Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Model-Based Reinforcement Learning
in Factored-State MDPs

Alexander L. Strehl
Department of Computer Science
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854-8019
Email: strehl@cs.rutgers.edu

Abstract— We consider the problem of learning in a factored-
state Markov Decision Process that is structured to allow a
compact representation. We show that the well-known algorithm,
factored Rmax, performs near-optimally on all but a number
of timesteps that is polynomial in the size of the compact
representation, which is often exponentially smaller than the
number of states. This is equivalent to the result obtained by
Kearns and Koller for their DBN-E® algorithm, except that
we’ve conducted the analysis in a more general setting. We also
extend the results to a new algorithm, factored IE, that uses the
Interval Estimation approach to exploration and can be expected
to outperform factored Rmax on most domains.

I. INTRODUCTION

The development and analysis of the E* algorithm demon-
strated that a reinforcement-learning (RL) agent can quickly
(in polynomial time) obtain near-optimal behavior in an un-
known, discrete-time Markov Decision Process (MDP) with
finitely many states and actions [1]. Since then, there has been
significant progress, including the introduction of the Rmax
algorithm [2]. The Rmax and E® algorithms behave similarly,
although Rmax is slightly simpler. The important work of [3]
consolidated the theoretical framework and developed lower
bounds. In a parallel movement, an advanced exploration
technique called Interval Estimation (IE) that makes better
use of the agent’s experience was utilized in learning algo-
rithms [4], [5]. It was shown that the Model-Based Interval
Estimation algorithm learns in polynomial time and is superior
(theoretically and empirically) to existing algorithms [6]—[8].

Unfortunately, in the worst case, any learning algorithm
must visit every state and try every action before obtaining
near-optimal return. For a given problem or application, it
is often the case that easily obtained domain knowledge is
available that restricts the class of MDPs in which the agent
is to act. One convenient way to express this mathematically is
with factored-state Markov Decision Processes, which allow
different features of the state space to be modeled indepen-
dently [9], [10]. Within this model, an algorithm similar to
E3 can learn after only examining a small fraction of the
state space [11]. In fact, the algorithm learns after taking a
number of actions that is only polynomial in the number of
independent parameters of the model'.

IThe algorithm may use an exponential amount of computation, which is
unavoidable in the worst case.

1-4244-0706-0/07/$20.00 ©2007 IEEE

In this paper, we extend previous work in several ways. Like
E3, the Rmax algorithm has also been generalized to factored-
state MDPs, but until now there has been no analysis of its
performance [12]. Our first contribution is to provide such an
analysis and prove formal bounds on its learning complexity.
The extension of the E® and Rmax algorithms to Factored
MDPs assumed that the transition dynamics of the system
can be described by several dynamic Bayesian networks. We
generalize this assumption significantly and conduct analysis
in the more general framework. The work of [11] was pri-
marily concerned with demonstrating that polynomial bounds
are possible. We strive to keep the bounds as nearly tight as
possible. In this respect, one important tool is the use of L1
bounds of the deviation of the empirical transition estimates
to the true transition function. Finally, we also develop and
analyze a new algorithm, called Factored Interval Estimation,
for learning in Factored MDPs that utilizes the IE approach
to exploration.

A. Related Work

Planning in a Factored MDP can be achieved by solv-
ing a linear program with a large number of variables and
constraints. This formulation was examined in the work of
[12], which used a linear approximation scheme to reduce the
number of variables. In addition, a clever learning algorithm
was developed that utilizes an approach similar to IE and
explicitly deals with the problem of planning in the model.

II. BACKGROUND AND NOTATION

This section introduces the Markov Decision Process (MDP)
notation used through out the paper; see [13] for an introduc-
tion. Let Pg denote the set of all probability distributions over
the set S.

A finite MDP M is a five tuple (S,A,T,R,~), where S
is a finite set called the state space, A is a finite set called
the action space, T': S X A — Ps is the transition function,
R : S x A — Pg is the reward function, and 0 < v < 1
is a discount factor on the summed sequence of rewards. We
call the elements of S and A states and actions, respectively,
and define S = |S| and A = |A|. We use T'(s'|s,a) to denote
the transition probability of state s’ in the distribution 7'(s, a)

103

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

and R(s,a) to denote the expected value of the distribution
R(s,a).

We assume that the learner (also called the agenrt) receives
S, A, and ~ as input. The learning problem is defined as
follows. The agent always occupies a single state s of the
MDP M. The agent is told this state and must choose an
action a. It then receives an immediate reward r ~ R(s,a)
and is transported to a next state s’ ~ T'(s,a). This procedure
then repeats forever. The first state occupied by the agent
may be chosen arbitrarily. We define a timestep to be a single
interaction with the environment, as described above.

A policy is any strategy for choosing actions. We assume
(unless noted otherwise) that rewards all lie in the interval
[0,1]. For any policy =, let V% (s) (Q%,(s,a)) denote the
discounted, infinite-horizon value (action-value) function for
m in M (which may be omitted from the notation) from state
s. Specifically, for any state s and policy 7, let r, denote the ¢th
reward received after following 7 in M starting from state s.
Then, Vi (s) = E[Y ;= 7'r¢|s, 7. This expectation is taken
over all possible infinite paths the agent might follow. The
optimal policy is denoted 7* and has value functions V' (s)
and Q3},(s,a). Note that a policy cannot have a value greater
than 1/(1 —).

