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Abstract— Leader-follower problems are hierarchical decision
problems in which a leader uses incentives to induce certain
desired behavior among a set of self-interested followers. Dynamic
leader-follower problems extend this structure to multi-period
decision situations. In this work we propose a Markov Decision
Process (MDP) framework for a class of dynamic leader-follower
problems that have important applications and discuss their
approximate solution using reinforcement learning (RL). In these
problems, the leader makes incentive decisions intermittently
while the followers make their decisions in every period. Our
theoretical framework and computational approach are based
on the observation that such dynamic problems can be thought
of as consisting of two coupled sequential decision processes, that
of the leader and of the followers. In our formulation, the leader’s
decision problem that has the structure of a single-agent semi-
Markov Decision process (SMDP), and the followers’ sequential
decision problem structured as a stochastic game (multiagent
competitive MDP) operate over the same state space. We call
this MDP framework a leader-follower semi-Markov Decision
Process (LFSMDP). We consider approximate solution of these
problems using RL and demonstrate the solution approach in the
special case where the followers’ stochastic game is a repeated
game.

I. INTRODUCTION

Leader-follower problems [1] are hierarchical decision prob-
lems in which a leader uses incentives to induce certain
desired behavior among a set of self-interested followers. The
leader and the followers make their decisions sequentially,
with the leader making the decision first and announcing
it to the followers. The followers, after knowing leader’s
decision, make their individual decisions concurrently and
competitively. These decisions are interrelated in the sense that
the followers’ payoffs are contingent on the leader’s decision
while the leader’s payoff is a function of the followers’
actions. The leader, by its decision, tries to influence the
decisions of the followers. The leader’s decision thus acts
as an incentive/threat to induce the followers to behave in
a way that maximizes leader’s payoff. The problem faced by
the leader then is to design an incentive strategy under which
the followers while acting to maximize their own individual
objectives will maximize the leader’s objective as well.

This research was supported by National Science Foundation grant ECS-
0601590

The leader-follower problems described above are models
of many decentralized decision making situations encountered
in business and government. Some recent applications of this
framework include pricing in communication networks [2],
regulation of electricity markets [3], pricing in peer-to-peer
systems [4], coordination of supply chains [5], and reserve
price-based online auctions [6]. In addition, this framework
is used in modeling public policy formulation in pollution
control, taxation etc. [7].

Dynamic leader-follower problems extend the leader-
follower structure to multi-period decision situations. In these
problems the leader and the followers make decisions over
multiple periods. These dynamic models have important ap-
plications in many fields. For example, in almost every ap-
plications described above, it is likely that the leader and the
followers interact over multiple (possibly infinite) periods of
time, repeatedly making similar decisions. Dynamic models
can capture the continuing nature of many leader-follower
interactions where decisions are taken on an ongoing basis
as information become available. Dynamic leader-follower
models are important for several reasons:

• First, in many real-life situations, agents are faced with
making similar decisions over and over again. The goal
of agents in these situations is to achieve some long term
measure of success.

• Secondly, the repeated interaction between the leader and
the followers can provide better economic results. This
is because multiple interactions provide opportunities for
intertemporal solutions that do not exist in the static
one-shot models. For example, Radner [8] shows how
long term relationship achieves efficiency in repeated
principal-agent situations.

• A third and important aspect of dynamic leader-follower
models is that they can capture the learning effect in-
herent in multiple interactions. Learning provides agents
information about other agents and the environment,
enabling them to make better choices in the long run. For
example, Kalai and Ledyard [9] discuss the advantages of
repeated implementation and illustrate the learning effects
in agents in repeated implementation.

In this paper, we study a special class of dynamic leader-
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follower problems in which the leader makes incentive deci-
sions intermittently whereas the followers make their decisions
in every period. We propose a Markov Decision Process
(MDP) [10] framework for these class of problems. Our
objective is in developing a theoretical framework that can
describe these problems, specify the nature of their solution,
and also provide a basis for their computational solution.
We call the new MDP framework for these problems as
leader-follower semi-Markov Decision Processes (LFSMDPs).
This new MDP model takes into account the hierarchical
and competitive nature of these leader-follower problems. We
formulate value functions for the leader and the followers in
a LFSMDP for the average reward case and derive optimality
equations for the process.

