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Abstract— In this paper, finite-state, finite-action, discounted
infinite-horizon-cost Markov decision processes (MDPs) with
uncertain stationary transition matrices are discussed in the
deterministic policy space. Uncertain stationary parametric tran-
sition matrices are clearly classified into independent and corre-
lated cases. It is pointed out in this paper that the optimality
criterion of uniform minimization of the maximum expected
total discounted cost functions for all initial states, or robust
uniform optimality criterion, is not appropriate for solving MDPs
with correlated transition matrices. A new optimality criterion
of minimizing the maximum quadratic total value function is
proposed which includes the previous criterion as a special case.
Based on the new optimality criterion, robust policy iteration
is developed to compute an optimal policy in the deterministic
stationary policy space. Under some assumptions, the solution is
guaranteed to be optimal or near-optimal in the deterministic
policy space.

I. INTRODUCTION

Dynamic programming (DP) is a computational approach
to finding an optimal policy by employing the principle of
optimality introduced by Richard Bellman [1]. DP and approx-
imate DP can solve the problems of Markov decision processes
(MDPs) with accurate knowledge of transition probabilities to
obtain an optimal or near-optimal policy by the algorithms
such as value iteration, policy iteration, evolutionary policy
iteration, approximate policy iteration based on Monte Carlo
simulation [2]–[5]. However, in practice, accurate transition
probabilities are very difficult to obtain. Thus, exact solutions
via classic DP are not attainable, and those algorithms are
not applicable to obtain solutions any more. Moreover, the
estimated transition probabilities may be far away from the
true values due to noise and other issues associated with
the estimation process, or the estimation error may not be
trivial that it can result in significant deviation of the solutions
from the optimal values [6]. Hence, the idea of set estimation
for transition matrices with high confidence can be used to
alleviate some of the deficit from inaccurate point estima-
tion. With those uncertain transition matrices, robust dynamic
programming is desired to address the issue of designing ap-
proximation method with an appropriate robustness to extend

the power of the Bellman Equation. Representative efforts in
developing robust dynamic programming can be found in [6]–
[10]. One commonly used principle of optimality criterion for
robust algorithms is to minimize the maximum value functions
for all initial states, which is referred to as robust uniform
optimality criterion in this paper. Based on this optimality
criterion, robust value iteration and robust policy iteration were
proposed in [6] and [7], respectively, to obtain a deterministic,
uniformly optimal policy. To deal with uncertain transition
matrices, the notion of correlation in a transition matrix was
introduced in [6] and [10] in the context of MDPs. The
existing optimality criteria and associated robust algorithms
were developed only for MDPs with independent transition
matrices.

In this paper, finite-state, finite-action MDPs with dis-
counted infinite-horizon cost is discussed. The optimal policy
is constrained in the deterministic policy space. The transition
matrices are assumed to be stationary, which is reasonable
when systems are slowly varying. The contribution of this
paper is as follows. First, mathematically clear and more
tractable definitions of independent and correlated uncertain
stationary transition matrices are provided. Using these newly
formulated definitions, robust uniform optimality criterion is
not applicable for MDPs with correlated transition matrices.
Because of the correlation of uncertain transition matrices, for
any given policy, there may be no optimal transition matrices
such that the value functions of the policy reach maximum
uniformly for all initial states. This makes the comparison
among policies meaningless. Even if such transition matrices
exist for all policies, there may not be an optimal policy such
that its maximum value functions reach minimum uniformly
for all initial states. Hence, a new optimality criterion of
minimizing quadratic total value function is proposed. Based
on this criterion, under a weak condition, there exists an
optimal policy which can be optimal non-uniformly in initial
states. The previous criterion becomes a special case of the
new criterion. Note that the existing robust value iteration
and robust policy iteration can not guarantee solutions for
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MDPs with correlated transition matrices. A new robust policy
iteration is developed to obtain an optimal policy in the
stationary space. Under some assumptions, the solution is
guaranteed to be optimal or near-optimal in the deterministic
policy space.

The rest of the paper is organized as follows. In section 2,
the optimality criterion of minimizing the maximum quadratic
total value function is proposed and theorems are developed
to show that this criterion makes robust uniform optimality
criterion a special case and under some conditions, stationary
optimal policies are proven to be optimal or near-optimal in the
deterministic policy space. Base on this optimality criterion,
robust policy iteration is developed in section 3. The paper
concludes in section 4.

