reward associated with this action)

3: Initialise children-estimates: ∀a ∈ A : est0(a) = 0
(estimates for all my children, meaning: what is the aver-
age of the long term rewards for the learning automaton
associated with this action)

4: for each trial do
5: Activate the top LA of the hierachies
6: for each level l in hierarchy h do
7: Take action al

t(h)
8: ⇒ joint-action a = [al

t(1), . . . , al
t(h), . . . ]

9: Observe immediate reward rt (reward based on a)
10: Compute Rt = σrt + (1− σ)est(al

t(h))
11: Update my-estimates: myest(al

t(h)) =
myest(al

t(h)) + ρ[Rt −myest(al
t(h))]

12: Update action probability p using myest(al
t(h)) as

the reward for the LR−I scheme
13: Propagate myest(al

t(h)) up to parent ⇒ see Algo-
rithm 3: Updating estimates

14: end for
15: end for

to the interval [0, 1], it can also determine whether the weight
is on the local rewards or on the long term estimates (see Line
10 in Algorithm 2). ρ controls the influence of the difference
between the combined reward and the old-estimate on the new-
estimate (see Line 11 in Algorithm 2). And finally τ is used
for normalized the estimates received from the children (see
Line 2 in Algorithm 3).

Algorithm 3 Updating estimates
1: κ is the estimate received from the child (the last action

this automaton took was al
t(h))

2: est(al
t(h))← τest(al

t(h)) + (1− τ)κ

Currently, we only considered one-step returns. In a similar
way we could extend the algorithm to a 2-, 3- or n-step return,
and finally create a combined reward as in the backup diagram
shown in Figure 1.

V. EMPIRICAL RESULTS

In this section we report on the experiments we performed
with the three different algorithms (pure Monte Carlo, Forward
Monte Carlo and One-Step Estimates). For the pure Monte
Carlo and the Forward Monte Carlo we can construct the-
oretical proofs, guaranteeing convergence to an equilibrium
path in a multi-stage game. This can be proved under the
assumptions that the learning automata use the LR−I update
scheme and the step sizes are chosen small enough. We have
however no guarantee that the automata will converge to the
optimal equilibrium path.

It is often the case that when you want to apply some
techniques to an actual setting, you are more interested in
how the techniques perform under certain constraints. Here, we
want to know how fast and accurate the techniques perform.

A. Narendra 3 stages
In [17] the authors reported on a 2 stage game in which

the learning automata at the first stage have to play a local
suboptimal to reach the global optimal in the end. We have
constructed a game with similar properties meaning that the
automata in the first and second stage have to play a local
suboptimal to find the global optimal path in the end. The
reward matrices are shown in Figure 6. The Nash equilibria of
the local reward matrices are underlined and the joint-actions
of the optimal path in the game is set in bold font.

M1 =
(

0.7 0.6
0.1 0.1

)
M2 =


0.6 0.2 0.3 0.85
0.3 0.1 0.2 0.7
0.4 0.1 0.3 0.2
0.2 0.1 0.2 0.2



M3 =



0.7 0.6 0.6 0.7 0.7 0.3 0.3 0.1
0.1 0.1 0.4 0.2 0.3 0.4 0.2 0.1
0.1 0.3 0.5 0.4 0.4 0.6 1.0 0.9
0.2 0.4 0.2 0.35 0.2 0.1 0.75 0.65
0.1 0.2 0.4 0.2 0.6 0.2 0.75 0.6
0.2 0.2 0.45 0.65 0.2 0.1 0.55 0.3
0.7 0.7 0.6 0.7 0.4 0.1 0.8 0.2
0.5 0.8 0.3 0.1 0.2 0.1 0.1 0.4


Fig. 6. Reward matrices of our constructed 3 stage game. The local Nash
equilibria are underlined. The joint-actions that should be played to reach the
optimal solution are displayed in bold font.

In Figure 7 we see the convergence speed and convergence
accuracy for the Monte Carlo technique, the Forward Monte
Carlo and the One-Step Estimate technique applied on this
game. Note that the full lines correspond to the left Y-axis and
depict the number of time steps that have passed before both
the agents are converged to one single path in their hierarchy.
The dashed line corresponds to the right Y-axis and depicts
the number of times the optimal path in the multi-stage game
was found. On the X-axis we see value for the step size (i.e.
α in Eq. (1)-(2)) we used in the experiments. The results are
averaged over 100 runs.

From these results we can see that the best results for
convergence are reached when using the Forward Monte Carlo
technique. The traditional Monte Carlo does worse, but still
outperforms our One-Step Estimates. For the 3 techniques we
see that the number of steps needed to converge decreases as
the learning rate increases (note that their is no real difference
in the speed of convergence between the 3 techniques). How-
ever when we look at the convergence accuracies, only those
of Monte Carlo and the Forward Monte Carlo decrease while
that of the One-Step Estimates remain almost constant.