Our model can be considered as an extension of the MDP
framework to hierarchical and competitive situations. MDP
models for hierarchical but non-competitive decision problems
operating over multiple time scales are discussed in [11]. An
MDP formulation for principal-agent problems is discussed
in [12]. Principal-agent problems are special cases of leader-
follower problems discussed in this work in which there is only
one follower. A major simplification in principal-agent prob-
lems is that there is no need to model the strategic interaction
among the followers as there is only one follower. An early
work on dynamic leader-follower problems by Saksena and
Cruz [13] uses a control theoretic formulation of the problem.

After discussing the LFSMDP formulation we consider the
solution of these problems, especially approximate solution
using Reinforcement Learning (RL) [14]. Building on recent
results from single-agent RL and multiagent RL [15], [16] we
propose RL schemes to solve these problems. Our algorithm
may be considered as a first step towards developing efficient
RL algorithms for dynamic leader-follower problems with in-
termittent incentive decisions. Further, we discuss the proposed
RL approach in a special case of these problems where the
followers play a repeated game. We discuss the conditions
for the convergence of this algorithm and demonstrate its
application in an illustrative example from the literature.

This paper is organized as follows. Section II discusses
dynamic leader-follower problems in detail and Section III
describes the LFSMDP framework. In Section IV, an RL
approach to solving LFSMDP is discussed. Section V provides
an illustration of the RL approach in the special case where the
followers in the LFSMDP play a repeated game. We conclude
the paper in Section VI noting some continuing work.

II. DYNAMIC LEADER-FOLLOWER PROBLEMS

A dynamic leader-follower problem can be described as
follows. At each time period t = 1, 2, 3, ..., first, the leader
makes an incentive decision after observing the current state
of the system and announces it to the followers. The followers
after observing the incentive decision by the leader and also
the system state, make their respective decisions concurrently
and competitively. The system then transits to a new state
stochastically under the actions of the leader and the followers,
and under the influence of the environment; the leader and the

S1 S2 S3

u1 u2 u3

Fig. 1. Dynamic Leader-Follower Problem (u1, u2, u3, ... are leader’s
decisions and S1, S2, S3, ... are environmental states; arrows inside the big
circle represent followers’ decisions )

followers realize their respective rewards for their actions and
the process moves to the next period. Figure 1 illustrates
this process where u1, u2, u3... are the leader’s decisions
and S1, S2, S3... are the environmental states at different
periods. The followers’s decisions are shown within circles
to emphasize the fact that they are made only after leader’s
incentive decisions. Given an incentive decision by the leader,
the followers decisions constitute a Nash game at each period.
The objective of the leader and the followers is to maximize
some cumulative measure of rewards received over the time
periods.

An important observation about the problem described
above that plays a crucial role in the development of our
MDP framework is that, the decision process described above
can be considered as consisting of two coupled sequential
decision processes- decision process of the leader and that
of the followers. The leader’s decision process is a single-
agent decision process whereas the followers’ sequential de-
cision process is a stochastic game [17]. These two processes
are coupled, as incentive decisions of the leader affect the
followers’ decisions and incentive decision of the leader is
a function of followers’ actions. An optimal solution of a
dynamic leader follower problem then constitutes a stationary
optimal incentive policy of the leader and the corresponding
set of stationary equilibrium policies of the followers. This
pair of policies then constitute a Stackelberg equilibrium [1]
for a dynamic leader-follower problem. It may be noted that,
an incentive policy of the leader in a dynamic leader-follower
problem is a function of the environmental states also, whereas
in the static problem, an incentive policy is just a function of
the followers’ actions.