II. OPTIMALITY CRITERION USING QUADRATIC TOTAL
VALUE FUNCTIONS

In this section, an MDP with uncertain parametric transition
matrix is formulated. Based on this formulation, we present
why an optimal solution may be sensitive to transition prob-
abilities. After that, uncertain parametric transition matrices
are classified into independent and correlated cases. Analysis
demonstrates why an optimal policy may not exist under ro-
bust uniform optimality criterion. Consequently, the optimality
criterion using the quadratic total value function is proposed.
It is proven that robust uniform optimality criterion is a special
case. Besides, two theorems and one corollary are provided to
show that under some assumptions, stationary optimal policies
are optimal or near-optimal in the deterministic policy space.

Finite-state, finite-action, infinite-horizon MDPs with sta-
tionary transition matrices are described as follows. Let T
denote the discrete, infinite decision horizon, where T =
{0, 1, 2, · · ·}. At each stage, the system occupies a state i ∈ S,
where S is the state space with n states and denoted as
S = {1, 2, · · · , n}. With each state i ∈ S, a decision maker
is allowed to choose an action a deterministically from a
finite state-dependent set of allowable actions, denoted by
Ai = {1, 2, · · · ,mi}. Let M =

∑n
i=1 mi, and let “at” be

a function mapping states into actions with at(i) ∈ Ai at the
time t, i.e.,

at :


1
2
...
n

 →


a1

a2

...
an

 ∈ A1 ×A2 × · · · × An. (1)

Denote a policy by π

π = (a1,a2, · · ·), (2)

and let Π represent the deterministic policy space. Denote a
stationary policy by πs

πs = (a,a, · · ·), (3)

and let Πs represent the deterministic stationary policy space.
Obviously, Πs ⊂ Π. Define the cost corresponding to state
i ∈ S and action a ∈ Ai by c(i, a). Assume that c(i , a)

is nonnegative. The costs are time discounted by a factor
γ (0 < γ < 1). The system starts from an initial state.
The states make Markov transitions according to stationary
transition probabilities pa

ij from one state i to another state
j under an action a. All transition probabilities constitute an
M× n transition matrix P

P =
( (

P 1
1

)′
· · · (P a

i )
′
· · · (Pmn

n )
′

)′

, (4)

where the superscript “′” denotes the transpose and P a
i rep-

resents a transition probability row under the state i ∈ S and
the action a ∈ Ai.

In a more general setting, let each transition probability pa
ij

be represented by a function of a parameter vector denoted as
θ = {ϑ1, · · · , ϑq}, i.e.,

pa
ij

∆= pa
ij(θ) ∀i, j ∈ S, (5)

where 0 ≤ pa
ij ≤ 1 and

∑n
j=1 pa

ij = 1. In [6]–[10],
the parameters are specified as the transition probabilities
themselves, that is,

θ = {p1
11, · · · , p1

1j , · · · , p1
1(n−1), · · · , p

a
i1, · · · , pa

ij , · · · ,
pa

i(n−1), · · · , p
mn
n1 , · · · , pmn

nj , · · · , pmn

n(n−1)}. (6)

The transition probability row P a
i and the transition matrix P

can also be represented as a function of θ, i.e., P a
i

∆= P a
i (θ)

and P
∆= P (θ). Assume the parameter vector θ vary in a

known subset Θ ⊂ <1×q. And the transition matrix P is
varying in the set P ∆= {P : θ ∈ Θ}.

It is not too difficult to see that optimal value functions
may be very sensitive to the perturbation of the parameters in
transition matrix. Consider a stationary policy πs defined in
(3). For any P ∈ P ,

vπs

P = (I − γPπs)−1
Cπs , (7)

where vπs

P is the expected total discounted cost function under
the policy πs and the trasition matrix P , Pπs and Cπs are the
n × n transition matrix and the n × 1 cost function vector
respectively to πs, i.e.,

Pπs =



P
a(1)
1
...

P
a(i)
i
...

P
a(n)
n


, Cπs =


c(1,a(1))

...
c(i,a(i))

...
c(n,a(n))

 . (8)

Obviously, vπs

P is continuous in P [11]. However, P can be
discontinuous in θ over Θ, which may lead to discontinuous
value functions vπs

P in θ. Even if P is continuous in θ and
therefore vπs

P is continuous in Θ, the function vπs

P still may
not be smooth enough, that is, a small perturbation in θ results
in relatively large variation in vπs

P . Therefore there is a need
to develop robust solutions under uncertainty.