A factored-state MDP (or f-MDP) is an MDP where
the states are represented as vectors of n components X =
{X1,Xo,...,X,}. Each component X; (called a state vari-
able or state factor) may be one of finitely many values from
the set D(X;). In other words, each state can be written in
the form x = (x1,...,x,), where x; € D(X;). The definition
of factored-state MDPs is motivated by the desire to achieve
learning in very large state spaces. The number of states of a
factored-state MDP M is exponential in the number n of state
variables. To simplify the presentation, we assume the reward
Sfunction is known and does not need to be learned. All results
can be extended to the case of an unknown reward function.

A. Restrictions on the Transition Model

Factored-state MDPs are most useful when there are re-
strictions on the allowable transition functions. Traditionally,
researchers have studied transition models that can be repre-
sented by dynamic Bayesian networks (DBNs) for each action
of the MDP. Such a representation has been shown to be
powerful enough to support fast learning [11]. However, this
representation is unable to model some important conditional
independencies. Therefore, we develop a more general and
more powerful model. For any factored state x, let x; denote
the ith component of = for ¢ = 1,...,n. Next, we introduce
a model that yields a compact transition representation by
allowing the transition probabilities for the factors of the next
state ', P(z}|x,a), to depend on only a subset of the state
factors of the current state x.

Assumption 1: Let x,2' be two states of a factored-state
MDP M, and let a be an action. The transition distribution
function satisfies the following conditional independence con-

dition:
H P(z
This assumption ensures that the values of each state
variable after a transition are determined independently of each
other, conditioned on the previous state. We consider transition
functions that are structured as follows.
Definition 1: Let Z be a set of dependency identifiers.
Definition 2: Let D : S x A x X — 7 be a dependency
function.
Assumption 2: Let s, s’ € S be two states and a € A be an
action. We assume that P(s}|s,a) = P(s;|D(s,a,X;)). Thus,
the transition probability from (s,a) to s’ can be written as

z'|z, a) |z, a) (N

T(s'|s, a) HP 'D(s, a, X;)) 2)

The dependency function approach yields a compact repre-
sentation of the underlying transition function by allowing
commonalities among component distributions with shared
dependency function behavior. It also generalizes other ap-
proaches, such as those using dynamic Bayes networks [11],
and those incorporating decision trees [14] to represent ab-
straction. Several important definitions follow.
Definition 3: For each (s,a) € S x A, let

Do ={(Xi,j) € X XTI |j=D(s,a,X;)} (€))

be the relevant dependency pairs for state-action pair (s, a).

Definition 4: Let Q = U(s q)esxaDs,a be the set of all
transition components. Let N denote |Q|, the number of
transition components.
Note that each transition component, (X;, j), corresponds to
an independent probability distribution over the set D(X;)
that potentially needs to be estimated by the agent. We will
provide algorithms whose learning complexity (as defined in
Section 1I-B) depends only linearly on 3_ v, ;co [D(Xi)l,
the number of parameters of the compact representation.

Definition 5: A stochastic matrix X = (z(i,j)) is an m x
n matrix whose columns are probability vectors.

Definition 6: Let x = (x1,...,2,) and y = (Y1,...,Yn)
be two n-dimensional vectors. The L1 distance between x
and y, denoted ||z — y||1, is

e =yl = |2 — wil “
=1

B. Learning Efficiently

To formalize the notion of “efficient learning” we allow the
learning algorithm to receive two additional inputs, € and d,
both positive real numbers. The first parameter, €, controls the
quality of behavior we require of the algorithm (how close
to optimality do we desire) and the second parameter, J, is
a measure of confidence (how certain do we want to be of
the algorithm’s performance). As these parameters decrease,
greater exploration and learning is necessary, as more is
expected of the algorithms.

An algorithm is simply a policy that, on each timestep, takes
as input an entire history or trajectory through the MDP and

104

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

outputs an action. To avoid explicitly mentioning histories in
the following definition, we consider the set of policies (one
on each timestep) executed by an algorithm.

Definition 7: (from [3]) For any fixed ¢ > 0, the sample
complexity of exploration (sample complexity, for short)
of an algorithm A is the number of timesteps ¢ such that the
policy of the algorithm at time ¢, A;, is not e-optimal from the
current state, s; at time ¢ (formally, VAt(st) < V*(st) —e).

Next, we define what it means to be an “efficient” learning
algorithm

Definition 8: An algorithm A4 is said to be an efficient
PAC-MDP (Probably Approximately Correct in Markov Deci-
sion Processes) algorithm if, for any e > 0 and 0 < ¢ < 1, the
per-step computational complexity and the sample complexity
of A are less than some polynomial in the relevant quantities
(S,A,1/e,1/5,1/(1 —)), with probability at least 1 — ¢.

Definition 9: An algorithm A is said to be a PAC-fMDP
(Probably Approximately Correct in Factored Markov Deci-
sion Processes) algorithm if, for any e > 0 and 0 < ¢ < 1, the
sample complexity of A is less than some polynomial in the
relevant quantities (N, n, max; |D(X;)|,1/€,1/6,1/(1 = 7)),
with probability at least 1 — 4.