In many incentive applications, the incentive decisions are
taken at a lower frequency than the decisions of the agents.
A large number of applications in regulation and control
belong to this class of dynamic leader-follower problems. In
this work we focus on these problems. Specifically, in these
problems the leader makes an incentive decision only at certain
episodic events, for example, in a market regulation problem,
the market regulator announcing a new incentive when market
price exceeds the price cap. The followers in these problems on
the other hand make several rounds of decisions between two
consecutive incentive decisions of the leader. Thus, in these
problems, the leader’s incentive decisions are interspersed with
instances of the followers’ game such that the time elapsed
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Fig. 2. Leader-Follower semi-Markov Decision Process (u1, u2, u3... are
leader’s decisions and S1, S2, S3... are environmental states; arrows inside
the big circle represent followers’ decisions )

between two consecutive incentive decisions is a random
variable. The leader tries to design the optimal incentive policy
that maximizes its long run expected payoff per period while
the followers try to device strategies that maximize their
individual long run expected payoffs per period under the
announced incentive. In the next section we discuss an MDP
framework for this class of leader-follower problems.

III. LEADER-FOLLOWER SEMI-MARKOV DECISION

PROCESS

A dynamic leader-follower problems with intermittent in-
centive decisions is illustrated in Fig. 2 where u1, u2, u3, ... are
leader’s decisions, S1, S2, S3, ... are environmental states, and
τ1, τ2, ... are the time elapsed between consecutive incentive
decisions.

As noted earlier, our MDP framework for this problem
is based on the observation that it consists of two coupled
sequential decision processes - that of the leader and of
the followers, with the incentive constraint coupling the two
processes. We note that with intermittent incentive decisions
the leader’s decision process above resembles a single-agent
semi-Markov Decision Process (SMDP). In an SMDP, the
agent makes decisions only at certain points in time while
the state of the system changes at every time period. An
SMDP consists of two processes, a decision process and a
natural process that operate over the same state space. The
decision process consists of only those periods where there is
a decision whereas the natural process includes all the time
periods. Similarly, a dynamic leader-follower problem with
intermittent incentive decisions described above consists of
two processes, the leader’s decision process and the followers’
decision process. A key difference here is that in place of
the “natural process” of the SMDP, we have another decision
process, the decision process of the followers which is a
stochastic game. We call the decision process of the dynamic
leader-follower problems with intermittent incentive decisions
described above as a Leader-Follower semi-Markov Decision
Process (LFSMDP). An LFSMDP may be described as a
sequential decision process that consists of an SMDP and a
stochastic game coupled by an incentive constraint.

Formally, an LFSMDP is a tuple (N,S,U,A, P,R,K, F )
where N is the number of followers, S is the discrete state
space, U is the set of incentive actions of the leader, A is the
set of joint actions (A1 × A2 × . . . × AN ) of the followers
(where An is the set of actions available for follower n), P

is the probability distribution function of state transitions, R
is the set of immediate reward functions rn(n = 1, 2, . . . , N)
of the followers, K is the reward function of the leader and
F is the probability distribution function of transition times
at each decision epoch of the leader. The reward received by
the leader between two successive decision epochs has two
parts- a fixed reward k(s, u), received on taking action u at
the decision epoch where the state is s (this could also be
the fixed cost of implementing the incentive decision), and
the accumulated reward until the next decision epoch. In this
formulation we assume that the leader’s objective is social
welfare and so the latter is the aggregate reward across all the
followers until the next incentive announcement by the leader.
Thus, the immediate reward of the leader for taking action u
at state s may be written as

K(s, u) = k(s, u)+
N∑

n=1

[
E

(
τ∑

t=1

rt
n(πn(u), π−n(u))

)]
(1)

where πn(u) and π−n(u) are the policy of follower n and
the policy of all agents except agent n respectively under the
incentive u of the leader , rt

n(πn(u), π−n(u)) is the immediate
reward of follower n at time t from taking action according to
policy πn(u) while other followers follow the policy π−n(u),
and τ is the transition time to the next decision epoch. Let us
denote π∗(u) as the equilibrium policy of the followers under
the incentive strategy u (we assume that this equilibrium is
unique), and K∗(s, u) as the equilibrium reward to the leader.