We are now in a position to introduce the concepts of
independence and correlation in P and Pπs .
Definition (Correlated transition matrix, Independent
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transition matrix):
The transition matrix P is correlated if

P ⊂ P1
1 × · · · × Pa

i × · · · × Pmn
n , (9)

where Pa
i = {P a

i (θ) : θ ∈ Θ}.
The transition matrix P is independent if

P = P1
1 × · · · × Pa

i × · · · × Pmn
n . (10)

Definition (Correlated transition matrix for πs, Indepen-
dent transition matrix for πs):
The transition matrix Pπs is correlated if

Pπs ⊂ Pa(1)
1 × · · · × Pa(i)

i × · · · × Pa(n)
n , (11)

where Pπs = {Pπs(θ) : θ ∈ Θ}.
The transition matrix Pπs is independent if

Pπs = Pa(1)
1 × · · · × Pa(i)

i × · · · × Pa(n)
n . (12)

Remarks:
(i) The set P1

1 × · · · × Pa
i × · · · × Pmn

n is an M-dimensional
hyper-rectangle. Matrix P is correlated if P is a proper subset
of this hyper-rectangle, and P is independent if P is equal to
the hyper-rectangle. An exact transition matrix P is a special
case of an independent transition matrix.
(ii) The set Pa(1)

1 ×· · ·×Pa(i)
i ×· · ·×Pa(n)

n is an n-dimensional
hyper-rectangle. Matrix Pπs is correlated if Pπs is a proper
subset of this hyper-rectangle, and Pπs is independent if Pπs

is equal to the hyper-rectangle.
(iii) According to the above definitions, MDPs are classified
into those with independent transition matrices and those with
correlated transition matrices.

The optimality criterion of minimizing the maximum value
function for any initial state is given as follows

min
π∈Π

max
P∈P

vπ
P (i) ∀i ∈ S, (13)

where vπ
P (i) is the expected total discounted cost function

under the policy π ∈ Π and the transition matrix P ∈ P
at the initial state i, i.e.,

vπ
P (i) = Eπ

i (
∞∑

t=0

γtc(j , a)|P ). (14)

According to the optimality criterion given in (13), an optimal
policy is defined as follows.
Definition (Optimal policy): A policy π∗ is optimal if there
exists P ∗ such that

vπ∗

P∗(i) = max
P∈P

vπ∗

P (i) = min
π∈Π

max
P∈P

vπ
P (i) ∀i ∈ S, (15)

where there exists θ∗ ∈ Θ such that P ∗ = P (θ∗).
For MDPs with independent transition matrices, a determin-

istic optimal policy has been proven existent [6], [7]. However,
for MDPs with correlated transition matrices, an optimal
policy does not always exist. The definition of an optimal
policy given by (15) can be interpreted as the conditions for
the existence of an optimal policy: (i) for any given π ∈ Π,
there is, at least one P ∗ such that vπ

P∗(i) = max
P∈P

vπ
P (i) for

any i ∈ S, where from here on P ∗ depends on π; (ii) there
is at least one π∗ ∈ Π such that vπ∗

P∗(i) = min
π∈Π

vπ
P∗(i) for any

i ∈ S. Such an optimal policy is uniformly optimal for initial
states. For MDPs with correlated transition matrices, the above
conditions are too strong to be satisfied, which can be shown
in the following example.
Example: consider a two-state, two-action, infinite-horizon
MDP. Let the state space be S = {1, 2}. The action spaces
at state 1 and state 2 are A1 = {1, 2} and A2 = {1, 2}.
According to (1) and (3), all four stationary policies in Πs are
defined by π1, π2, π3, π4 as follows,

π1 = (
(

1
1

)
,

(
1
1

)
, · · ·), (16)

π2 = (
(

1
2

)
,

(
1
2

)
, · · ·), (17)

π3 = (
(

2
1

)
,

(
2
1

)
, · · ·), (18)

π4 = (
(

2
2

)
,

(
2
2

)
, · · ·). (19)

Let the transition matrix P have the following formulation

P =


P 1

1

P 2
1

P 1
2

P 2
2

 =


θ1 1− θ1

θ2 1− θ2

1− θ2
1 θ2

1

1− θ3 θ3

 , (20)

and the cost functions are as follows,

c(1, 1) = 1, c(1, 2) = 2, c(2, 1) = 3, c(2, 2) = 4. (21)

The discount factor γ is chosen at 0.9. Let Ω =
{0, 0.2, 0.4, 0.6, 0.8, 1}. Let θ = {θ1, θ2, θ3} and Θ = {θ :
θ1, θ2, θ3 ∈ Ω}. The transition matrix P is correlated, that is,

