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Abstract— A number of experimental studies have investigated
whether cooperative behavior may emerge in multi-agent Q-
learning. In some studies cooperative behavior did emerge, in
others it did not. This paper provides a theoretical analysis of this
issue. The analysis focuses on multi-agent Q-learning in iterated
prisoner’s dilemmas. It is shown that under certain assumptions
cooperative behavior may emerge when multi-agent Q-learning
is applied in an iterated prisoner’s dilemma. An important
consequence of the analysis is that multi-agent Q-learning may
result in non-Nash behavior. It is found experimentally that the
theoretical results presented in this paper are quite robust to
violations of the underlying assumptions.

I. INTRODUCTION

Q-learning [1] is an algorithm for learning how to behave

in an unknown environment. The use of Q-learning is most

appropriate if the environment is a Markov decision process.

For such an environment it has been proven that under certain

assumptions Q-learning leads to optimal behavior [2].

In this paper we are concerned with multi-agent Q-learning.

In multi-agent Q-learning there are a number of agents that

all use Q-learning to choose their actions. The payoff received

by an individual agent depends not only on the agent’s

own behavior but also on the behavior of the other agents.

An individual agent in multi-agent Q-learning perceives its

environment as non-stationary because the behavior of the

other agents changes over time due to learning. Since a non-

stationary environment does not have the properties of a

Markov decision process, it is quite difficult to analyze multi-

agent Q-learning theoretically. In this paper multi-agent Q-

learning is analyzed theoretically under certain simplifying

assumptions. The analysis is performed using Markov chain

theory. It should be noted that attention focuses on the ap-

plication of the standard Q-learning algorithm in multi-agent

settings. Some examples of this approach can be found in [3]–

[9]. Variants of the standard Q-learning algorithm specifically

designed for multi-agent settings (e.g. [10]–[15]) are not

considered.

The theoretical analysis in this paper aims to explain the

emergence of cooperative behavior in multi-agent Q-learning.

The analysis is closely related to our earlier research described

in [8], [9]. In [8], [9] we apply multi-agent Q-learning in a

Cournot oligopoly model, which is a well-known model in the

field of microeconomics. We show experimentally that agents

in a Cournot oligopoly model learn to cooperate with each

other by using Q-learning (although they usually do not learn

TABLE I

THE PAYOFFS IN A ONE-SHOT PRISONER’S DILEMMA GAME. THE PAYOFF

TO THE AGENT USING THE ROW (COLUMN) STRATEGY IS LISTED FIRST

(SECOND). THE PAYOFFS MUST SATISFY THE INEQUALITIES IN (1)

AND (2)

cooperate defect
cooperate w, w u, z
defect z, u v, v

to cooperate to the largest extent possible). Somewhat similar

experiments that are described in [16] give the same result.

The purpose of this paper is to provide a theoretical analysis

that explains results like in [8], [9], [16].

Our analysis focuses on multi-agent Q-learning in iterated

prisoner’s dilemmas. An iterated prisoner’s dilemma has sim-

ilar characteristics as a repeated Cournot oligopoly game but

is simpler to analyze. In an iterated prisoner’s dilemma there

are two agents playing a repeated game. In each period of the

repeated game the agents play a one-shot prisoner’s dilemma

game. The payoffs in a one-shot prisoner’s dilemma game are

shown in Table I, where u, v, w, and z must satisfy

u < v < w < z (1)

and

2v < z + u < 2w. (2)

In a one-shot prisoner’s dilemma game defect is a dominant

strategy for both agents. (defect, defect) is therefore a dominant

strategy equilibrium. It is also the only Nash equilibrium in

the game. The interesting property of the game is that (defect,
defect) is Pareto dominated by (cooperate, cooperate). In other

words, if both agents use the dominant defect strategy, they

both receive a lower payoff than they would have received if

they had both used the dominated cooperate strategy.

One of the assumptions we make in our analysis is that

agents in an iterated prisoner’s dilemma do not have a memory

for remembering what happened in the past (of course they do

have a memory for remembering estimates of Q values). An

agent therefore does not know, for example, which action was

executed by its opponent in the previous period of the game.

Making this assumption simplifies our analysis considerably.

The assumption also has the important implication that there is

only one Nash equilibrium in an iterated prisoner’s dilemma.
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In this equilibrium both agents choose the defect action in each

period of the game. Other, more cooperative Nash equilibria

do not exist because agents do not remember what happened

in the past and consequently do not have the ability to

punish their opponent in case of defection. Since there are no

cooperative Nash equilibria under the assumption that agents

do not have a memory, it turns out that by making this

assumption we focus our attention on the setting in which

cooperative behavior seems most difficult to achieve.