In this work, we consider an average reward formulation of
the above LFSMDP. This means that the objective of the leader
and the followers is to maximize their respective average
rewards per time step.

The one-step average reward of the leader starting at state
s and following an incentive policy φ can be written as

ρφ(s) = lim
T→∞

[
Eφ(

∑T
t=1 K∗(st, ut))

Eφ(
∑T

t=1 τt)

]
(2)

where st, ut, and τt are the state, incentive, and transition
time respectively at decision epoch t and T is the number of
decision epochs . It may be noted that under the assumption of
an ergodic process, the one-step average reward ρφ(s) does not
vary with the initial state s. The Bellman optimality equations
for the leader is

V ∗(s) = max
u

[K∗(s, u)− ρτ(s, u, π∗(u))

+
∑

s̀

Pu,π∗(u)(s, s̀)V ∗(s̀)] ∀s ∈ S (3)

whereV ∗(s) is the optimal expected relative value start-
ing from state s, ρ is the optimal one-step average-reward,
τ(s, u, π∗(u)) is the expected transition time to next decision
epoch on taking action u at state s, and Pu,π∗(u)(s, s̀) is the
probability of transition from state s to s̀ under action u when
the followers play the equilibrium strategy π∗(u).
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However, the optimal incentive policy should also satisfy
the incentive compatibility condition which stipulates that the
optimal stationary incentive policy of the leader should also
result in an equilibrium of the followers’ stochastic game in
stationary policies of the followers. If we designate such an
optimal incentive policy as φ∗ : S → U , then it can be written
as the the solution of the following set of equations.

φ∗(s) = arg max
u

[K∗(s, u)− ρτ(s, u, π∗(u))

+
∑

s̀

Pu,π∗(u)(s, s̀)V ∗(s̀)] ∀s ∈ S (4)

The above set of equations represent the Stackelberg equi-
librium condition for a dynamic leader-follower problem with
intermittent incentive decisions. The solution of an LFSMDP
involves determining the optimal stationary policies of the
leader and the followers that constitute a Stackelberg equi-
librium as above.

Proposition 1. In leader-follower systems described above,
there exists stationary policies for the leader and the followers
satisfying the Stackelberg equilibrium condition of (4).

Proof: We note that for a specific stationary strategy of
the leader, the followers’ stochastic game has an equilibrium
in stationary strategies [17]. Now, if the leader selects the
stationary strategy that maximizes its average reward, the cor-
responding equilibrium stationary strategies of the followers
would satisfy the condition of (4).

IV. SOLVING LFSMDPS

The conventional methods of solving MDPs use iterative
dynamic programming algorithms such as value iteration
and policy iteration under the assumption that the transition
probabilities and rewards are known a priori. However, in
practice, reward information is hard to obtain and transition
probabilities are computationally tedious to estimate even if
complete information is available. These issues combined with
the problem of large state spaces (curse of dimensionality)
make exact solution of MDPs difficult in many applications.
Hence approximate methods for solving MDPs are being
investigated that can provide good solutions. Reinforcement
learning (RL) is a machine learning technique used in the
approximate solution of MDPs. In the RL approach, the agent
interacts with a simulated model of the environment- taking
actions and receiving rewards, and incrementally estimates
the optimal value function of the MDP from the rewards it
receives. During this process, it uses the current estimate of the
value function to decide its actions. In this section we discuss
an RL approach to solving LFSMDPs that draws from both
single-agent RL [18], [14] and multiagent RL [15], [16], [19]
research.

A. Reinforcement Learning Approach

As with our LFSMDP framework, the basis of our RL
algorithm is the observation that the sequential decision pro-
cess in a dynamic leader-follower problem consists of leader’s

SMDP and followers’ stochastic game that are coupled by the
incentive constraint. Based on this observation our algorithm
consists of leader’s learning scheme modeled as a single agent
RL and followers’ learning scheme modeled as a multiagent
RL. A crucial point though is, the coupling of these two
learning processes so that incentive constraint is satisfied.

