1-4244-0706-0/07/$20.00 ©2007 IEEE

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

A Scalable Model-Free Recurrent Neural Network
Framework for Solving POMDPs

Zhenzhen Liu, Student Member, IEEE
Department of Electrical & Computer Engineering
University of Tennessee
Knoxville, TN 37996-2100

Abstract— This paper presents a framework for obtaining
an optimal policy in model-free Partially Observable Markov
Decision Problems (POMDPs) using a recurrent neural network
(RNN). A Q-function approximation approach is taken, utiliz-
ing a novel RNN architecture with computation and storage
requirements that are dramatically reduced when compared to
existing schemes. A scalable online training algorithm, derived
from the real-time recurrent learning (RTRL) algorithm, is
employed. Moreover, stochastic meta-descent (SMD), an adap-
tive step size scheme for stochastic gradient-descent problems,
is utilized as means of incorporating curvature information
to accelerate the learning process. We consider case studies
of POMDPs where state information is not directly available
to the agent. Particularly, we investigate scenarios in which
the agent receives indentical observations for multiple states,
thereby relying on temporal dependencies captured by the RNN
to obtain the optimal policy. Simulation results illustrate the ef-
fectiveness of the approach along with substantial improvement
in convergence rate when compared to existing schemes.

Index Terms— Recurrent neural networks, real-time recur-
rent learning (RTRL), constraint optimization.

I. INTRODUCTION

Partially ~ Observable Markov Decision Processes
(POMDPs) characterize a broad range of real-world
problems in which an agent interacts with its environment
without being provided with an explicit state representation.
In many practical scenarios identical observations may
be provided for different states, thereby requiring the
agent to rely on memory to infer its state. An agent in
a path-searching problem (e.g. maze maneuvering) may
receive identical observations for several different positions
(or states). In these cases, the agent must recall recent steps
in order to infer its precise position. Many problems of
interest can be formulated as POMDPs, yet the lack of
efficient algorithms results in the limited use of POMDPs
in practice. In particular, scalability has been a key issue
in obtaining optimal as well as good sub-optimal solutions.
Recurrent neural networks (RNNs) are widely acknowledged
as an effective tool that can be employed by a wide range
of applications that store and process temporal sequences
[2][11][6]. This capability makes them particularly attractive
as memory-based non-linear function approximation tools
for solving POMDPs [9][5]. However, the computational
complexity and storage requirements typically associated
with RNN realizations have thus far limited their use.

Itamar Elhanany, Senior Member, IEEE
Department of Electrical & Computer Engineering
University of Tennessee
Knoxville, TN 37996-2100

The ability of RNNs to capture complex, nonlinear system
dynamics has served as a driving motivation for their study.
Most of the proposed RNN learning algorithms rely on the
calculation of error gradients with respect to the network
parameters, or weights. RNNs are distinguished from static,
or feedforward networks, because their gradients are time-
dependent (or dynamic). This implies that the current error
gradient depends not only on the current input, output and
targets, but also on a possibly infinite past. Effectively
training RNNs remains a challenging and active research
topic.

The learning problem consists of adjusting the weight of
the network such that the trajectories have certain speci-
fied properties. Perhaps the most common online learning
algorithm proposed for RNNs is the Real-Time Recurrent
Learning (RTRL) [19][20][3], which calculates gradients in
real-time. The gradients at time k are obtained in terms of
those at time instant k& — 1. Once the gradients are evalu-
ated, weight updates can be calculated in a straightforward
manner. The RTRL algorithm is very attractive in that it
is applicable to real-time systems. However, the two main
drawbacks of RTRL are the large computational complexity
of O(N*) and, even more critical, the storage requirements
of O(N3), where N denotes the number of neurons in the
network.

Many methods have been proposed to reduce the com-
putational complexity of RTRL, such as those utilizing hy-
brid backpropagation through time (BPTT)/RTRL schemes
[13] and others using Green’s function [17]. In [20], the
sensitivity set for each neuron is reduced to a subgroup of
neurons, thereby decomposing the network into several non-
overlapping sub-networks. The key advantage of subgroup-
ing in this manner is the immediate reduction in computa-
tions to O(N*/g?), where g denotes the number of groups.
However, for a small number of subgroups, the advantage
becomes negligible. If ¢ is large, there is little crossover
of training information from different groups, thereby sig-
nificantly reducing the network’s capabilities. The arbitrary
selection of subgroups also appears somewhat weak.