Multi-agent Q-learning in an iterated prisoner’s dilemma is

studied experimentally in [5]. In one of the experiments in

[5] agents without a memory are considered. It turns out that

these agents always learn the defect strategy, which means

that their behavior always converges to the Nash equilibrium.

Cooperative behavior between the agents never emerges. A

similar result is reported in [4]. The results in [4], [5] may not

seem to be very surprising. Using the following reasoning,

which can also be found in [17], it may be argued that if

multi-agent Q-learning converges it must converge to a (pure

strategy) Nash equilibrium. When multi-agent Q-learning has

converged, agents no longer perceive their environment as

non-stationary, since non-stationarity is caused by learning. Q-

learning in a stationary environment is guaranteed to converge

to optimal behavior under certain assumptions [2]. In a multi-

agent setting optimal behavior means that an agent gives a

best response to the strategies of its opponents. Therefore,

when multi-agent Q-learning has converged, it must be the

case that each agent’s strategy has converged to a best response

to the opponent strategies and, as a consequence, that a Nash

equilibrium has been reached.

This reasoning may seem to explain the non-cooperative

behavior reported in [4], [5]. However, it also seems that

according to this reasoning the emergence of cooperative

behavior (i.e. non-Nash behavior) in the experiments described

in [8], [9] should not have been possible. In this paper we

investigate in detail the possibility that cooperative behavior

emerges in multi-agent Q-learning. We focus our attention on

cooperative behavior in iterated prisoner’s dilemmas. Using a

specific definition of convergence we show that it is possible

for multi-agent Q-learning to converge to cooperative behavior.

Whether convergence to cooperative behavior takes place turns

out to depend on the exploration strategy that is used in the

Q-learning algorithm and on the values of the payoffs in the

one-shot prisoner’s dilemma game. As we already noted above,

the theoretical analysis that we provide is based on certain

simplifying assumptions. In this paper we also present the

results of a number of experiments in which these assumptions

were relaxed. The experimental results indicate that the results

of our theoretical analysis are quite robust to violations of the

underlying assumptions.

Before we present our analysis some other papers in which

cooperative behavior in multi-agent Q-learning is studied

should be mentioned. In these papers a number of experimental

results are reported. In [18] a game similar to a prisoner’s

dilemma is considered. It is found that cooperative behavior

almost never emerges in this game. The agents in [18] do

not use the standard Q-learning algorithm but use a variant of

this algorithm specifically designed for multi-agent settings.

In [3] an experiment is described in which Q-learning agents

with a memory learn to cooperate with each other most of the

time. However, the game that is studied in [3] does not have

all the characteristics of a prisoner’s dilemma. In [6] a game

is studied that is a generalization of a prisoner’s dilemma. It

is found that in this game non-cooperative behavior emerges

most of the time although Q-learning agents also occasionally

learn to cooperate. Finally, in [11] a Q-learning variant for

multi-agent settings is presented that allows agents to learn to

cooperate in a prisoner’s dilemma, at least for certain values

of the payoffs.

This paper is organized as follows. We first give an introduc-

tion to Q-learning in Section II. We then present a theoretical

analysis of cooperative behavior in multi-agent Q-learning in

Section III. The robustness of our theoretical results is tested

experimentally in Section IV. Finally a discussion is provided

in Section V.

II. Q-LEARNING

In this section we give an introduction to Q-learning. The

terminology that we use is somewhat adapted to the termi-

nology in the game theoretic literature. Instead of the terms

‘reward’ and ‘policy’, which are typically used in the literature

on Q-learning, we use the terms ‘payoff’ and ‘strategy’.

Q-learning is an algorithm that belongs to the class of

reinforcement learning algorithms [19], [20]. Reinforcement

learning is concerned with the problem how an agent can learn

to behave optimally from interactions with its environment.

The general idea of reinforcement learning is as follows. An

agent interacts repeatedly with its environment. During each

interaction the agent first observes the state of the environment

s ∈ S. The agent then decides to execute an action a ∈ A.

This results in a payoff r that is received by the agent and in

a transition of the state of the environment from the old state

s to the new state s′. Because the state of the environment

changes as a result of the action that was executed by the agent,

the choice of an action may not only influence the agent’s

immediate payoff r but also its payoffs in future periods.