Our algorithm (Algorithm 1) is based on the LFSMDP
framework discussed above and builds on the Q-learning
algorithms proposed in [20] and [21] for average reward
SMDPs . The Algorithm 1 consists of a learning scheme for
the leader and identical learning schemes for the followers.
As we are trying to solve an average reward LFSMDP, the
Q-values in this algorithm are written in terms of relative
values. Relative value of taking an action at a state is the
difference between the immediate reward received and the
estimated average reward. The learning schemes for the leader
and the followers consist of estimating both the Q-values
and the average rewards. The λ and β are the learning rates
used for these updates. As in [20], to ensure convergence, for
each agent the values of these learning rates are set such that

lim
t→∞

βt

λt
= 0. While follower Q-values are updated at every

period, leader’s Q-values are updated only in those periods
where there is an incentive decision. The expolre/exploit action
selection for the leader and the followers is implemented using
the Boltzmann action selection scheme [14].

Algorithm 1 Q-Learning Algorithm for LFSMDP

1. Leader selects an incentive u at the state s.
2. Followers play a game

Each follower n selects an action an according to
explore/exploit action selection scheme
Next state is s̀ and each follower n receives a reward rn

Each follower updates its Q-value, Qn and
average reward, ρn using the following update schemes
Qn(u, s, an)← Qn(u, s, an) + λn[rn − ρn −Qn(u, s, an)

+ max
b

Qn(u, s̀, b)]

ρn ← ρn + βn(rn − ρn)
3. Step 2 is repeated until the next decision epoch,

which happens after τ periods
4. Leader receives the aggregate reward rl since the last

incentive decision and updates its Q-value, Ql and
the average reward, ρl using the following update schemes
Ql(u, s)← Ql(u, s) + λl[rl − τρl −Ql(u, s)

+ max
w

Ql(w, s̀)]

ρl ← ρl + βl( rl

τ − ρn)
5. If the termination criterion is not met

The leader selects an incentive u using explore/exploit
action selection scheme
Return to Step 2

In this algorithm, the leader’s learning scheme is a single-
agent average reward Q-learning scheme whereas the fol-
lowers’ learning scheme is a multiagent Q-learning scheme
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for average rewards. Thus, while it is easy to show the
convergence of the leader’s learning process to optimal incen-
tives, it is difficult to show the convergence of the followers
learning scheme to a Nash equilibrium [19]. Consequently, the
convergence of this algorithm to a Stackelberg equilibrium is
hard to prove. Another difficulty with this algorithm is that
being a Q-learning algorithm, the followers’ learning scheme
can learn only pure strategies. In the next section, we adapt this
algorithm for problems where the followers play a repeated
game. Further, based on some recent results in multiagent RL,
we make modifications to the present algorithm so that the
followers’ learning scheme can learn mixed strategies.

B. The Repeated Game Case

In this section we consider leader-follower problems with
intermittent incentive decisions where the followers play a
repeated game. We also assume that the incentive decisions are
made at every m periods. Thus, in these problems, after each
incentive decision by the leader, the followers repeatedly play
the game for m periods. Many applications in coordination
and regulation can be modeled by this repeated game version.

Adapting Algorithm 1 to the case of repeated games results
in major simplification of the algorithm. This is because, by
definition, repeated games are stochastic games with a single
state. A major change is in the definition of Q-values. With a
single state, the relative value definition of Q-values reduce to
the expected reward per time step. Thus, both the leader and
the followers in the new algorithm try to learn the expected
reward per time step. The leader’s learning algorithm then
resembles the single agent Q-learning except for the fact that
the immediate reward for the leader is the reward accrued over
m periods.