To address this concern, recent work has suggested dy-
namically partitioning the groups with gradient information
that is calculated online [3]. Although it constitutes a more
intelligent and data-dependent approach, this method is not
scalable due to the complex process of dynamically redefin-

119

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

ing the subgroup boundaries. Moreover, the key problems
associated with the number of groups created in [20] remain.
Another fundamental limitation of standard RTRL is that it
is based on fixed step size gradient descent, i.e. the weight
update rule is generally given by

a&J (t)7

871)1‘_7'
where J(t) denotes the error function at time ¢ and w is
the weight (parameter) space. This often results in extremely
slow convergence rates. However, most techniques proposed
for accelerating the learning process rely on real-time compu-
tation of the Hessian (second derivative of the error function).
This incurs extensive storage and computational effort that
precludes RTRL based schemes from becoming applicable to
large-scale networks (i.e. networks with thousands of nodes
and above).

This paper focuses on an alternative approach to reducing
the resource requirements of online RNN learning as well
as improving its convergence properties, particularly in the
context of obtaining policy in POMDPs. This paper therefor
addresses three key topics. First, it proposes a reduction
of the sensitivities of each neuron to weights associated
with its incoming and outgoing connections. This approach
results in a localized architecture and learning algorithm that
lends itself to hardware realization, while retaining the core
desirable capabilities of RTRL. Second, an adaptive step
size algorithm, based on stochastic meta-descent (SMD), is
derived, thereby substantially improving the learning process
at a computational complexity that is comparable to that
of regular gradient descent. Third, a POMDP framework
is presented and evaluated, employing the proposed RNN
architecture. It is shown that the proposed framework offers
improved performance in terms of both accuracy as well as
convergence rate when compared to existing schemes.

The rest of this paper is structured as follows. Section II
provides a brief overview of the RTRL algorithm. In Section
I11, the TRTRL algorithm is described and analyzed. Section
IV develops stochastic meta-descent for TRTRL, while in
Section VI experimental results for POMDP case studies are
presented. Finally, in Section VII the conclusions are drawn.

II. OVERVIEW OF RTRL

In this section we briefly describe the RTRL algorithm.
Let us assume that a network consists of a set of N fully
connected neurons and a set of M inputs. Further, 7' € N
will denote the set of neurons for which there is a target.
Let w;;(t) denote the weight (i.e. the synaptic strength)
associated with the link originating from neuron j towards
neuron ¢ at time ¢ The net input to neuron k, si(t), is
defined as the weighted sum of all activations in the network,
2(t). Based on standard RTRL terminology, we define the
activation function of node k at time ¢ + 1 to be

wij(t + 1) = Wyj (t) — (1)

yr(t+1) = fir (s (), 2
where
se(t) = > wwa(t), ©)
lENUM

[mt) ifkeM
Zk(t)_{ y];:(t) ifkeN “)

and the non-linear activation function, f(-), maps sj(t) to the
range [0,1]. The overall network error at time ¢ is defined by

I = 3 3 (1) — o))
keT

= 2 el ©)
keT

where dj(t) denotes the desired target value for output k
at time ¢. Correspondingly, the error is minimized along a
negative multiple of the performance measure gradient. The
online calculation of the gradients is achieved by exploiting
the following relationship:

dI(t) _ Ay (1)
78wij(t) B kz:ek(t) .

By identifying the partial derivatives of the activation func-
tions with respect to the weights as sensitivity elements, and
denoting the notation by

(M

Oy (t)
k
7 8'11)1']‘

we obtain the following recursive equation:

®)

pi(t 1) = fi (s (8) | D _wwaply (8) + Sz (D) |« ()

leN
where pr(O) = 0 and §,;, is the Kronecker delta defined as
AJ(t)

9;(t) = wi;
Equations (9) and (10) allow one to obtain the performance
gradient at any given time.