The environment is usually assumed to be a Markov decision

process, which means that the agent’s payoff and the new state

of the environment only depend (either deterministically or

stochastically) on the old state of the environment and on the

action that was executed by the agent, i.e. r = r(s, a) and

s′ = δ(s, a). In reinforcement learning it is typically assumed

that the agent has no prior knowledge of the payoff function

r(s, a) and the state transition function δ(s, a), so the agent

has no model of its environment. The goal of the agent is to

find an optimal strategy π∗ : S → A for choosing actions. A

strategy π(s) is optimal if in each state s ∈ S it selects an

action a ∈ A that maximizes the agent’s cumulative payoff,

which is the sum of its immediate payoff and its future payoffs.

The future payoffs are usually discounted.

Q-learning, introduced in [1], finds an optimal strategy by

learning the values of a so-called Q function. The function
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Q(s, a) is defined as the expected discounted cumulative

payoff that is received by executing action a in state s
and following an optimal strategy thereafter. Recursively the

Q function can be defined as follows

Q(s, a) = E
(

r(s, a) + γ max
a′∈A

Q(δ(s, a), a′)
)

(3)

where 0 ≤ γ < 1 denotes the discount factor. If the values of

the Q function are known, an optimal strategy is given by

π∗(s) = argmax
a∈A

Q(s, a). (4)

Q-learning approximates the Q values iteratively. After

each interaction of an agent with its environment, the agent’s

estimated Q values, denoted by Q̂, are updated using the

update rule

Q̂(s, a) ← (1 − α)Q̂(s, a) + α

(
r + γ max

a′∈A
Q̂(s′, a′)

)
. (5)

The parameter 0 ≤ α < 1 is called the learning rate and

may be decreased over time. The update rule allows an agent

that does not know the functions r(s, a) and δ(s, a) to learn

the values of the Q function and, consequently, to find an

optimal strategy for choosing actions. It is proven in [2] that

the values Q̂(s, a) estimated using Q-learning converge to the

correct values Q(s, a) with probability 1 if the environment

is a Markov decision process, the values Q̂(s, a) are stored

in a lookup table, all state-action pairs continue to be visited,

and the learning rate α is decreased in an appropriate way.

In deterministic Markov decision processes convergence of

Q̂ values can also be proven if a fixed value is used for α
[21].

In the special case that the environment is a Markov decision

process that has only one state, the action that is executed

in the current period cannot influence the payoffs that are

received in future periods. This means that future payoffs need

not be considered in the Q function. The discount factor γ can

therefore be set to 0 in (3) and (5). Denoting the Q function

and the payoff function by Q(a) and r(a) respectively, (3)

then reduces to

Q(a) = E(r(a)). (6)

Therefore, in the case of an environment with only one state,

the Q value of an action is simply defined as the expected

payoff from that action. In the same way, the update rule in (5)

reduces to

Q̂(a) ← (1 − α)Q̂(a) + αr. (7)

In this paper we refer to Q-learning using this update rule as

‘single-state Q-learning’.

In reinforcement learning an agent usually faces a trade-off

between exploration and exploitation when choosing an action.

On the one hand, an agent may want to explore unknown states

and actions to collect new information about its environment.

On the other hand, an agent may want to exploit its current

knowledge of the environment by executing the action that

is expected to maximize the cumulative payoff. In this paper

we consider agents that use either the Boltzmann strategy or

the ε-greedy strategy for choosing between exploration and

exploitation.

In the Boltzmann strategy the probability of selecting action

a in state s is given by

Pr(a|s) =
exp

(
Q̂(s, a)/T

)
∑

a′∈A exp
(
Q̂(s, a′)/T

) . (8)

In the case of single-state Q-learning this reduces to

Pr(a) =
exp

(
Q̂(a)/T

)
∑

a′∈A exp
(
Q̂(a′)/T

) . (9)

Although the Boltzmann strategy favors actions with high

Q̂ values, all actions have a positive probability of being

selected. The temperature parameter T > 0 determines how

exploration and exploitation are balanced. The probability

of exploration may be decreased over time by gradually

decreasing T . As T approaches 0, the Boltzmann strategy

approaches the greedy strategy of always selecting the action

with the highest Q̂ value.

In the ε-greedy strategy the action (or one of the actions)

with the highest Q̂ value is selected with probability 1−ε. With

probability ε an action is selected randomly using a uniform

distribution over all actions. The ε-greedy strategy is less

sensitive to the exact Q̂ values than the Boltzmann strategy. In

the Boltzmann strategy the probability of exploration depends

on the difference between the highest Q̂ value and the other

Q̂ values. This is not the case in the ε-greedy strategy. Also,

when exploration takes place, the Boltzmann strategy favors

actions with higher Q̂ values whereas the ε-greedy strategy

gives equal probability to all actions.