The followers’ learning scheme in the modified algorithm
is based on a Q-learning algorithm for repeated games pro-
posed recently by Leslie and Collins [16]. Their work makes
two major contributions. First, their algorithm uses a player
dependent learning rate for the update of Q-values of indi-
vidual agents. This scheme is based on a result from the
stochastic approximation theory by Borkar [22]. Borkar has
shown that, in the case of two coupled approximation schemes,
convergence is achieved if the processes use different step
sizes. This is because different step sizes make one of the
processes to be faster than the other and thereby the faster
process sees the slower one as stationary while the slower
one sees the faster one as calibrated to the current value of
the slow process. This results in the eventual convergence
of the two processes. It may be noted that the Q-learning
update scheme is a stochastic approximation process and in
the case of multiagent Q-learning, they become N coupled
stochastic approximation schemes. Leslie and Collins [23], and
[16] extended Borkar’s result to the case of N -player systems
with the following important assumption.

Assumption 1. [16] Let the agents be indexed using n
such that agents with higher indices are fast learners than
those with lower indices. For any n, if the values of slow

learning agents (1, ..., n − 1) were fixed, then the values of
the fast learning agents (n, ..., N) would converge to a unique
equilibrium determined by the best response functions of the
fast learning agents and the fixed value functions of the slow
learning agents.

With assumption 1, Leslie and Collins [16] show that a

learning rate scheme of lim
t→∞

λn
t

λn+1
t

= 0 ensures convergence.

The second important contribution in Leslie and Collins’
algorithm is the use of a smooth best response (SBR) [24]
scheme for action selection by the agents. This scheme enables
the agents to learn mixed strategies. Recall that Q-learning,
being an optimum seeking algorithm, can learn only pure
strategies. The use of SBR action selection in Leslie collins’
algorithm addresses this issue. A SBR scheme maintains a
positive probability for every action in an agent’s action set to
get selected. One way to implement an SBR action selection
scheme is to use a Boltzmann action selection scheme with the
temperature parameter held constant at a very small value. In
Botzmann action selection scheme, the probability of selecting
action a when the state is s is eQ(s,a)/T∑

á eQ(s,a)/T , where Q(s, a)
is the current estimate of Q-value for state-action pair (s, a)
and T a “temperature” parameter that controls the degree of
randomness in action selection. In single agent RL this scheme
is used to implement the explore/exploit action selection.
There, the parameter T is decreased as the agent learning
converges, so that the probability of selecting the optimal
action approaches 1. When T is held constant, every action in
the action set will always have a positive probability (though
small) of getting selected. Leslie and Collins [16] show that,
with smooth best responses, an agent’s strategy converges
toward a Nash distribution which is an approximation of the
mixed strategy Nash equilibrium of the game.

The followers’ learning scheme in our algorithm incor-
porates the two features of Leslie and Collins’s algorithm
discussed above. Hence, under Assumption 1, the followers’
learning scheme in our algorithm can be shown to converge to
the Nash equilibrium. Besides, in our algorithm, the leader’s
learning scheme is a single agent Q-learning which is known to
converge to the optimal action, which is the optimal incentive
in our case. Thus, jointly, these two learning processes in our
algorithm converge to the required Stackelberg equilibrium of
the dynamic leader-follower problem under the condition that
Assumption 1 is satisfied.

It may be noted that, in one-leader-two-follower problems,
for a given incentive strategy of the leader, the followers’
subgame is a two-player game for which Assumption 1 is
trivially satisfied. Thus, in one-leader-two-follower problems
the new algorithm will converge to optimal incentives and
responses.

Algorithm 2 is the proposed RL algorithm for the repeated
game case.

The parameter m decides the number of times the followers
play the game before the leader updates its Q value. Note
that the update of the leader and the followers happen at
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Algorithm 2 Q-learning for Repeated LFSMDP

1. Leader starts with an incentive u.
2. Followers play a game

Each follower n selects an action an according to
a smooth best response scheme
Each follower n receives a reward rn and updates its
Q value Qn using the following update scheme
Qn(u, an)← Qn(u, an) + λn [rn −Qn(u, an)]

3. Step 2 is repeated m times
4. Leader receives the aggregate reward rl since the last

incentive decision and updates its Q value Ql using the
following update scheme

Ql(u)← Ql(u) + λl
[

rl

m −Ql(u)
]

5. If the termination criterion is not met
The leader selects an incentive u using explore/exploit
action selection scheme
Return to Step 2

different time scales. Follower Q-values are updated in every
time period whereas for the leader, the update happens only
once in m periods. The followers’ maintain separate Q-values
for each incentive decision of the leader.