P ⊂ P1
1 × P2

1 × P1
2 × P2

2 , (22)

where

P1
1 = P2

1 = P2
2 = {(0, 1), (0.2, 0.8), (0.4, 0.6),

(0.6, 0.4), (0.8, 0.2), (1, 0)}, (23)
P1

2 = {(1, 0), (0.96, 0.04), (0.84, 0.16), (0.64, 0.36),
(0.36, 0.64), (0, 1)}. (24)

Actually, by (8),

Pπ2 =
(

θ1 1− θ1

1− θ3 θ3

)
, (25)

Pπ3 =
(

θ2 1− θ2

1− θ2
1 θ2

1

)
, (26)

Pπ4 =
(

θ2 1− θ2

1− θ3 θ3

)
. (27)

By (12), Pπ2 , Pπ3 and Pπ4 are independent and the maximum
value functions are reachable. However, for π1,

Pπ1 =
(

θ1 1− θ1

1− θ2
1 θ2

1

)
. (28)
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By (11), it is correlated and then there is no P ∈ P such
that the maximum value functions for all initial states are
reachable. Thus, by the optimality criterion defined in (13),
an optimal policy does not exist.

Thus, a new optimality criterion is needed and its corre-
sponding optimal policy also need to be defined. For any fixed
transition matrix P , the quadratic total value function for a
policy π is defined as follows,

‖vπ
P ‖2 = (vπ

P )′ vπ
P , (29)

where in terms of the value function defined in (14)

vπ
P =

(
vπ

P (1) · · · vπ
P (i) · · · vπ

P (n)
)′

. (30)

The new optimality criterion is to minimize the maximum
quadratic total value function, i.e,

min
π∈Π

max
P∈P

‖vπ
P ‖2. (31)

Definition (Optimal policy): A policy π∗ is optimal if

‖vπ∗

P∗‖2 = max
P∈P

‖vπ∗

P ‖2 = min
π∈Π

‖vπ
P∗‖2 = min

π∈Π
max
P∈P

‖vπ
P ‖2.

(32)
Remarks:
(i) Based on the optimality criterion using the quadratic
total value function, an optimal policy can be non-uniformly
optimal in initial states.
(ii) The existence of such an optimal policy is guaranteed
under a weak condition. For any π, P ∗ is easily satisfied to
make the maximum value reachable. For example, the set P
is compact and closed and the function ‖vπ

P ‖2 is continuous
over P . Even if the maximum and minimum values are not
reachable, “max” and “min” can be replaced by “inf” and
“sup”, respectively, and an near-optimal policy can be easily
proposed.
(iii) If the cost function is also parameterized in θ, the
optimality criterion can be modified using the quadratic value
function with the cost function represented as c(i, a, θ).
(iv) If for any policy π, the probability distribution of the
initial states is non-uniform, or the value functions for different
initial states have different weights, the optimality criterion
can be modified using weighted quadratic total value function
‖vπ

P ‖2W = (vπ
P )

′
Wvπ

P .
Actually, the optimality criterion defined by (31) generalizes

the uniform optimality criterion defined by (13), which is
shown in the following Theorem 1.

Theorem 1: If an optimal policy exists with regard to the
optimality criterion defined in (13), then this optimality cri-
terion is equivalent to the one defined in (31). That is, if an
optimal policy exists, a policy under the optimality criterion
defined in (13) is optimal if and only if it is optimal under the
optimality criterion defined in (31).

Proof: Since an optimal policy exists under the opti-
mality criterion defined in (13), for any π ∈ Π, there exists
P ∗ ∈ P such that

vπ
P∗(i) = max

P∈P
vπ

P (i) ∀i ∈ S (33)

and let π1 be an optimal policy such that

vπ1
P∗(i) = max

P∈P
vπ1

P (i) = min
π∈Π

max
P∈P

vπ
P (i) ∀i ∈ S. (34)

Since vπ
P (i) ≥ 0, by (33),

max
P∈P

∑
i∈S

(vπ
P (i))2 =

∑
i∈S

max
P∈P

(vπ
P (i))2 = ‖vπ

P∗‖2, (35)

and then by (34),

min
π∈Π

max
P∈P

∑
i∈S

(vπ
P (i))2 =

∑
i∈S

min
π∈Π

max
P∈P

(vπ
P (i))2 = ‖vπ1

P∗‖2.