The terminology, PAC, in this definition is borrowed from
[15], a classic paper dealing with supervised learning. Please
see [3] for a full motivation of this performance measure.
Note that in Definition 9, the sample complexity is allowed a
dependence only on the number of parameters of the compact
factored representation, which is often exponentially smaller
than the number of states and actions

The following definitions and theorem were introduced and
discussed in [16] and will be used in our analysis.

Definition 10: Suppose an RL algorithm A maintains an
action value, denoted Q)(s, a), for each state-action pair (s, a)
with s € S and a € A. Let Q(s,a) denote the estimate for
(s,a) immediately before the tth action of the agent. We say
that A is a greedy algorithm if the t¢th action of A, ay, is
ay 1= argmax,cp Q¢(st, a), where s; is the tth state reached
by the agent.

Definition 11: Let M = (S,A,T, R,~) be an MDP with
a given set of action values, Q(s,a) for each state-action
pair (s,a), and a set K of state-action pairs. We define
the known state-action MDP My = (S U {S;,|(s,a) &
K}, A, Tk, Rk,) as follows. For each unknown state-action
pair, (s,a) ¢ K, we add a new state S, to Mg, which
has self-loops for each action (T'k(Ss,q|Ss.a,) = 1). For
all (s,a) € K, Rk(s,a) = R(s,a) and Tk(:|s,a) =
T(-|s,a). For all (s,a) ¢ K, Ri(s,a) = Q(s,a)(1 —~)
and Tk (Ss,q|s,a) = 1. For the new states, the reward is
RK(Ss,a:) = Q(87 a‘)(]- - ’7)

Definition 12: Suppose that for algorithm A there is a set
of state-action pairs K; (we drop the subscript ¢ if ¢ is clear
from context) defined during each timestep ¢ and that depends
only on the history of the agent up to timestep ¢ (before the
(t)th action). Let Ax be the event, called the escape event,
that some state-action pair (s,a) is experienced by the agent
at time ¢, such that (s,a) € K;.

Theorem 1: (from [16]) Let A(e, d) be any greedy learning
algorithm such that for every timestep ¢, there exists a set K,
of state-action pairs that depends only on the agent’s history
up to timestep ¢. We assume that K; = K;4; unless, during
timestep ¢, an update to some state-action value occurs or the
escape event Ax happens. Let Mg, be the known state-action
MDP and 7; be the current greedy policy, that is, for all states
s, m¢(s) = argmax, Q+(s,a). Suppose that for any inputs e
and 0, with probability at least 1 — 4, the following conditions
hold for all states s, actions a, and timesteps ¢: (1) Vi(s) >
V*(s) — € (optimism), (2) Vi(s) — V](}Kt (s) < e (accuracy),
and (3) the total number of updates of action-value estimates
plus the number of times the escape event from K;, Ak, can
occur is bounded by ((€, §) (learning complexity). Then, when
A(e, 6) is executed on any MDP M, it will follow a 4¢-optimal
policy from its current state on all but

O ¢(6,9) In ! In !
e(l=7)?2 6 e(l-7)
timesteps, with probability at least 1 — 26.

III. FACTORED RMAX

Rmax is a reinforcement-learning algorithm introduced by
[2] and shown to have PAC sample complexity by [3] ([2]
showed it was PAC in a slightly different setting). Factored
Rmax (or f-Rmax) is the direct generalization to factored-
state MDPs [12]. Factored Rmax is model-based, in that it
maintains a model M’ of the underlying f-MDP, and at each
step, acts according to an optimal policy of its model.

To motivate the model used by Factored Rmax, we first
describe at a high level the main intuition of the algorithm.
Consider a fixed state factor X; and dependency identifier j €
7 such that D(s, a, X;) = j for some state s and action a. Let
x; € D(X;) be any value in the domain of X;. There exists
an associated probability P(z;|j). We call the corresponding
distribution, P(-|7) for (X;, j), a transition component, which
is defined formally in Section II-A. The agent doesn’t have
access to this distribution however, and it must be learned.
The main idea behind model-based approaches for f-MDPs is
to use the agent’s experience to compute an approximation to
the unknown distribution P(:|j). However, when the agent’s
experience is limited, the empirical distribution often produces
a very poor approximation. The trick behind f-Rmax is to
use the agent’s experience only when there is enough of it to
ensure decent accuracy, with high probability.

Let m = (my,...,my) be some user-defined vector of
positive integers that is provided to f-Rmax as input at the
beginning of a run. For each transition component (X;, j), f-
Rmax maintains a count n(X;, j) of the number of times it has
taken an action a from a state s for which D(s,a, X;) = j.
For a given state-action pair (s,a) € S X A, D, is the set of
relevant dependency identifies j € Z such that j = D(s, a, X;)
for some factor X;. If the associated counts, n(X;,j), are
each at least m;, respectively, then we say that (s,a) is a
known state-action pair and use the reward distribution and the
empirical transition distribution estimate for (s, a). Otherwise,

105

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

the f-Rmax agent assumes that the value of taking action a
from state s is 1/(1 —), the maximum possible value.