As can be seen from these equations, each neuron is re-
quired to perform O(N?) multiplications yielding an overall
complexity of O(N*). Moreover, the storage requirements
are dominated by the weights O(/N?) and, more importantly,
the sensitivity matrices containing pfj (t), which are O(N?).
Due to the distributed nature of the network, the calculation
can be reduced significantly by having each neuron com-
pute its sensitivities in parallel. If performed in hardware,
these computation processes can be accelerated by exploiting
pipelining and module replication. However, unlike the com-
putational requirements, the storage requirements cannot be
reduced as they constitute a crucial component in the weight
update procedure.

Several schemes that have been presented in the literature
aim to reduce the storage complexity associated with RTRL.
A unifying theme of these methods comprises of subgrouping
the neurons into multiple, non-overlapping subnetworks.
Although the computational gain is significant, the storage
requirements remain high, in particular when a small set of
subgroups is employed. We next describe the main contribu-
tion of this paper, which focuses on an alternative method
for reducing the resource requirements in RTRL.

(10)

120

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

III. TRUNCATED REAL-TIME RECURRENT LEARNING
(TRTRL)

TRTRL is a variation on RTRL, first introduced in [1],
which was designed to overcome the scalability limitations
of RTRL while retaining its key performance attributes.
TRTRL accomplishes this goal by reducing the amount of
information that each neuron is required to consider as it
performs its computations. Let us begin with several key
definitions that will guide us through the discussion:

Definition 1: Let I; denote the set of nodes that have a
direct link (and, hence, a unique associated weight) to node
j. We shall refer to this set as the ingress set of node j.

Definition 2: Let E; denote the set of nodes that node j
has a link (and, hence, a unique associated weight) to. We
shall refer to this set as the egress set of node j.

It should be noted that a node can reside within both
ingress and egress sets of another node. Moreover, for
the purpose of notation convenience, we shall consider the
feedback (i.e. recurrent) link that each node has to itself,
to be part of the node’s egress set. Consequently, the ba-
sic assumption in TRTRL is that the sensitivities of each
neuron are limited to its ingress and egress set. This means
that, coarsely speaking, a neuron’s activation is not directly
sensitive to any weight that is not in the neurons ingress or
egress set. The only exception to this rule pertains to neurons
with targets, as will be elaborated on later.

By localizing the information processed by each neuron,
the calculation of equation 9 comprises of three main com-
ponents. First, its ingress sensitivity function is given by

P+ 1) = £ (50 (8)) [wisply () + 25(8)] Vi ¢ Ti# j
n
Notice that the summation from equation (9) is reduced to
a single multiplication since pﬁj = 0 for all [# 4. Second,
following a similar rationale to that applied to the ingress
set, the sensitivities pertaining to the egress set of node 7 are
given by

Pt +1) = £ (s (8)) [wisps() + 5awit)| Vi g T (12)

From the above two expressions it becomes evident that the
aggregate computational load for each neuron is O(N) (in
fact, rather close to 2IV).

In order to complete the description of TRTRL, an update
rule must be derived for the output neurons (i.e. neurons
with target), for which we once again refer to (1) and
(7). Here, there are two possible scenarios. The first is
one in which the 7' <« N, i.e. the number of neurons
with targets is significantly smaller than the total number of
neurons in the network. In that case, it is expected that the
majority of the information will be represented by weights
and signals associated with the non-output neurons, in which
we make the assumption that the output neurons do not have
connecting weights, i.e. w(i,j) = 0 Vi, j € T For the output
neurons, a non-zero sensitivity element must exist in order to
provide gradient information required by the weight update
rule (see (7)). To comply with this requirement, a direct link

is added from each output neuron to each of the N neurons
in the network. Consequently, each output neuron, o € T,
performs a sensitivity update for each weight in the network.
This can be achieved using the following update rule, which
applies to all ¢ £ 0,1 ¢ T,

Pyt +1) = £5 (30 (t)) [woipy; (t)+ woipl; (t) + (Siozj(t)J)

(13)
all other sensitivity elements are null. Following such an
update rule has the advantages of keeping computations to a
minimum, while high information content is retained due to
the structure of the network.