The player dependent learning rates for the followers’
learning is implemented using a scheme proposed in [16].
According to this scheme, the learning rate for follower n at
time step t is set as λn

t = (t+C)−θn

where θn ∈ (0.5, 1] and
C a constant. By selecting θn differently for each follower,
the required sequence of learning rates is assured.

Each follower in our algorithm employs a SBR action selec-
tion scheme that uses the Boltzmann function with the “tem-
perature” parameter T set at a very small value. As discussed
earlier, this enables the followers to learn mixed strategies.
We also use the Boltzmann function for explore/exploit action
selection of the leader, but with a decaying T as in single
agent Q-learning.

V. ILLUSTRATIVE EXAMPLE

This section describes a well studied incentive problem from
the literature that we use to evaluate our proposed learning
algorithm. This problem, introduced by Salman and Cruz [25]
is a one-leader-two-follower incentive Stackelberg game with
linear incentive structure. In this economic model of duopoly
markets, two firms produce an identical product and compete
for the same market. Their strategic decision variables are the
production quantities for the current period (Cournot compe-
tition). The market price of the product is determined by the
total quantity produced by the two firms and the government
policy. The government influences market price by controlling
effective income of potential buyers of the commodity through
a subsidy/tax. The objective of the government is to induce
the two firms to cooperate and maximize the overall profit.
Salman and Cruz showed that there exists an optimal incentive
strategy for the government when perfect information about
firms’ strategies is available to the government.

Let q1 and q2 be the quantities produced by the two firms.
The total output then is Q = q1 + q2. Price p depends on the
quantity Q and the government’s decision u about subsidy/tax:

p = ao − a1q1 − a2q2 + a3u

where ai, i = 0, ..., 3 are positive constants.The payoff
for the firms is

ri = pqi − 1
2ciq

2
i i = 1, 2

where ci represents a cost parameter for the firms. The
government’s payoff is given by

R = r1 + r2 − 1
2c0u

2

where c0 is a parameter representing government’s
coordination cost. In this model, both the government
and the firms have a quadratic cost structure.

The firms have to decide their respective production quan-
tities q1 and q2 while the problem faced by the government is
to select u so that coordination is achieved.

A. Simulation

In this section, we use a simulation model of the duopoly
market described in the previous section to illustrate the
working of the proposed learning algorithm. For comparison,
we set the parameter values of the model as those used by
Salman and Cruz in their paper: c0 = 10, c1 = c2 = 10, a0 =
5, and a1 = a2 = a3 = 0.5

In the simulation model, the agents use the learning algo-
rithm of previous section to learn optimal actions. The govern-
ment tries to learn the optimal incentive while the firms try to
learn the optimal production quantities. The simulation starts
with the government setting an incentive. On knowing the
government’s decision, the firms decide about their production
quantities using explore/exploit action selection. The resulting
market price and the profit for each firm are determined
according to the equations given in the previous section. The
agents representing the firms update their Q-values and the
time is advanced to the next period. The firms continue this
game for m periods, at the end of which the agent representing
the government receives the aggregate reward from these m
games and updates its Q-value. This agent then sets a new
incentive based on the SBR action selection scheme described
earlier.

For the follower agents, the smooth best response (SBR)
was implemented using a Boltzmann function with the value of
T set as 0.1. For the leader agent, to implement explore/exploit
action selection, the T parameter in the Boltzmann function
was varied using the scheme T = εtTmax where t is the
number of periods and 0 < ε < 1. We used a Tmax of 6 and ε
of 0.99995. No exploration was performed when T is below 1.
The learning rates for the agents were implemented according
to λn

t = (t+C)−θn

with the constant C set to a value of 100
and the parameter θ set to 0.9, 0.8 and 0.7 for the leader and

116

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
8.18

8.2

8.22

8.24

8.26

8.28

8.3

8.32

8.34

8.36

8.38

Incentive

Q
−

V
al

ue
Theoretical
Learned    

Fig. 3. The learned Q-values of the leader after 50000 steps approximate
the theoretical values.

the followers respectively. The parameter m in the algorithm
that decides the frequency of update for the leader was set to
a value of 30.