Intuitively, the model used by f-Rmax provides a large
exploration bonus for reaching a state-action pair that is un-
known (meaning it has some relevant transition component X;
that has not been experienced m; times). This will encourage
the agent to increase the counts n(X;,j), causing effective
exploration of the state space until many transition components
are known. After much experience, the empirical distribution
is used, and the agent acts according to a near-optimal policy.
We will show that if the m; are set large enough, but still
polynomial in the relevant quantities (with the number of
states being replaced by the number of transition components),
then factored Rmax is PAC-fMDP in the sample complexity
framework.

Formally, Rmax solves the following set of equations to
compute its state-action value estimates:

Q(s,a) = 1/(1 —~),if 3X;, n(D(s,a,X;)) < m;
Q(s,a) = R(s,a)+v Y _ T(s|s,a) maxQ(s',d),
otherwise. ’

IV. ANALYSIS OF FACTORED RMAX

The main result of this section is the following theorem,
which implies that f-Rmax is PAC-fMDP.

Theorem 2: Suppose that 0 < € < ﬁ and 0 < § < 1 are
two real numbers and M = (S,A,T,R,~v) is any factored-
state. MDP with dependency function D and dependency
identifiers Z. Let n be the number of state factors and Q

be the set of transition components with N = |Q|. There

exists inputs m = (mq, ..., my) satisfying m; = mi(%, %) =
n? . . .

0 W), such that if f-Rmax is executed on

M with inputs m, then the following holds. Let .4; denote
f-Rmax’s policy at time ¢ and s; denote the state at time .
With probability at least 1 — 4, V]f}‘" (st) > Vig(se) — e is true
for all but
2(U + NIn(N/6)) . 1 1
0] n*(V + Nin(/))ln—lni , 5)
(1 —7)° 5 e(l=7)

timesteps t, where W = 3" . .o [D(X;)].

Factored Rmax models the unknown environment using the
certainty-equivalence method.

A. Certainty-Equivalence Model

Let (X;,j) € Q be a fixed transition component that assigns
probabilities, P(z|j), for all z; € D(X;). The maximum
likelihood estimate of these probabilities from m; samples has
the following formula:

A . # of samples equal to xy
Plalj) = T .

(6)

of samples = m;

We note that a learning algorithm obtains samples for (X, j)
whenever it takes an action a from a state s for which

(Xi,7) € Ds,q. The empirical model (also called the certainty-
equivalence model) is the transition model defined by using the
maximum likelihood estimates for each transition component:

T(s'|s,a) = [[P(si|D(s, a, X,)). (7)
i=1

B. Analysis Details

We utilize Theorem 1 to prove that f-Rmax is PAC-MDP.
The key insight is that after an adequate number of samples
have been gathered for a given transition component, the
resulting empirical transition probability distribution is close
to the true one, with high probability. However, transitions
in a factored-state MDP involve n transition components
since there are n state factors, all of whose transitions are
independently computed (see Equation 1). Next, we relate
accuracy in the transition model with accuracy in the transition
components.

We seek to bound the L1 distance between an approximate
transition distribution of the factored-state MDP to the true
transition model.

Lemma 1: Let X = (x(¢,7)) and Y = (y(i,5)) be any
two stochastic matrices of size m X n. Let x(-, j) denote the
jth column of the matrix X, which is a discrete probability
distribution over m elements. For stochastic matrix X, let
Px denote the product distribution of size m" defined as

lz(,7) —y(,)]l <2 forall j=1,...,n,

for 0 < e <1, then

=1 ip=1
' Proof: Using the transformation y(i,j) =
x(i,7) + «fi,j), we seek to maximize the function
f(Xva('v')) = ZZ:f“Zzﬂ |$(7:171)"'$(7:n7n) -
(z(i1,1) + ali1, 1)) - (2(in,n) + a(in,n))|, under the
lemma’s constraints. Fix any column index j and consider
the partial derivative with respect to the ith component,
Of/0x(i, 7). Tt is clear that this derivative does not depend?
on z(-,j). Suppose there is an element in the jth column,
x(i,7), such that € < x(i,5) < 1 — e. Then there must be
another distinct element z(¢', 7) such that z(¢’, j) > 0. Without
loss of generality, suppose that 0f/dxz(i,j) > 9f/0xz(i’, 7).
The value of f will not decrease if we simultaneously
increase x(i,7) and decrease x(i’,j) by as much as possible
(until z(4,j) + a(i,5) = 1 or z(i',j) + a(i’,j) = 0). By a
similar argument if there are two or more nonzero elements
in the jth column that add up to €, then we can increase the
one with largest partial derivative to € and decrease the others
to zero. In conclusion, we can restrict ourselves to matrices
X whose columns are one of the two following forms: (1)
there is one element with value 1 — ¢ and another one with
value ¢, or (2) there is a single element with value one and

2The absolute value signs can be removed by noting that there is some
setting of (-, -) that maximizes f.

106

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

the rest are zero-valued.® By symmetry, if column j of matrix
X is of form (1) with indices i1, i2 such that z(i1,5) = 1—¢,
2(i2,j) = €, then column j of matrix Y is of form (2) with
a(i1,j) = € and a(iz, j) = —e, and vice versa.