III. THEORETICAL ANALYSIS OF COOPERATIVE

BEHAVIOR

In this section we present a theoretical analysis that aims to

explain the emergence of cooperative behavior in multi-agent

Q-learning. The analysis also provides insight into factors that

influence whether cooperative behavior emerges. The focus of

the analysis is on multi-agent Q-learning in iterated prisoner’s

dilemmas.

In the analysis the following assumption is made.

Assumption 1: Agents do not have a memory for remem-

bering what happened in the past and therefore operate in an

environment that has only one state.

Because of this assumption agents use single-state Q-

learning to choose their actions. As we discussed in Section I,

the above assumption implies that there is only one Nash

equilibrium in an iterated prisoner’s dilemma, namely mutual

defection in each period of the game. Other, more cooperative

Nash equilibria are ruled out by the assumption. By making

Assumption 1 we therefore focus our attention on the setting

in which cooperative behavior seems most difficult to achieve.

In addition to Assumption 1 the analysis in this section is

also based on the following two assumptions.
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Assumption 2: The learning rate α in the Q-learning algo-

rithm has a fixed value of 1.

Assumption 3: Agents almost never explore, i.e. the limit

case in which the probability of exploration approaches 0 is

considered. If the Boltzmann strategy is used, this is achieved

by considering the limit case in which the temperature param-

eter T approaches 0. If the ε-greedy strategy is used, this is

achieved by considering the limit case in which ε approaches

0.

Assumption 3 states that agents almost never explore. It

is important to note that the theoretical results presented in

this section do not hold if there is no exploration at all.

Assumption 2 and 3 match to a limited extent the way in

which Q-learning is typically applied in experimental studies.

Similarly to Assumption 2 many experimental studies use a

fixed value for the learning rate α. Although in these studies

α typically has a value that is less than 1, for example 0.2

in [5], [6], [16] and 0.5 in [8], [9], we assume a value of

1 in order to make a theoretical analysis feasible. We also

assume that agents almost never explore. This is fairly similar

to experimental studies in which the probability of exploration

is quite high initially and is decreased over time in such a way

that it approaches 0 (e.g. [3], [5], [9]). Although Assumption 2

and 3 are usually not completely satisfied in experimental

studies, we do not consider this to be problematic for the

purpose of our analysis, which is to explain the emergence

of cooperative behavior in multi-agent Q-learning. First of all

the analysis shows (see Theorem 1 below) that convergence

of multi-agent Q-learning to cooperative behavior (i.e. non-

Nash behavior) is not fundamentally impossible. This is an

important result on its own. In addition, the results of a number

of experiments that we performed indicate that our theoretical

results are quite robust to violations of Assumption 2 and 3.

We discuss the experiments in Section IV.

The notion of convergence of an agent’s strategy is defined

as follows in this paper.

Definition 1: Let π denote a pure strategy. In an environ-

ment that has only one state, the strategy of an agent is said

to converge to strategy π if and only if

lim
t→∞Pr(at = π) = 1 (10)

where at denotes the action that is executed by the agent in

period t.
Note that this definition is restricted to pure strategies and

to environments with only one state. This is sufficient for the

purpose of this paper. Definition 1 corresponds closely to the

way in which empirical convergence is typically established

in experimental studies on Q-learning. In a multi-agent setting

one may also be interested in the collective behavior of agents.

The following definition can then be used.

Definition 2: Let π1, . . . , πn denote pure strategies. In an

environment that has only one state and that is populated by

n agents, the strategy profile of the agents is said to converge

to strategy profile (π1, . . . , πn) if and only if for k = 1, . . . , n
the strategy of agent k converges to strategy πk according to

Definition 1.

TABLE II

THE STATES OF THE MARKOV CHAINS THAT ARE USED IN THE PROOFS

OF THEOREM 1 AND 2

Symbol a1 a2 Q̂c
1 Q̂d

1 Q̂c
2 Q̂d

2

m1 cooperate cooperate w v w v
m2 cooperate cooperate w v w z
m3 cooperate cooperate w z w v
m4 cooperate cooperate w z w z
m5 cooperate defect u v w z
m6 cooperate defect u v u z
m7 cooperate defect u z w z
m8 cooperate defect u z u z
m9 defect cooperate w z u v
m10 defect cooperate w z u z
m11 defect cooperate u z u v
m12 defect cooperate u z u z
m13 defect defect w v w v
m14 defect defect w v u v
m15 defect defect u v w v
m16 defect defect u v u v

It should be emphasized that the convergence results pre-

sented in this section make use of the above two definitions and

need not be valid for alternative definitions of convergence.