According to Salman and Cruz, the optimal incentive for
the government in this numerical example is 0.17. Also, under
this optimal incentive, both firms have an optimal production
quantity of 1.7. The two firms have identical production
quantities as their cost structures are identical. Fig. 3 shows
the rewards learned by the agent representing the government
for different incentive values after 50000 simulation steps (all
the simulation results presented in this paper are averages
over 10 runs). For comparison, this is shown along with the
theoretical values. It can be seen that the learned reward
function closely follows the theoretical one with a peak near
an incentive of 0.17. In this example, the equilibrium behavior
of the firms under the optimal incentive consists of pure
strategies. Hence, one would expect the learned smooth best
response probabilities to approximate a pure strategy. The
learned smooth best response probability distributions of the
two firms shown in Fig. 4 are seen to closely approximate
the pure strategies of producing a quantity of 1.7 each. The
results demonstrate that under the proposed learning algorithm,
the agents are able to learn the optimal behavior very closely-
the agent representing the government learning the optimal
incentive and the agents representing the firms learning the
optimal production quantities.

In our algorithm, the parameter m decides how often the
leader updates its Q-value. This parameter primarily affects the
performance of leader’s learning, as higher values of m provide
better estimates of the leader’s immediate reward by averaging
over a larger number of periods of the followers’ learning.
Figure 5 shows the effect of m on the learning performance
of the leader. The graph plots the learned Q-values for the
incentive levels, when using different m values. With m = 1,
the leader updates in every period leading to poor learning. As
m is made larger, the learning performance improves, but with
diminishing marginal improvement. This is encouraging as it
shows that large m values after all may not be necessary for
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Fig. 4. The SBR probabilities of Firm1 (left-hand side) and Firm2 (right-hand
side) after 50000 simulation steps is close to the pure strategy of producing
a quantity of approximately 1.7
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Fig. 5. The Q-values learned by the agent representing the government for
different values of m.

efficient learning. It also points to the possibility of existence
of an optimal update frequency for the leader.

Since the algorithm consists of two coupled learning pro-
cesses, it is interesting to see how well these two learning
processes work together. The leader’s learning process depends
on the noisy learning process of the followers for its reward
estimates. Figure 6 shows the evolution of leader’s Q-values as
the simulation progresses. These results show that the leader
is able to learn the relative ranking of the incentives at a
very early stage of the simulation. This relative ranking of
the incentives can help in providing an approximately optimal
incentive decision. This shows that the proposed algorithm can
provide good approximate solutions quickly.

To test the scaling of the algorithm to larger problems
we examined an extended case of the illustrative problem
involving 4 firms (oligopoly) keeping the parameters the
same as in earlier experiments. The Q-values and the SBR
probabilities obtained for this setting are shown in Fig. 7. As
in the duopoly case, the plot of Q-values of the leader shows
a single peak, indicating convergence to an optimal incentive.
The plot of SBR probabilities of the followers shows that all
the followers converge to identical pure strategies, which is
expected as all the followers have identical cost parameters.
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Fig. 6. The evolution of Q-values of the leader.
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Fig. 7. The Q-values of the leader (left-hand side) and SBR probabilities of
the followers(right-hand side) in the oligopoly example

VI. CONCLUSION

In this paper we discussed a dynamic version of leader-
follower problems where the leader makes incentive decisions
intermittently. We proposed an MDP framework called LFS-
MDP for such problems. We showed how this framework helps
in describing these problems and specifying their solution
and also provides a basis for the approximate solution of
these problems using RL. Based on the proposed LFSMDP
framework an RL approach for their solution is described. Our
algorithm is a first cut at developing efficient RL algorithms for
this class of problems. In continuing work we are investigating
the convergence properties of the proposed RL algorithm and
its applications in varied contexts.
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