We have shown that we can restrict the maximization of f
over stochastic matrices X and Y of the following form:

1—¢ 1—-¢ 1 ... 1
€ €
X = 0 0 0
1 ... 1 1-—e¢ 1—¢
0 0 € €
Y=1o 0

Suppose there are ¢; columns of type (1) and t5 = n — t;
columns of type (2) in X. Then, we have that

FXY) =1 =(1=e)?[+(1-(1-e)")+ (1-(1-e)").

(®)
The first term in Equation 8 follows from choosing elements
only in the first row (i; = --- = i, = 1). The second term

results from choosing non-zero terms in X that are zero in
Y and the third term from choosing non-zero terms in Y that
are zero in X. Without loss of generality, if ¢; > t5, then
from Equation 8 we have that f(X,Y) =2 —2(1 — ¢)* <
2 —2(1— €)™, as desired.]

Corollary 1: Let M be any factored-state MDP. Suppose
that for each transition component P(-|j) we have an estimate
P(-|j) such that ||P(-|5) — P(-|5)||1 < €/n. Then for all state-
action pairs (s, a) we have that

[|T(s,a) —T(s,a)|l1 <e.)

Proof: Follows directly from the fact that 1 — (1 —¢€)™ <

en. |

We will make use of the following Lemma from [6] that

relates accuracy in the model to accuracy in the value function.

Lemma 2: Let My = (S,A/T1,R,v) and M, =

(S,A, T, R,~) be two MDPs. There exists a constant C' > 0

such that if ||T} (s, a) — Ta(s, a)|p < 0(6(1 - 7)2) holds for
all states s and actions a, then

|Q4r, (s,a) — Qi (s, a)| < e

holds for any stationary policy .

Corollary 1 shows that L1 accuracy of the transition com-
ponents of the model implies L1 accuracy of the resulting
empirical transition distributions. Lemma 2 shows that L1
accuracy in the transition distributions of a model combined
with the true reward distributions can be used to compute
accurate value functions for any policy. Thus, we are left
with answering the question: how many samples are needed

10)

3Technically, we have left open the possibility that one element has value
1 — €’ and another has value €/, where 0 < €’ < €. However, it is easy to
show that we can increase f in such a case.

to estimate a given transition component (discrete probability
distribution) to a desired L1 accuracy. The following theorem
is helpful in this matter.

Theorem 3: (from [17]) Let P a probability distribution on
the set A = {1,2,...,a}. Let X1, X5,..., X,, be indepen-
dent identically distributed random variables according to P.
Let P denote the empirical distribution computed by using the
X;’s. Then for all € > 0,

Pr(||P = P||y >) < 2% ™m</2, (11
Definition 13: For f-Rmax we define the “known” state-
action pairs Ky, at time £, to be

K, :={(s,a) € SxAn(X;,j) > m, for all (j,X;) € Ds .}

(12)
If ¢ is contextually defined, we use the simpler notation K.
The following event will be used in our proof that f-Rmax
is PAC-fMDP. We will provide a sufficient value of the
parameter vector m to guarantee that the event occurs, with
high probability. In words, the condition says that the value
of any state s, under any policy, in the empirical known state-
action MDP]LAIKt (see Definition 11) is e-close to its value in
the true known state-action MDP M.

Event Al For all stationary policies w, timesteps t and
states s during execution of the f-Rmax algorithm on some
f-MDP M, |V, (s) — VA?/“[Kt (9)] <e

Lemma 3: There exists a constant C' such that if f-Rmax
with parameters m = (m;) is executed on any MDP M =
(§,A,T,R,v) and m,, for i = 1,..., n, satisfies

n?(|D(Xi)| +In (N/5)))

e?(1—v)*
then event A1l will occur with probability at least 1 — §.
Proof: Event Al occurs if f-Rmax maintains a close
approximation of its known state-action MDP. On any fixed
timestep ¢, the transition distributions that f-Rmax uses are the
empirical estimates as described in Section IV-A, using only
the first m; samples (of immediate reward and next state pairs)
for each (X, j) € U(s,a)e k { Ds,q }- Intuitively, as long as each
m; is large enough, the empirical estimates for these state-
action pairs will be accurate, with high probability*. Combin-
ing Corollary 1 with Lemma 2 reveals that it is sufficient to

obtain C(e(1 —~)* /n) -accurate (in L1 distance) transition

components. From Theorem 3 we can guarantee the empirical
transition distribution is accurate enough, with probability at
least 1 — &', as long as 2/P(Xle=mic’(1=7)%/(2n*) < §/ Using
this expression, we find that it is sufficient to choose m such

that
(DX + In(1/8))

' (1 —)*

“There is a minor technicality here. The samples, in the form of next
state factors, experienced by an online agent in an f-MDP are not necessarily
independent samples. The reason for this is that the learning environment or
the agent could prevent future experiences of state factors based on previously
observed outcomes. Nevertheless, all the tail inequality bounds that hold for
independent samples also hold for online samples in f-MDPs, a fact that is due
to the Markov property. There is an extended discussion and formal proof of
this in the context of general MDPs in our forthcoming paper [8] that extends
to the factored case.