The following theorem states that cooperative behavior may

emerge in an iterated prisoner’s dilemma if the assumptions

mentioned above are satisfied and agents use the Boltzmann

strategy to choose their actions.

Theorem 1: Consider an iterated prisoner’s dilemma with

an infinite number of periods. Let Assumption 1, 2, and 3 be

satisfied. Let both agents use single-state Q-learning combined

with the Boltzmann strategy. The strategy profile of the agents

then converges to (cooperate, cooperate) if and only if the

payoffs in the one-shot prisoner’s dilemma game satisfy

w − v > 2(v − u). (11)

It converges to (defect, defect) if and only if the payoffs in the

one-shot prisoner’s dilemma game satisfy

w − v < 2(v − u). (12)

Proof: For k = 1, 2 and t = 1, 2, . . . we use akt ∈
{cooperate, defect} to denote the action that is executed by

agent k in period t. We use Q̂c
kt and Q̂d

kt to denote respectively

agent k’s Q̂ value of the cooperate action and agent k’s

Q̂ value of the defect action immediately after the actions a1t

and a2t have been executed and the update rule of Q-learning

has been applied. Since in each period the cooperate action and

the defect action both have a positive probability of being exe-

cuted by an agent, after some time both actions will have been

executed at least once by each agent. Let t′ denote the first

period in which this is the case. Using Assumption 2 it can be

seen that for k = 1, 2 and t = t′, t′ + 1, . . . Q̂c
kt ∈ {u,w} and

Q̂d
kt ∈ {v, z}. We define Xt = (a1t, a2t, Q̂

c
1t, Q̂

d
1t, Q̂

c
2t, Q̂

d
2t).

Note that Xt is a random variable. We use xt to denote a

particular value that Xt may take. {Xt|t = t′, t′ + 1, . . .} is

a Markov chain because for t = t′, t′ + 1, . . . Pr(Xt+1 =
xt+1|Xt′ = xt′ , . . . , Xt = xt) = Pr(Xt+1 = xt+1|Xt = xt).
The Markov chain has sixteen states, which we denote by
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m1, . . . , m16. These states are shown in Table II. From each

state four state transitions are possible, which correspond to

the four action profiles in the one-shot prisoner’s dilemma

game. Since agents independently choose their actions using

the Boltzmann strategy, the probability of a state transition

can be calculated by multiplying each agent’s probability of

choosing an action as given by (9). Transition probabilities are

stationary because according to Assumption 3 the temperature

parameter T has a fixed value. We use pi→j to denote the

transition probability from state mi to state mj , i.e. for t =
t′, t′ + 1, . . . pi→j = Pr(Xt+1 = mj |Xt = mi). Obviously,

transition probabilities satisfy

16∑
j=1

pi→j = 1. (13)

Because the Markov chain {Xt|t = t′, t′+1, . . .} is irreducible

and ergodic, limt→∞ Pr(Xt = mj) exists and does not depend

on the initial state Xt′ (e.g. [22]). Pj = limt→∞ Pr(Xt = mj)
is referred to as a stationary probability of the Markov chain.

The stationary probabilities of the Markov chain can be found

by solving

Pj =
16∑

i=1

Pipi→j , for j = 1, . . . , 16 (14)

and
16∑

j=1

Pj = 1. (15)

Equation (14) can be written as

Pj =
1

1 − pj→j

16∑
i=1
i �=j

Pipi→j . (16)

Assumption 3 states that T → 0+. Using (9) it can be seen

that the probability of an agent choosing a particular action

approaches either 0 or 1 as T → 0+. Since the probability

of a state transition is calculated by multiplying each agent’s

probability of choosing a particular action, it follows that for

each transition probability pi→j either limT→0+ pi→j = 0 or

limT→0+ pi→j = 1. Note especially that limT→0+ pj→j = 0
for j = 2, . . . , 15. Using (16) we now obtain for j = 2, . . . , 15

lim
T→0+

Pj = lim
T→0+

16∑
i=1
i �=j

Pipi→j . (17)

It follows from (17) that limT→0+ Pj = 0 for j = 2, . . . , 15.

This result can be derived in an incremental way, first for j =
2, 3, 4, 7, 8, 10, 12, then for j = 5, 9, 13, then for j = 14, 15,

and finally for j = 6, 11. Equation (15) subsequently implies

that limT→0+(P1 + P16) = 1.