Alternatively, for networks in which 7' — N (i.e. the
number of neurons with targets is almost the same as the
number of neurons in the network), (13) suggests that very
few of the weights will be non-zero. This gives rise to the
need for a revised formulation of (13). If weights between
output neurons (and themselves) are non-zero, the respective
update rule for ¢ # o and j # o becomes:

Pt+1) = (50 (1) [woipl; (t) + wo,pl, () +
> woipl; () + bi02; (1), (14)
leT
while for all other cases,
P (E+1) = £ (50 (1)) | D waipl;(t) + dioz;(t) | . (15)

leT

The partial sensitivity matrix is invariant to the fact that
there may still exist a unique weight between any two
neurons in the network. The full calculation of equation
(9) must be performed for all input, bias and output units.
The only difference between TRTRL and RTRL, in this
context, is that neurons are limited in the sensitivities. To
that end, TRTRL is highly localized since neurons are no
longer required to fetch information that may be located at
a remote part of the network. If implemented in hardware,
localizing the memory access is key to guaranteeing high-
speed of execution. It should be noted that this formalism
yields an overall computational complexity of O(K N?),
where K = |T'| denotes the number of output neurons in
the network. Moreover, storage complexity is O(N?).

IV. OVERVIEW OF STOCHASTIC META-DESCENT
A. Background and Motivation

The objective of the TRTRL algorithm, which is essen-
tially an online optimization technique, is to minimize a
global error function, .J, such that the network’s future
outputs will be closer to their designated targets. What
makes TRTRL and its variants unique is that they are online
schemes, whereby each time step an error is provided that is
reflected in network parameters (i.e. weights) updates. As
such, TRTRL is a stochastic gradient based method that
aims to optimize the network’s performance by utilizing
instantaneous gradient information. Network weights are
updated iteratively along the negative gradient direction,

’LUZ‘j(t + 1) = W;j (t) + aéij(t), (16)

121

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

where « is the learning rate parameter. In practice, the
learning rate « is set to a small constant value in order to
guarantee convergence of the training algorithm and avoid
oscillations at instances where the error function is steep.
However, this approach considerably slows down training
since, in general, a small learning rate may not be appropriate
for all portions of the error surface[4]. To address this
issue, stochastic meta-descent (SMD) [15] [16] applies an
adjustable learning rate for every connection (weight) in the
network, in an attempt to use not only the gradient but
also the second derivative of the error function as means
of accelerating the learning process.

B. Stochastic Meta-Descent

In this section, we briefly describe the SMD algorithm[15].
As an alternative to utilizing small, identical constant learn-
ing rates for all network weight updates, SMD employs an
independent learning rate for each weight. Accordingly, the
weight update rule is given by

Wi j (t + 1) = wij(t) +)\ij(t)dij(t), (17)

where A;;(t) is the learning rate for weight w;; at time
t. Moreover, the local learning rates are independently
adapted by exponentiated gradient descent. In this way, they
can cover a wide dynamic range while remaining strictly
positive[7] [8]. Accordingly, the following learning rate
update rule is used:

aJ(t)
H 5

Oln)\z j
where £ is a global meta-learning rate. Using the chain rule,
the above can be rewritten as

lIlAij(t) = ln)\ij(t — 1) — (18)

8J(t) 8wU (t)

WA = gt =1 = ng = T, (19
1J 19
= InX;(t—1)+ p;5(t)vi;(t)
where o (t)
W s
v (t) = =22 (20)
J Bln)\z‘j

This approach rests on the assumption that each element of
A affects J only through the corresponding element of w. To
avoid an expensive exponentiation for each weight update,
(19) is further simplified by exploiting the linearization e =
1+ p, valid for small ||, to yield

Aij(t) = Aij (t — 1) max (p, 1+ pdi;(t)vi;(£)), 21

where p (typically around 0.5) is a safeguard factor against
unreasonably small, or negative, values. Meta-level gradient
descent remains stable as long as d;;(¢)v;;(t),V 4, j does not
stray away from unity. Next, v;; is expressed as a gradient
trace that measures the long-term impact of a change in a
local learning rate to its corresponding weight. Accordingly,
the SMD algorithm defines v;; as an exponential average of
the effect of all past learning rates on the new weight values,
such that

vt 5 t + 1

Yoy Oyt +1) 22)