(13)

107

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Thus, as long as m; is large enough, we can guarantee that the
empirical distribution for a single transition component will be
sufficiently accurate, with high probability. However, to apply
the simulation bounds of Lemma 2, we require accuracy for
all transition components. To ensure a total failure probability
of &, we set &' = §/N in the above equations and apply the
union bound over all transition components. |

C. Proof of Main Theorem

Proof: (of Theorem 2). We apply Theorem 1. Assume
that Event A1 occurs. Consider some fixed time ¢. First, we
verify condition (1) of the theorem. We have that V;(s) =
VJ\ZK,, (s) = Vip,, (s) —€ = V*(s) — e. The first equality
follows from the fact that action-values used by f-Rmax are
the result of a solution of its internal model. The first inequality
follows from Event Al and the second from the fact that
Mp, can be obtained from M by removing certain states
and replacing them with a maximally rewarding state whose
actions are self-loops, an operation that only increases the
value of any state. Next, we note that condition (2) of the
theorem follows from Event Al. Observe that the learning
complexity, (¢, d), satisfies ((e,0) < Z(Xi,j)eQ m;. This is
true because each time an escape occurs, some (s,a) € K
is experienced. However, once all the transition components
(Xi,7) for (s, a) are experienced m; times, respectively, (s, a)
becomes part of and never leaves the set K. To guarantee
that Event A1 occurs with probability at least 1 — §, we use
Lemma 4 to set m.]

V. FACTORED IE

Interval Estimation (IE) is an advanced technique for han-
dling exploration. It was introduced by [4] for use in the k-
armed bandit problem, which involves learning in a special
class of MDPs. The approach can be incorporated into a
sample-efficient RL algorithm called Model-Based Interval
Estimation or MBIE [5], [8]. In this section we demonstrate
that the IE approach to efficient exploration can be applied to
the problem of learning in factored-state MDPs.

The Factored IE (or f-IE) algorithm is similar to f-Rmax
in that it maintains empirical estimates for the transition
components as described in Section IV-A. The main difference
is that f-IE uses the empirical estimates for each transition
component even if the agent has little experience (in the
form of samples) with respect to that component. Like f-
Rmax, f-IE has a parameter m; for each factor X; and it
uses only the first m,; samples for each transition component
(Xi,7) € Q to compute its empirical estimate (all additional
observed samples are discarded)’. However, when m; samples
are yet to be obtained, f-IE still computes an empirical estimate
]ﬁr(| Jj) using all the observed samples. This is in contrast to
the f-Rmax algorithm, which ignores such estimates. Thus,
f-IE makes better use of the agent’s limited experience.

SThis condition was needed for our analysis to go through. Experimentally,
we have found that the algorithm has reduced sample complexity but increased
computational complexity without this restriction.

For a specified state-action pair (s, a), let ¢; denote the count
n(D(s,a, X;)) that is maintained by both the f-Rmax and f-
IE algorithms. Recall that f-Rmax solves the following set of
equations to compute the policy it follows:

Q(s,a) = 1/(1—~),if 3X;, ¢ <my
Q(s,a) = R(s,a)+7Y T(s']s,a) maxQ(s’,a’),
otherwise.

The algorithm f-IE solves a similar set of equations:

Q(s,a) = 1/(1—7),if 3X;, ¢; =0
Qs,a) = Rs,a)+7 Y T(s'ls, @) max Qs)
+ eb(cr, e, .5 0n) otherwise.
where eb : Z" — R is a function of the form
Bi
eb(cy,ca,. .., Cp) = max , (14)
(Cncnen)i= X o Ve
for some constants 3;, i = 1,...,n. We think of this function

as an exploration bonus that provides incentive for obtaining
samples from transition components that are poorly modeled
and therefore have a low count, c;.

VI. ANALYSIS OF FACTORED IE

The main result of this section is the following theorem.

Theorem 4: Suppose that 0 < € < ﬁ and 0 < 6 < 1 are
two real numbers and M = (S,A,T,R,~) is any factored-
state MDP with dependency function D and dependency
identifiers Z. Let n be the number of state factors and Q be
the set of transition components with N = |Q|. There exists

inputs m = (mq,...,my) and S = (B1,...,0), satisfying
2 -
mi = mi(L, 1) = 0 (n (D) +InWn (<1 ws)))) and

Gi = %\/2 In (Nm;/§) + 21n(2)|D(X;)|, such that if {-IE
is executed on M with inputs m and (3, then the following
holds. Let A; denote f-IE’s policy at time ¢ and s; denote the
state at time ¢. With probability at least 1 — 4, VA“Z“ (s¢) >
Va7 (s¢) — € is true for all but

n?(¥ + Nln(e(lj\i—’fy)&)) 1 1
< =)0 lnglnie(lf'y) , (15)

timesteps ¢, where ¥ =} . o [D(X)].

A. Analysis Details

Recall that for a fixed transition component (X;, 7), the f-
IE algorithm maintains a count n(X;, j) that is equal to the
number of samples obtained by the agent for estimation of the
corresponding distribution. Since the algorithm will only use
the first m; samples, n(X;,j) < m;.