Transitions to state m1 are only possible from the states

m1, m13, m14, m15, and m16. From state m1 transitions are

only possible to the states m1, m5, m9, and m13. Using (13)

and (16) we can therefore write

P1 =
16∑

i=13

Pipi→1

p1→5 + p1→9 + p1→13
. (18)

It turns out that for i = 13, 14, 15

lim
T→0+

Pipi→1

p1→5 + p1→9 + p1→13
= 0. (19)

The left-hand side of (19) has the form 0/0. To prove (19)

it must be shown that the numerator in the left-hand side

approaches 0 faster than the denominator. This can be shown

by substituting an upper bound for limT→0+ Pi into (19). We

only work out a proof for i = 13. Since limT→0+ Pi ≤ 1 for

all i, it follows from (17) that

lim
T→0+

P2 ≤ lim
T→0+

(p5→2 + p6→2) (20)

lim
T→0+

P3 ≤ lim
T→0+

(p9→3 + p11→3) (21)

and

lim
T→0+

P4 ≤ lim
T→0+

(p7→4 + p8→4 + p10→4 + p12→4). (22)

Using these inequalities and limT→0+ P1 ≤ 1 the following

upper bound for limT→0+ P13 results from (17)

lim
T→0+

P13 ≤ lim
T→0+

(p1→13 + (p5→2 + p6→2)p2→13

+ (p9→3 + p11→3)p3→13

+ (p7→4 + p8→4 + p10→4 + p12→4)p4→13).
(23)

For i = 13 the correctness of (19) can be verified by

substituting this upper bound into (19) and by taking into

account the inequalities in (1). The proof of (19) for i = 14, 15
is similar to the proof for i = 13.

Using limT→0+(P1 + P16) = 1 it follows from (18) and

(19) that

lim
T→0+

P1 = lim
T→0+

p16→1

p16→1 + p1→5 + p1→9 + p1→13
. (24)

This expression has the form 0/0. It can be seen that, depend-

ing on the payoffs u, v, and w, either the numerator in (24)

approaches 0 faster than the denominator or the numerator and

the denominator approach 0 equally fast. This results in

lim
T→0+

P1 =

⎧⎨
⎩

1, if w − v > 2(v − u)
1
3 , if w − v = 2(v − u)
0, if w − v < 2(v − u).

(25)

According to Definition 1 and 2 the strategy profile of agents

in an iterated prisoner’s dilemma converges to (cooperate,
cooperate) if and only if limt→∞ Pr(akt = cooperate) = 1
for k = 1, 2. Note that

lim
T→0+

t→∞
Pr(a1t = cooperate) = lim

T→0+

8∑
j=1

Pj = lim
T→0+

P1 (26)
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and similarly that

lim
T→0+

t→∞
Pr(a2t = cooperate)

= lim
T→0+

⎛
⎝ 4∑

j=1

Pj +
12∑

j=9

Pj

⎞
⎠ = lim

T→0+
P1. (27)

By combining (25), (26), and (27) it turns out that the

condition w − v > 2(v − u) is necessary and sufficient for

convergence to the (cooperate, cooperate) strategy profile. In

a similar way it can be shown that the condition w − v <
2(v − u) is necessary and sufficient for convergence to the

(defect, defect) strategy profile. This completes the proof of

Theorem 1.

Theorem 1 assumes that agents use the Boltzmann strategy

to choose their actions. The following theorem states that

cooperative behavior does not emerge in an iterated prisoner’s

dilemma if instead of the Boltzmann strategy agents use the

ε-greedy strategy to choose their actions.

Theorem 2: Consider an iterated prisoner’s dilemma with

an infinite number of periods. Let Assumption 1, 2, and 3 be

satisfied. Let both agents use single-state Q-learning combined

with the ε-greedy strategy. The strategy profile of the agents

then converges to (defect, defect) for all possible values of the

payoffs in the one-shot prisoner’s dilemma game.

Proof: Theorem 2 can largely be proven in a similar way

as Theorem 1. Using a Markov chain with the states that are

shown in Table II and following a similar reasoning as in the

proof of Theorem 1, it can be derived that

lim
ε→0

P1 = lim
ε→0

p16→1

p16→1 + p1→5 + p1→9 + p1→13
. (28)

Note that this expression resembles the expression given by

(24) in the proof of Theorem 1. In the ε-greedy strategy ex-

ploration takes place with probability ε. In case of exploration

each action has the same probability of being chosen. As we

already discussed in the proof of Theorem 1, the probability

of a state transition can be calculated by multiplying each

agent’s probability of choosing a particular action. It can now

be seen that the transition probabilities in (28) are given by

p16→1 = p1→13 = ε2/4 and p1→5 = p1→9 = ε/2 − ε2/4.