(36)

“ ⇒ ” : By (35) and (36),

‖vπ1
P∗‖2 = max

P∈P

∑
i∈S

(vπ1
P (i))2 = min

π∈Π
max
P∈P

∑
i∈S

(vπ
P (i))2 . (37)

Hence, π1 is an optimal policy under the optimality criterion
defined in (31).
“ ⇐ ” : Let π2 be an optimal policy under the optimality
criterion defined in (31). Then, for any π ∈ Π, there exists
Q∗ ∈ P such that

‖vπ
Q∗‖2 =

∑
i∈S

(
vπ

Q∗(i)
)2 = max

P∈P

∑
i∈S

(vπ
P (i))2 , (38)

and for π2,

‖vπ2
Q∗‖2 =

∑
i∈S

(
vπ2

Q∗(i)
)2

= min
π∈Π

max
P∈P

∑
i∈S

(vπ
P (i))2 . (39)

By (35), for any π ∈ Π,

‖vπ
Q∗‖2 =

∑
i∈S

max
P∈P

(vπ
P (i))2 , (40)

and then by (36),

‖vπ2
Q∗‖2 =

∑
i∈S

min
π∈Π

max
P∈P

(vπ
P (i))2 . (41)

Since
(
vπ2

Q∗(i)
)2

≤ max
P∈P

(vπ2
P (i))2,(

vπ2
Q∗(i)

)2

= max
P∈P

(vπ2
P (i))2 , (42)

and then
vπ2

Q∗(i) = max
P∈P

vπ2
P (i). (43)

Since max
P∈P

(vπ2
P (i))2 ≥ min

π∈Π
max
P∈P

(vπ
P (i))2,(

vπ2
Q∗(i)

)2

= min
π∈Π

max
P∈P

(vπ
P (i))2 , (44)

and then
vπ2

Q∗(i) = min
π∈Π

max
P∈P

vπ
P (i). (45)

Hence,

vπ2
Q∗(i) = max

P∈P
vπ2

P (i) = min
π∈Π

max
P∈P

vπ2
P (i) ∀i ∈ S. (46)

That is to say, π2 is an optimal policy under the optimality
criterion defined in (13).
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Generally, an optimal policy under the optimality criterion
using the quadratic total value function may be non-stationary.
However, under some assumptions, stationary optimal policies
are optimal or ε-optimal in the policy space Π.

Theorem 2: If

min
π∈Πs

max
P∈P

‖vπ
P ‖2 = max

P∈P
min
π∈Πs

‖vπ
P ‖2, (47)

stationary optimal policies are optimal in the policy space Π.
Proof: For any fixed P ∈ P , since min

π∈Πs

‖vπ
P ‖2 =

min
π∈Π

‖vπ
P ‖2, by (47),

min
π∈Πs

max
P∈P

‖vπ
P ‖2 = max

P∈P
min
π∈Πs

‖vπ
P ‖2 = max

P∈P
min
π∈Π

‖vπ
P ‖2.

(48)
Since by weak duality, max

P∈P
min
π∈Π

‖vπ
P ‖2 ≤ min

π∈Π
max
P∈P

‖vπ
P ‖2,

min
π∈Πs

max
P∈P

‖vπ
P ‖2 ≤ min

π∈Π
max
P∈P

‖vπ
P ‖2. (49)

Since min
π∈Πs

max
P∈P

‖vπ
P ‖2 ≥ min

π∈Π
max
P∈P

‖vπ
P ‖2,

min
π∈Πs

max
P∈P

‖vπ
P ‖2 = min

π∈Π
max
P∈P

‖vπ
P ‖2. (50)

That is to say, stationary optimal policies are also optimal in
Π.

Assume that Θ is a compact and closed subspace of the
vector space <1×q and for any π ∈ Π, the function ‖vπ

P (θ)‖
2

is continuous in θ. Then, given an arbitrarily small constant
ε > 0, for any θ0 ∈ Θ, there exists δπ

θ0
> 0, such that∣∣∣‖vπ

P (θ)‖
2 − ‖vπ

P (θ0)
‖2

∣∣∣ < ε, ∀θ ∈ Bπ
θ0
∩Θ (51)

where Bπ
θ0

= {θ : ‖θ − θ0‖ < δπ
θ0
}. Since⋃

θ0∈Θ

Bπ
θ0
⊇ Θ, (52)

by Heine-Borel theorem, there exist finite balls to cover Θ.
Let those selected balls be Bπ

θ1
, · · · ,Bπ

θj
, · · · ,Bπ

θr
and Pπ

d =
{P (θj) : 1 ≤ j ≤ r}, where θj and r depend on π. And then

Pd =
⋃

π∈Π

Pπ
d . (53)

Theorem 3: With the above assumptions and notations, if
for any π ∈ Πs,

min
π∈Πs

max
P (θ)∈Pd

‖vπ
P (θ)‖

2 = max
P (θ)∈Pd

min
π∈Πs

‖vπ
P (θ)‖

2, (54)

then stationary optimal policies on Pd are ε-optimal and
stationary optimal policies on P are also ε-optimal in the
policy space Π.