We can conclude from this figure that bootstrapping in a
game with a low depth does not perform well. This was of
course a bit expected because only the top level can really
benefit from the bootstrapping.
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Fig. 7. 3 Stages version of the Game of Narendra. The full line depicts the
number of steps needed to converge to a path in both the hierarchies. The
dotted line represents the percentage of convergence.

B. Random Game of 3 stages

In our next experiment we applied the 3 techniques to a
Random Game of depth 3. The total number of joint-paths
in the game is: (23)2 = 64. In a Random Game, the matrices
are filled with random values. Again these results are averaged
over 100 runs (and every run generates a new Random Game).
The convergence speed of the 3 techniques remains about the
same. While the performance for the traditional Monte Carlo
and the Forward Monte Carlo drops significantly (optimal
percentage from the previous experiment goes down from
95%/96% to 51%/61%) the performance of the One-Step
Estimates rises from 24% to 53%. In the previous experiment
the learning automata are misled in the first and second stage
of the game. Having information about the full reward of the
path improved the performance of (Forward) Monte Carlo.
Because in this game, the matrices are generated randomly,
the chance that such a situation occurs is smaller and hence
the performance of the One-Step Estimates rises.

C. Random Game of 6 stages

For our next experiment, we create Random Games of 6
stages. This gives a total of (26)2 = 4096 joint-paths in the
tree. Again we compare the 3 techniques. The results can be
seen in Figure 9. While the performance drops for all the
techniques (which is to be expected because we went from 64
possible solutions to 4096) we begin to see that the One-Step
Estimates are starting to perform better. We contribute the bad
results of the traditional Monte Carlo to the fact that their
learning automata get updated with rewards that are averaged
over 6 stages. The more the rewards are averaged, the closer
the averages become and the more difficult it becomes for
the learning automata to differentiate between optimal and
suboptimal paths. Also the Monte Carlo technique needs more
time to distinguish between the different paths .

While the techniques are still able to find the optimal solu-
tion in a Random Game of depth 6, we have no information
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Fig. 8. Random Game of 3 stages. The full line depicts the number of
steps needed to converge to a path in both the hierarchies. The dotted line
represents the percentage of convergence.
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Fig. 9. Random Game of 6 stages. The full line depicts the number of
steps needed to converge to a path in both the hierarchies. The dotted line
represents the percentage of convergence.

about the quality of the paths reached when they fail to reach
the optimal path. Therefore we repeated the experiment, this
time however we monitored how close the techniques came to
finding the optimal solution −ε. In this experiment we made
ε = 0.05. Thus if the optimal path gives a reward of 0.8 in
total, the agents behave optimal when they converged to a
path with a pay-off in the interval [0.75, 0.8]. The results for
this experiment can be seen in Figure 10. While the speed
of convergence remains about the same, the percentage of
converges almost triples. This indicates that when the automata
converge to a suboptimal path, this path still gives a high
reward.

D. Random Game of 8 stages

Since we expected the One-Step Technique to perform better
on games with more stage where bootstrapping could really
have an added benefit, we created Random Games of 8 stages.
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Fig. 10. Random Game of 6 stages and ε = 0.05. The full line depicts the
number of steps needed to converge to a path in both the hierarchies. The
dotted line represents the percentage of convergence.

This gives a total of (28)2 = 65536 possible joint-actions in
the multi-stage game. The results are plotted in Figure 11.
It is clear that these results confirm our suspicion. While the
performance of the Monte Carlo technique has dropped to
almost 0, the One-Step Estimates still find the optimal result
(with a small convergence margin of ε = 0.01). The parameter
setting used for the One-Step Estimates are: ρ = 0.5, σ = 0.5
and τ = 0.5.
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Fig. 11. Random Game of 8 stages and ε = 0.01. The full line depicts the
number of steps needed to converge to a path in both the hierarchies. The
dotted line represents the percentage of convergence.

VI. CONCLUSION

The work in this paper shows that the idea of bootstrapping
can be used in hierarchical learning automata. While for the
traditional Monte Carlo and Forward Monte Carlo methods
we can construct a theoretical proof of convergence to an
equilibrium path, these proofs only remain valid for a small
step size. In practice such a small step size results in a slow

convergence. With empirical results we argue that One-Step
Estimates are a more suitable algorithm for finding good
(often optimal) solutions in large sequential decision problems.
Furthermore One-Step Estimates converge faster and with a
higher accuracy in large games.
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