Equation (28) therefore has the form 0/0 and the numerator

in (28) approaches 0 faster than the denominator. This implies

that limε→0 P1 = 0 for all possible values of the payoffs

in the one-shot prisoner’s dilemma game. It follows from

limε→0 P1 = 0 that the strategy profile of the agents converges

to (defect, defect). This completes the proof of Theorem 2.

IV. EXPERIMENTAL RESULTS

The theoretical results presented in the previous section are

based on certain simplifying assumptions. In this section we

test experimentally to what extent these results remain valid

if some of the underlying assumptions are relaxed. We focus

on Assumption 2 and 3, which state, respectively, that the

learning rate α has a fixed value of 1 and that agents almost

never explore. Assumption 2 is relaxed by experimenting with

TABLE III

THE NUMBER OF EXPERIMENTS IN WHICH BOTH AGENTS COOPERATED

IN PERIOD 500,000. THE AGENTS USED THE BOLTZMANN STRATEGY.

THE TOTAL NUMBER OF EXPERIMENTS WAS 50

u v w z α = 0.05 α = 0.20 α = 0.50 α = 1.00

0 1 9 10 48 50 50 50
0 2 9 10 1 50 49 49
0 2 6 10 0 0 9 10
0 3 6 10 0 0 0 0

TABLE IV

THE NUMBER OF EXPERIMENTS IN WHICH BOTH AGENTS COOPERATED

IN PERIOD 500,000. THE AGENTS USED THE ε-GREEDY STRATEGY. THE

TOTAL NUMBER OF EXPERIMENTS WAS 50

u v w z α = 0.05 α = 0.20 α = 0.50 α = 1.00

0 1 9 10 48 30 1 0
0 2 9 10 13 2 0 0
0 2 6 10 0 0 0 0
0 3 6 10 0 0 0 0

fixed values of α that are lower than 1. Assumption 3 is

relaxed by experimenting with exploration strategies in which

the probability of exploration is quite high initially and is

gradually decreased over time in such a way that it approaches

0.

The setup of the experiments that we performed was as

follows. In an experiment an iterated prisoner’s dilemma was

played by two agents that both chose their actions using

single-state Q-learning. A game lasted 500,000 periods. Such

a large number of periods turned out to be necessary in order

to obtain reliable results. The agents in an experiment used

either the Boltzmann strategy or the ε-greedy strategy. In

both strategies the probability of exploration was gradually

decreased over time in such a way that it approached 0. In

the Boltzmann strategy this was achieved by decreasing the

temperature parameter T as follows

T = 10 · 0.999994t (29)

where t denotes the current period in an iterated prisoner’s

dilemma. In the ε-greedy strategy ε was decreased according

to

ε = 0.99999t (30)

In an experiment a fixed value was used for the learning rate

α. The following values for α were considered: 0.05, 0.20,

0.50, and 1.00. We also used a number of different values

for the payoffs in the one-shot prisoner’s dilemma game. For

each combination of an exploration strategy, a value of α,

and values of the prisoner’s dilemma payoffs, we performed

50 experiments. In each experiment different random numbers

were used.

We are interested in the number of experiments in which

the agents learned to cooperate with each other. For various

values of the prisoner’s dilemma payoffs and of the learning

rate α, the number of experiments in which both agents

cooperated in period 500,000 is reported in Table III for the
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Fig. 1. The number of experiments in which both agents cooperated as
a function of the period in the iterated prisoner’s dilemma. The following
parameter settings were used: u = 0, v = 1, w = 9, z = 10, and α = 0.05.
The agents used the Boltzmann strategy. The graph was smoothed by taking
a moving average over 25 periods. The total number of experiments was 50.

Boltzmann strategy and in Table IV for the ε-greedy strategy.

In experiments in which the agents did not both cooperate in

period 500,000 it was almost always found that both agents

defected. It should be noted that in some experiments the

agents required a lot of time to learn to cooperate with each

other. This was the case in, for example, the experiments in

which u = 0, v = 1, w = 9, z = 10, and α = 0.05 and in

which the agents used the Boltzmann strategy. In Fig. 1 it is

shown how the behavior of the agents changed during these

experiments.

We first discuss the results of the experiments in which the

learning rate α was equal to 1. These results agree quite well

with the theoretical predictions presented in Section III. Of

course, the setup of the experiments differed somewhat from

the assumptions of the theoretical analysis. The theoretical

analysis considered the limit case in which the number of

periods in an iterated prisoner’s dilemma approaches infinity

and the probability of exploration approaches 0. In the exper-

iments, on the other hand, it was only possible to simulate

a finite number of periods and a very small probability of

exploration. These deviations from the assumptions of the

theoretical analysis provide an explanation for small differ-

ences between the experimental results and the theoretical

predictions. Such a difference was found in the experiments

in which u = 0, v = 2, w = 9, and z = 10 and in which

the agents used the Boltzmann strategy. As can be seen in

Table III, in one of these experiments cooperative behavior

did not emerge, even though it was predicted by the theoretical

analysis.