O\, (t— k)’

where the coefficient 0 < § < 1 determines the time scale
over which long-term dependencies are taken into account.
(22) can be effectively approximated to yield the following:

v (t+1) = Bui;(t) +Ai;(t) (5ij(t) - (Htv(t))ij) , (23)

where v;;(0) = 0,V4,j and H; denotes the instantaneous
Hessian (the matrix of second derivatives 9%.J/0w;;jwy; of
the error J with respect to each pair of weights) at time ¢.
The two equations (21) and (23) complete the updating of
the learning rates \;; for each w;;.

C. SMD for TRTRL

In applying SMD to TRTRL, the primary task is to derive
an efficient algorithm for obtaining H;v;. At first glance, this
might suggest a computationally heavy process. Fortunately
this is not the case, since there are very efficient indirect
methods for computing the product of the Hessian with an
arbitrary vector [12] [10]. To prevent negative eigenvalues
from causing (23) to diverge, SMD uses an extended Gauss-
Newton approximation that also admits a fast matrix-vector
product. Pearlmutter [12] presented an exact and numerically
stable procedure to compute H;v; with a computational
complexity of O(n) and no need to explicitly calculate or
store the matrix H;. We begin by reviewing this technique.
It has been shown that the product of a Hessian H with any
arbitrary vector, v, can be computed as

Hv=R, {v } - 0 V(errv) |r 0 (24)
where R,{-} is a differential operator and r is a real value.
V. is the gradient of the optimized function with respect
to the adjustable parameters w. rv is considered a small
perturbation to V,, in the direction of v. In the context of
neural networks, V,, is the gradient of the error function
to the weights and v is the gradient trace defined in (20).
Applying the R,{-} operator to TRTRL, we obtain

- (Htv(t))ij R, {7vwm}
= Ry, {0;(t)}

- {_@J(t)}

awij
= Rv { Z

oeoutput

(25)

eo(t)py; () }

[eo(t) Ry {15 (1) } +

oeoutput

Rv {eo(t)}p?j (t)]
= Y [e®R {p50)} -

oeoutput
Ry {yo(t)} p7; (1))
Next, we need to calculate R, {y,(t)} and R, {p;(t)}.

From equation (3), we note that

Ry {so(t)} = >0 wvar(t)z(t),

leUUI

(26)

122

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

such that from (2),

Ry {yo(t)} = f/(so(t))Rv {s0(t)}- (27)
By the same token and (13),
Ry {pf(t)} = " (s0(t)) Ro {s0(t)} (28)

[worply () + woyply () + 810 (8
- (50(8)) [vorpl; (8) + vogp] (1)]

Note that the computation of H;v; only incurs calculations
at the output neurons, thus adding little to the overall
computations. It should also be noted that the calculation of
H,v; can be thought of as a concurrent and adjoint process
to the gradient calculation, with a similar computational
complexity of O(K N?). Moreover, the storage requirements
remain O(N?). For a linear transfer function at the output
neurons (i.e. f (so(t)) = so(t)), we have [’ (s,(t)) =1 and
1" (so(t)) = 0, resulting in the simplified expression:

R, {p;j)j (t)} = 'Uoip:;j (t) + Uojpgj (t)

D. Adaptation of the Global Meta-learning Rate |1

29

The original SMD technique does not consider any adap-
tation of the global meta-learning rate parameter, p. In
fact, the latter is often viewed as the "learning rate of the
learning rate", with typical values in the order of 0.1. To
ensure faster convergence and stability of the algorithm as
a whole, we introduce an adaptive global meta-learning rate
by the same heuristic techniques of SuperSAB [10] [18].
We increase the value of p if a positive correlation between
successive gradients of the error function with respect to
learning rate is observed, otherwise p is decreased. Let ¢
be the negative gradient of the error function with respect to
the exponentiated learning rate such that

_ oI _
wij()_ialn)\ij a

85 (t)vi;(t). (30)

Accordingly, 41;;(t) is updated in the following manner:

:uij(t) = Mij(t - 1) (1 + U@i;‘(ﬂ%g‘(t - 1))) (31

where 7 = .05 is a small positive constant. Moreover, /;;
is bounded by [f,;, = 0.01, gt = D] in order to ensure
stability and smoother learning.