Proof: Without loss of generality, for any π ∈ Π, let
P (θ∗) ∈ P , P (θ1) ∈ Pd and P (θ2) ∈ Pπ

d such that

‖vπ
P (θ∗)‖

2 = max
P (θ)∈P

‖vπ
P (θ)‖

2, (55)

‖vπ
P (θ1)

‖2 = max
P (θ)∈Pd

‖vπ
P (θ)‖

2, (56)

0 ≤ ‖vπ
P (θ∗)‖

2 − ‖vπ
P (θ2)

‖2 < ε. (57)

Since ‖vπ
P (θ2)

‖2 ≤ ‖vπ
P (θ1)

‖2 ≤ ‖vπ
P (θ∗)‖

2,

0 ≤ max
P (θ)∈P

‖vπ
P (θ)‖

2 − max
P (θ)∈Pd

‖vπ
P (θ)‖

2 < ε. (58)

Then,

0 ≤ min
π∈Π

max
P (θ)∈P

‖vπ
P (θ)‖

2 −min
π∈Π

max
P (θ)∈Pd

‖vπ
P (θ)‖

2 ≤ ε. (59)

By (54) and Theorem 2,

min
π∈Πs

max
P (θ)∈Pd

‖vπ
P ‖2 = min

π∈Π
max

P (θ)∈Pd

‖vπ
P ‖2. (60)

Hence,

0 ≤ min
π∈Π

max
P (θ)∈P

‖vπ
P (θ)‖

2− min
π∈Πs

max
P (θ)∈Pd

‖vπ
P (θ)‖

2 ≤ ε, (61)

that is to say, stationary optimal policies on Pd are ε-optimal
in Π. Since

0 ≤ min
π∈Πs

max
P (θ)∈P

‖vπ
P (θ)‖

2 − min
π∈Πs

max
P (θ)∈Pd

‖vπ
P (θ)‖

2 ≤ ε,

(62)

0 ≤ min
π∈Πs

max
P (θ)∈P

‖vπ
P (θ)‖

2 −min
π∈Π

max
P (θ)∈P

‖vπ
P (θ)‖

2

= min
π∈Πs

max
P (θ)∈P

‖vπ
P (θ)‖

2 − min
π∈Πs

max
P (θ)∈Pd

‖vπ
P (θ)‖

2

+ min
π∈Πs

max
P (θ)∈Pd

‖vπ
P (θ)‖

2 −min
π∈Π

max
P (θ)∈P

‖vπ
P (θ)‖

2

≤ ε. (63)

Hence, stationary optimal policies on P are ε-optimal in Π.

Remarks:
(i) If for any fixed π ∈ Π, the function ‖vπ

P (θ)‖
2 is Lipschitz

with the constant Lπ that depends on π, that is,∣∣∣‖vπ
P (θ1)

‖2 − ‖vπ
θ2
‖2

∣∣∣ ≤ Lπ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Θ (64)

then the parameter δπ
θ0

can be chosen as follows,

δπ
θ0

= δπ ∆=
ε

Lπ + 1
, ∀θ0 ∈ Θ. (65)

That is to say, δπ
θ0

is independent of θ0.
(ii) If the function ‖vπ

P (θ)‖
2 is continuously differentiable with

respect to θ, it is also Lipschitz and the constant Lπ can be
chosen as follows,

∞ > Lπ ≥ max
θ∈Θ

∥∥∥∥∥∂‖vπ
P (θ)‖

2

∂θ

∥∥∥∥∥ . (66)

(iii) The smaller the Lπ is, the larger the δπ should be, and
then the smaller the cardinality of Pπ

d is, which can make the
condition (54) relatively easy to satisfy.
(iv) If for some policies, the constants Lπ are equal, the same
balls Bπ

θj
can be selected to cover Θ and also their sets Pπ

d

are equal, which may reduce the cardinality of Pd and make
the condition (54) satisfied more easily.