The results of the experiments in which the learning rate

α had a value lower than 1 indicate that the theoretical

predictions presented in Section III are quite robust. The

results show that Assumption 2, which states that α has a

fixed value of 1, can be relaxed without affecting Q-learning’s

ability to cooperate in an essential way. In the experiments

in which the agents used the Boltzmann strategy, cooperative

behavior was also observed when α had a fixed value lower

than 1 (see Table III). To obtain cooperative behavior it seems

that for lower values of α a more restrictive condition on

the payoffs in the one-shot prisoner’s dilemma game has to

be imposed. In a similar way the results of the experiments

in which the agents used the ε-greedy strategy indicate that

the theoretical predictions for this strategy are quite robust.

In these experiments cooperative behavior did not emerge for

most values of α and most values of the payoffs in the one-

shot prisoner’s dilemma game (see Table IV). Only when the

difference between the payoff of mutual cooperation (w) and

the payoff of mutual defection (v) was large and at the same

time the value of α was low, cooperative behavior sometimes

emerged in the experiments.

V. DISCUSSION

The theoretical analysis presented in Section III shows that

under certain simplifying assumptions multi-agent Q-learning

in an iterated prisoner’s dilemma may converge to cooperative

behavior. Under the assumptions of the analysis convergence

to cooperative behavior takes place if the Boltzmann strategy is

used in the Q-learning algorithm and the payoffs in the one-

shot prisoner’s dilemma game satisfy the condition in (11).

Convergence to cooperative behavior does not take place if

the ε-greedy strategy is used or if the Boltzmann strategy is

used and the condition in (11) is not satisfied. It should be

emphasized that these results were derived for the specific

definition of convergence provided in Section III. Since in

the analysis agents were assumed not to have a memory for

remembering what happened in the past, cooperative behavior

did not constitute a Nash equilibrium. It therefore follows from

the results obtained in Section III that under certain assump-

tions it is possible for multi-agent Q-learning to converge to

a strategy profile that is not a Nash equilibrium.

Some of the assumptions on which the theoretical analysis

in this paper is based are rather strong. Moreover, using

the proof technique presented in this paper it seems difficult

to relax the assumptions. However, the experimental results

reported in Section IV indicate that our theoretical results are

quite robust to violations of the assumptions. Most impor-

tantly, the experimental results show that the assumption of a

learning rate α with a fixed value of 1 can be relaxed without

affecting Q-learning’s ability to cooperate in an essential way.

It turns out that as the value of α is decreased cooperation

between agents that use the Boltzmann strategy becomes

somewhat more difficult whereas cooperation between agents

that use the ε-greedy strategy becomes somewhat easier.

In addition to explaining the emergence of cooperative

behavior in multi-agent Q-learning, the theoretical and exper-

imental results in this paper also draw attention to a more

general issue, namely the influence on the behavior of the Q-

learning algorithm of such factors as the exploration strategy,

the value of the learning rate α, and the payoff values. The

results show that in an iterated prisoner’s dilemma multi-agent

Q-learning may converge to either mutual cooperation or mu-

tual defection, which are two completely opposite outcomes.

Which of these outcomes is realized depends on the explo-

ration strategy, the value of α, and the values of the payoffs

in the one-shot prisoner’s dilemma game. The strong influence

of these factors on the behavior of the Q-learning algorithm

is likely to be a more general phenomenon that also occurs
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in other settings than prisoner’s dilemmas. It is important to

take this phenomenon into account in experimental studies on

(multi-agent) Q-learning. The results of studies that do not

consider the influence of factors like those mentioned above

may in many cases not be very robust.

Finally it may be interesting to note that Theorem 1

and 2 can also be proven using mathematical techniques

from the field of evolutionary game theory. These techniques

are discussed in, for example, [23]–[25]. Although the use

of mathematical techniques from the field of evolutionary

game theory may result in proofs that are intuitively easier

to understand than the proofs in this paper, we have chosen

not to use these techniques because most readers are probably

not familiar with them. However, the techniques may be useful

for constructing proofs similar to the ones in this paper. In that

way one may, for example, extend the analysis in this paper

to other games than prisoner’s dilemmas.
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