Event A2 For all transition components (X;,j) € Q, the
following holds during execution of the f-IE algorithm on MDP
M,

\|]5(|]) — P < \/2111(Nmi/5) +2In(2)|D(X,)]
N n(Xla])

)

(16)

108

Proceedings of the 2007 IEEE Symposium on Approximate

Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Lemma 4: The event A2 will occur with probability at least
1-6.
Proof: Fix a transition component (X;,j) € Q. Fix
a moment during execution of f-IE in an f-MDP M. By
Theorem 3, we have that P(||P(-|j) — P(-|j)]1 > «a) <
2ID(Xi) | g=n(Xisj)a?/2, Setting the right-hand side to be at most
0/(Nm;) and solving for o proves that with probability at
least 1 — §/(Nm;), we will have that

_ V2 (Nmy/3) + 2m(@2)[D(X,)]
a n(Xi, J)

1P(C15) = PCLDIL ,

a7
To guarantee that this holds for all transition components we
proceed with two applications of the union bound: first for a
fixed transition component over all possible values of n(X;, j)
and then for a fixed factor over all transition components. Let
F(X;,j, k) denote the probability that Equation 17 does not
hold for some timestep such that n(X;, j) = k holds. We have
that

(Xi,j)€Q k=1 (Xi,5)€EQ k=1

|
Lemma 5: If Event A2 occurs, then the following always

holds during execution of f-IE: ||T(s,a) — T'(s,a)||1 <
ny/21n (Nm;/8) + 21n(2)[D(X;)]

max
(Xi,j)€D(s,a)

for all (s,a) € S x A
Proof: The claim follows directly from Corollary 1. W
Lemma 6: If Event A2 occurs and

g > ﬁ V2T (Nm;/8) + 2In(2)|D(X,)].

;o (18)

19)

then the following always holds during execution of f-IE:

Q(s,a) > Q*(s,a) (20)

Proof: Recall that f-IE computes it action-value esti-

mates, Q(s,a), by solving its internal model. We prove the

claim by induction on the number of steps of value iteration.

Let Q()(s,a) denote the result of running value iteration of

f-IE’s model for i iterations. We let Q(®) = 1/(1—+). Assume
that the claim holds for some value £ — 1. We have that

Q*(Sv a) - Q(t)(sv a)
< Q*(s,a) — R(s,a) — 'yZT(s'|s,a)V*(s’)

_eb(617627"'acn)
1 .
< 1o LT Tl a)
C max P
(X:,5)€D(s,0) \/n(X;, 7)
< 0.
The first inequality results from the induction
hypothesis and the fact that Q®(s,a) = R(s,a) +

¥, T(s']s,a) max, QU1 (s',a’). The second inequality
follows from the fact that V*(s) < 1/(1 —) holds for all
states s. The final inequality used Lemma 5 and Equation 19.

|

B. Proof of Main Theorem

Proof: (of Theorem 4). We apply Theorem 1. Assume
that Event A2 occurs. Define the set of “known” state-action
pairs K, at time ¢, to be the same as for f-Rmax:

K, :={(s,a) € SxAn(X;,j) > m; for all (j, X;) € Ds o}

(2D
Consider some fixed time ¢. Condition (1) of the theorem holds
by Lemma 6.

Next, we sketch a proof that condition (2) of the theorem
holds. f-IE computes its action-value estimates by solving
the empirical model with exploration bonuses added to the
reward function. We need to show that it is close to the MDP
Mp,, which is identical to f-IE’s model except that the true
transition distribution is used instead of the empirical estimate
for those state-action pairs in K; and the exploration bonuses
are discarded for those state-action pairs. If each exploration
bonus is less than €(1 — «y)/2 then the value function of the
model is €/2-close to the value function of the model without
the exploration bonuses (because any one-step reward gets
multiplied by 1/(1 — «) if accrued over an infinite horizon).
Thus we need to choose m so that

Bi/m; < e(l—+)/2 for each i. (22)

Also, by Lemma 2, we can guarantee the the value functions
for the two models are e-accurate as long as the transition
function is Ce(1 — ~)2-accurate for some constant. From
Lemma 5, it is sufficient to ensure that

ny/2In (Nm,/6) + 2In(2)|D(X;)] < Ce(1—7)? for eachi
Vimi (23)

holds. Ignoring constants, the conditions specified by Equa-
tions 22 and 23 are equivalent and are satisfied by

n?(ID(X5)[+In (Nn/(e(1 — 7)d)))
m; X .

el -yt
Finally, note that the learning complexity, ((e,d) <
Z(X,» jy)eo mi- This is true because each time an escape
occurs, some (s,a) ¢ K is experienced. However, once all
the transition components (X;,j) for (s,a) are experienced

m; times, respectively, (s, a) becomes part of and never leaves
the set K.]

(24)

VII. CONCLUSION

We have extended and tightened the analysis of [11] to
cover the Factored Rmax and Factored IE algorithms in a
more general learning framework. Our analysis made several
restrictive assumptions (also present in [11]):

o The Planning Assumption We have shown that f-Rmax
and {-IE act near-optimally on all but a small (polynomial

109

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

in the number of parameters of the compact repre-

sentation) number of timesteps, with high probability.