Although SMD proves to yield a generally stable learning
process, occasional divergence in weight values can occur. A
heuristic that has been found to eliminate such instabilities is
to simply limit both the weights and the weight changes. The
latter are restricted to the range [—0.125,0.125], while the
former to [—4,4]. This has shown to carry minimal learning
rate degradation, while practically guaranteeing stability.

E. Discussion on Storage and Computational Complexity

Primary benefits of TRTRL, from an implementation
perspective, are the substantial reductions in computation
complexity and storage requirements. Computation time is
dominated by the calculation of the sensitivity elements.

While in the original RTRL scheme, each neuron is re-
quired to perform O(N?3) floating-point operations (flops),
TRTRL requires only O(N). Note that SMD necessitates
approximately three times the flops involved in regular gra-
dient computations. This results in an overall (network-level)
computational complexity of O(N?), instead of O(N*?) that
characterizes RTRL.

A similar reduction in resources is observed in the storage
requirements of TRTRL. All N3 elements of the sensitivity
matrix are required in RTRL, while TRTRL only operates
on 2N sensitivities per neuron. As such, the overall storage
requirement drops from O(NN?) to O(N?). It should be noted
that, as opposed to RTRL, TRTRL is a highly localized
algorithm. This contributes to the more effective implemen-
tation prospect of the scheme in hardware. Moreover, it is
interesting to note that although this paper addresses the
case of fully-connected networks, the TRTRL formalism is
not restricted to such cases. In fact, assuming that each
node is only connected to M other nodes, the computational
complexity becomes O(K M N) while storage is reduced to
O(MN). The only constraint imposed in such cases is that
each node has a direct link to the output neurons (as means
of propagating error information), as dictated by (7).

V. EXPERIMENTAL RESULTS

A. Direct-Policy Approximate Dynamic Programming with
Softmax Action Selection

We introduce RNNPOMDP, an online stochastic gradient
learning control framework, which utilizes a recurrent neural
network for Q-function approximation. The controller is
constructed of a fully-connected RNN with one output neu-
ron that predicts the state-action value, based on which the
softmax algorithm [14] is used to determine the actions. The
goal is to learn a stochastic control scheme that yields a near-
optimal policy. All the RNN nodes use a sigmoid activation
function with the exception of the output node which has
a linear activation function. We apply Q-learning and use
the TRTRL-SMD algorithm to train the RNN. The RNN is
trained with reference to the temporal difference error,

0p = rep1 + Vm?X{Q(ﬁtH; a;)} — Q(Vy, ar),

where 1 is the observation, a; are within the set of possible
actions, r denotes the single-step reward, and ~ is the
discounting factor (set to 0.8). For each step, the RNN is used
to evaluate the Q-function for all possible actions, followed
by softmax action selection. Since the neural network has
state (by means of activations), previous activations and
weights are stored and updated during the subsequent time
step, upon evaluation of the temporal difference error. The
algorithm is given in Table 1.

B. Simple Three-State POMDP

We first consider a simple 3-state POMDP, as used by
Baxter et al. and Schraudolph et al. [14]. The RNN consisted
of 5 internal neurons and one output neuron. The observation
at each state is a vector denoted by (01,02). Of the two
possible transitions from each state, the preferred one occurs

(32)

123

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Fig. 1.
observable feature vectors and instantaneous reward r; arrows indicate the
80% likely transition for the first (solid) and second (dashed) action.

Baxter et al.’s simple 3-state POMDP. States are labelled with their

with 80% probability, while the other with 20%, as illustrated
in Fig (1). The preferred transition is determined by the
action of a simple probabilistic adaptive controller that
receives two state-dependent feature values as input, and is
trained to maximize the expected average reward.