When for all π ∈ Π, the functions ‖vπ
P (θ)‖

2 are Lipschitz
with the constant L that is independent of π, then the param-
eters δπ

θ0
can be independent of not only θ0 but also of π, that

is,
δπ
θ0

= δ
∆=

ε

L + 1
, ∀θ0 ∈ Θ, π ∈ Π, (67)
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and consequently, the balls Bπ
θ0

are independent of π , that is,

Bπ
θ0

= Bθ0

∆= {θ : ‖θ − θ0‖ < δ}, ∀π ∈ Π. (68)

Hence, for all π, the same balls Bπ
θj

can be selected to cover
Θ and also all Pπ

d are equal. Thus, the set Pd becomes finite,
that is, Pd = Pf

∆= {P (θj) : 1 ≤ j ≤ r}, where θj and r are
independent of π.

Corollary 1: With the above assumptions and notations, if

min
π∈Πs

max
P (θ)∈Pf

‖vπ
P ‖2 = max

P (θ)∈Pf

min
π∈Πs

‖vπ
P ‖2, (69)

then stationary optimal policies on Pf are ε-optimal and
stationary optimal policies on P are also ε-optimal in the
policy space Π.

Proof: By (69) and Theorem 3, stationary optimal
policies on Pf are ε-optimal and stationary optimal policies
on P are also ε-optimal in Π.
Remarks:
(i) If the continuous derivatives of the functions ‖vπ

P (θ)‖
2 are

uniformly bounded for all π ∈ Π, the Lipschitz constant L
can be chosen as follows,

∞ > L ≥ sup
π∈Π

max
θ∈Θ

∥∥∥∥∥∂‖vπ
P (θ)‖

2

∂θ

∥∥∥∥∥ . (70)

(ii) The smaller the L is, the larger the δ should be, and
consequently the smaller the cardinality of Pf is, which can
make the condition (69) relatively easy to satisfy.

III. ROBUST POLICY ITERATION UNDER QUADRATIC
TOTAL VALUE FUNCTION

Based on the optimality criterion of minimizing the max-
imum quadratic total value function given in (31), a robust
policy iteration is developed to find a stationary optimal policy
for MDPs. Even though this solution is generally suboptimal
in the deterministic policy space Π, according to Theorems
2, 3, and Corollary 1, this stationary optimal policy can be
guaranteed to be optimal or ε-optimal in Π. In this section, we
consider stationary policies. For simplicity, the subscript “s”
which indicates association with stationary policies, is dropped
out.

Policy iteration includes policy evaluation and policy im-
provement steps. Under the policy evaluation step, for any
policy π = (a,a, · · ·), the maximum quadratic total value
function is expressed as follows in terms of (7)

‖vπ
P∗‖2 = max

P∈P
‖vπ

P ‖2

= max
P∈P

(Cπ)
′ (

I − γ (Pπ)
′)−1

(I − γPπ)−1
Cπ.(71)

The maximum value ‖vπ
P∗‖2 and the optimal P ∗ are to be

calculated. Such approaches are available to compute these
values. Actually, if the transition matrix for the policy π is
independent, an efficient iterative method given in Algorithm
1 can be used to compute ‖vπ

P∗‖2.
Remarks:
(i) Given a policy π, for the maximum point P ∗, the transition

Algorithm 1 Iterative Algorithm for maximum quadratic total
value function of a stationary policy with its independent
transition matrix
1. select vπ

0 ∈ <n×1 and set k = 0;
2. compute vπ

k+1 by

vπ
k+1(i) = c(i,a(i)) + γ max

P
a(i)
i

∈Pa(i)
i

P
a(i)
i vπ

k , i ∈ S; (72)

3. terminate if vπ
k+1 = vπ

k ; otherwise, increment k by 1 and go to 2;
4. output ‖vπ

k ‖
2 as ‖vπ

P∗‖2.

probability rows for all states i and the corresponding actions
a(i), denoted by

(
P

a(i)
i

)∗
, are computed as follows,(

P
a(i)
i

)∗
= arg max

P
a(i)
i

∈Pa(i)
i

{
P

a(i)
i vπ

k

}
, i ∈ S, (73)

and there are no special constraints for other rows.
(ii) A proof of convergence of the iterative algorithm under
the total value function can be obtained similar to that in [6],
[7].
(iii) In principle, the initial value vπ

0 can be selected arbitrarily
in <n×1. However, a carefully selected vπ

0 can accelerate the
convergence of the iterative process. To see that, let

G1 = {v : v(i) ≤ c(i,a(i)) + γ max
P

a(i)
i

∈Pa(i)
i

P
a(i)
i v} (74)

and

G2 = {v : v(i) ≥ c(i,a(i)) + γ max
P

a(i)
i

∈Pa(i)
i

P
a(i)
i v}. (75)

If vπ
0 ∈ G1, the sequence {vπ

k } is non-decreasing. If vπ
0 ∈ G2,

the sequence {vπ
k } is non-increasing. Thus, the sequence {vπ

k }
converges to vπ

P∗ faster than those with vπ
0 /∈ G1 ∪ G2.