Unfortunately, to do so, the algorithms must solve their

model completely and exactly. It is easy to extend the

analysis to allow the algorithms to solve their models only
e-approximately. However, even an approximate solution
probably requires an exponential number of computations
In(1/ E)P
1—y
of parameters of the compact model. There are strong
complexity results proving the hardness of planning in
factored domains [18]-[20].
Thus, the algorithms we’ve analyzed are not computation-
ally efficient with a naive implementation and in the worst
case it may be impossible to make them so. However,
in applications of RL algorithms, the critical resource is
often the number of available real-world experiences or
samples that the agent observes after taking an action
rather than the computation performed by the agent.
In addition, several approximation techniques (especially
linear) have been developed and shown to work in some
cases (see [12] and references within). Nonetheless, our
future work includes examining conditions under which
the amount of computation required by algorithms for
Factored MDPs can be reduced.

o The Known-Structure Assumption The f-Rmax and f-
IE algorithms require as input the dependency function
D. This amounts to being given the underlying structure
of the various dependencies in the Factored MDP. In
many cases, a domain expert can easily identify the
structural dependencies. Then, both algorithms that we’ve
considered can simultaneous learn the parameters of the
model and how to behave near-optimally. However, if
the structure is unknown, then the algorithms cannot
be directly applied. Important future work is to develop
methods that learn the structure along with the param-
eters. Some intriguing preliminary work on this can be
found in [21].

in either the time horizon (or in the number

ACKNOWLEDGMENT

Thanks to the National Science Foundation (IIS-0325281)

for funding and to Michael Littman for suggestions.

REFERENCES

[1] M. J. Kearns and S. P. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, no. 2-3, pp. 209-232,
2002.

[2] R. I. Brafman and M. Tennenholtz, “R-MAX—a general polynomial
time algorithm for near-optimal reinforcement learning,” Journal of
Machine Learning Research, vol. 3, pp. 213-231, 2002.

[3] S. M. Kakade, “On the sample complexity of reinforcement learning,”
Ph.D. dissertation, Gatsby Computational Neuroscience Unit, University
College London, 2003.

[4] L. P. Kaelbling, Learning in Embedded Systems.
MIT Press, 1993.

[S] M. Wiering and J. Schmidhuber, “Efficient model-based exploration,”
in Proceedings of the Fifth International Conference on Simulation of
Adaptive Behavior (SAB’98), 1998, pp. 223-228.

Cambridge, MA: The

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

110

A. L. Strehl and M. L. Littman, “A theoretical analysis of model-based
interval estimation,” in Proceedings of the Twenty-second International
Conference on Machine Learning (ICML-05), 2005, pp. 857-864.
——, “An empirical evaluation of interval estimation for Markov de-
cision processes,” in The 16th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI-2004), 2004, pp. 128-135.

, “An analysis of model-based interval estimation for Markov
decision processes,” Journal of Computer and System Sciences, in press.
D. Koller and R. Parr, “Computing factored value functions for policies
in structured MDPs,” in Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence. The AAAI Press/The MIT Press,
1999, pp. 1332-1339.

C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning:
Structural assumptions and computational leverage,” Journal of Artificial
Intelligence Research, vol. 11, pp. 1-94, 1999.

M. J. Kearns and D. Koller, “Efficient reinforcement learning in factored
MDPs,” in Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI), 1999, pp. 740-747.

C. Guestrin, R. Patrascu, and D. Schuurmans, “Algorithm-directed
exploration for model-based reinforcement learning in factored MDPs,”
in Proceedings of the International Conference on Machine Learning,
2002, pp. 235-242.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, 1998.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, “Context-
specific independence in Bayesian networks,” in Proceedings of the
Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI
96), Portland, OR, 1996, pp. 115-123.

L. G. Valiant, “A theory of the learnable,” Communications of the ACM,
vol. 27, no. 11, pp. 1134-1142, November 1984.

A. L. Strehl, L. Li, and M. L. Littman, “Incremental model-based
learners with formal learning-time guarantees,” in UAI-06: Proceedings
of the 22nd conference on Uncertainty in Artificial Intelligence, 2006,
pp. 485-493.

T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger,
“Inequalities for the L1 deviation of the empirical distribution,” Hewlett-
Packard Labs, Tech. Rep. HPL-2003-97R1, 2003.

M. L. Littman, “Probabilistic propositional planning:
resentations and complexity,” in Proceedings of the
teenth National Conference on Artificial Intelligence. AAAI
Press/The MIT Press, 1997, pp. 748-754. [Online]. Available:
http://www.cs.rutgers.edu/ mlittman/papers/aaai97-planning.ps

M. L. Littman, J. Goldsmith, and M. Mundhenk, “The computational
complexity of probabilistic planning,” Journal of Artificial Intelligence
Research, vol. 9, pp. 1-36, 1998.

E. Allender, S. Arora, M. Kearns, C. Moore, and A. Russell, “A note
on the representational incompatabilty of function approximation and
factored dynamics.” in Advances in Neural Information Processing
Systems (NIPS-03), 2002.

T. Degris, O. Sigaud, and P.-H. Wuillemin, “Learning the structure of
factored Markov decision processes in reinforcement learning problems,”
in ICML-06: Proceedings of the 23rd international conference on
Machine learning, 2006, pp. 257-264.

Rep-
Four-