For the policy improvement step, the policy can be im-
proved easily for MDPs with independent transition matrices
using robust policy iteration [7]. However, such improvement
method does not guarantee solutions for MDPs with correlated
transition matrices. Hence, the policy elimination method is
considered herein as a means of improving policy. The policy
elimination process entails elimination of some non-optimal
policies during each iteration by a necessary condition that a
stationary policy is optimal. The inequality ‖vµ

P∗‖2 ≤ ‖vπk

P∗‖2
given in (77) is such a necessary condition for a stationary
policy µ being optimal, where ‖vµ

P∗‖2 is the quadratic total
value function of µ at P ∗, ‖vπk

P∗‖2 is the maximum quadratic
total value function of πk and P ∗ is the corresponding optimal
matrix. Robust policy iteration under quadratic total value
function is described in details in Algorithm 2.
Remarks:
(i) Robust policy iteration under quadratic total value function
terminates in finite iterations when the cardinality of the set
Πk, denoted by |Πk| in Algorithm 2, is equal to one, since the
cardinality of Π0 is finite and Πk+1 ⊂ Πk(k = 0, 1, 2, · · ·).
The sequence {πk} converges to a stationary optimal policy.
(ii) A good initial policy π0, which has relatively small total
value function, can accelerate the convergence process.
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Algorithm 2 Robust Policy Iteration Under Quadratic Total
Value Function
1. Initialization: set k = 0, Π0 = Πs, O−1 = +∞, {π−1} = ∅, and select

π0 ∈ Π0;
2. Policy evaluation: compute ‖vπk

P∗‖2 and P ∗ such that

‖vπk
P∗‖2 = max

P∈P
‖vπk

P ‖2; (76)

3. Policy improvement:
if |Πk| > 1

(a) eliminate policies to obtain Π̃k such that

Π̃k = {µ ∈ Πk : ‖vµ
P∗‖2 ≤ ‖vπk

P∗‖2}; (77)

if |Π̃k| > 1
if ‖vπk

P∗‖2 < Ok−1

(b) set Ok = ‖vπk
P∗‖2, Π̂k = Π̃k − {πk−1};

(c) if |Π̂k| = 1, set Πk+1 = Π̂k = {πk}, πk+1 = πk ,
Ok+1 = Ok = ‖vπk

P∗‖2, increment k by 1, and go to 4; otherwise,
go to (d);
(d) set Πk+1 = Π̂k , select πk+1 ∈ Πk+1 − {πk}, increment k
by 1, and return to 2;

else
(e) if |Π̃k − {πk} − {πk−1}| ≥ 1, select π̃k ∈ Π̃k − {πk}−
{πk−1}, set Πk = Π̃k − {πk}, πk = π̃k , and return to 2;
otherwise, set Πk = Π̃k − {πk} = {πk−1}, πk = πk−1, Ok =
Ok−1 = ‖vπk−1

P∗ ‖2;
else

(f) set Πk+1 = Π̃k = {πk}, πk+1 = πk , Ok+1 = ‖vπk
P∗‖2,

increment k by 1, and go to 4;
else

(g) go to 4;
4. Termination: output πk as the stationary optimal policy with the corres-

ponding optimal transition matrix P ∗ and maximum quadratic total value
function Ok .

(iii) Robust policy iteration under quadratic total value func-
tion can be extended to solving problems with parameterized
cost functions and weighted quadratic total value functions.
(iv) Assume that the set Θ is compact and closed in <1×q, and
if for any fixed π and P (θ), the quadratic total value function
can be computed within arbitrarily small error bound, then
Algorithm 2 can be extended to obtain a stationary ε-optimal
policy.

IV. CONCLUSION

A theoretical framework is proposed to study MDPs with
uncertainties in the transition probability matrices. As a result,
the paper concludes with a robust policy iteration procedure
under a newly proposed total value function, which guarantees
optimal or near-optimal solutions. Such a robust construct may
be especially useful in practical applications when there is
too limited amount of experimental data to obtain an accurate
transition probability matrix, or when an accurate estimation
of the probability transition matrix is unrealistic. The proposed
framework is straightforward to apply in practical problems.
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