RNN (@—learning with softmax action selection

1. Given:

(a) an ergodic POMDP with observation space O,
action space A, and bounded reward,

(b) an RNN with initial weights wq and function
mapping observation-action pair to real value
f:OxA—R

2.Fort=1too0:

(a) Interact with POMDP:

1) observe ¥; € O, evaluate all actions a; € A(J;)
via the RNN with Q(’ﬁt, CL,‘) = f(@t, a;, wt);

2) calculate the probability of taking each action in ¥
using softmax: Pr{a; in ¥,} = %;
3) select action based on probability and observe
the reward 74 1;
(b) Update the activations (i.e. internal states) and
weights of the RNN:
1) input the previous observation-action pair
(ﬁt, at) to RNN;
2) update prior time step weights and sensitivities,
based on (U, a;), and (17), with
temporal difference error given by
0 = rip1 + max{Q(Vig1,a:) } — Q(Vy, ar);
Table 1: Q-function approximation based POMDP learning
using the TRTRL-SMD algorithm

In this test, the free parameter for softmax algorithm was
set to 7 = 0.5; for TRTRL-SMD, the parameters were
configured to the following initial values: A;;(0) = 0.01,V
i,j, p = 05,8 = 0.95,1;;(0) = 0.1, p;; € [0.01,0.5],
and 1 = 0.05. We collected data from 500 independent runs
with random seeds and initial conditions, and compared the
convergence rates with the ones obtained for SMDPOMDP
[14], which is a feed-forward neural network based approach.
The comparison is shown in Fig 2. Both algorithms converge
asymptotically to the optimal average reward (R = 0.8),
with the RNNPOMDP algorithm converging faster in terms of
process steps.

UE; ,II.‘..... I
0.7}
0 a: -
0%
{ emeSMD
04} {
|| TRTRLSMD

02! L. N . et . . 1
10 10 10’ 10

Fig. 2. Comparison of SMDPOMDP and RNNPOMDP applied to a simple
3-state POMDP

- ~
~ - -

/
/
|

\

\ —_

Fig. 3. Schraudolph et al.’s modified 3-state POMDP

C. Modifed Three-State POMDP

The first test was a simple three-state POMDP with the
property that greedy maximization of instantaneous reward
leads to the optimal policy. Schraudolph et al. [14] intro-
duced a more challenging problem which assigns a deceptive
instantaneous reward to a transition state. In the modified
POMDP 3, the highest reward state can only be reached
through an intermediate state with a negative reward. The
state features (observations) were also modified so as to
create an ill-conditioned input to the controller. For this test,
we used a 10-neuron RNN with the same settings as stated
above and trained the network according to the algorithm
described in table 1. Fig 4 illustrates that while SMDPOMDP
reaches the optimal performance after approximately 10°
iterations, RNNPOMDP converged to the optimal average re-
ward almost 10 times faster. Moreover, the RNN trained with
SMD also yielded considerable performance improvement
prior to converging to the optimal average reward.. This
further supports the notion that utilizing RNNs in this context
results in better approximation of long-term rewards.

D. Four-State POMDP

While the translation of features to inferred states was
indirect in the above test cases, it did not constitute a true
POMDP in the sense that observation-to-state is ambiguous.
We therefore studied a four-state POMDP, as depicted in

124

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

T T

|—|4—é-

22 -t ottt o TRTRL-SMD ‘
[s RTRL

[

i i

18k O T A S e i . S i
10’ 0 10° 10 10

Fig. 4. Comparison of SMDPOMDP and RNNPOMDP applied to the modified
3-state POMDP

r=18

r=0

Fig. 5. 4-state POMDP with identical observations for different states.

Fig 5 . The two states on the left-hand side have the same
observable features but different preferred actions. When the
agent visits any of the two states on the right-hand side, it
transitions to the states on the left-hand side (as depicted in
the figure), regardless of the action taken. The observation is
memory-dependent in the sense that each state has a distinct
preceding observation. The controller needs to memorize
preceding observations in order to determine the optimal
action for each of the two states. Hence, stateful function
approximation achieved by the RNN is mandatory. The RNN
in this case consisted of 15-neurons with the same initial
setup as stated above. Fig 6 demonstrates the asymptotic
convergence to the policy. It is worth mentioning that a near-
optimal policy is obtained after only 10? iterations.

0

Fig. 6. Comparison of RTRL, TRTRL and TRTRL-SMD applied to the
4-state POMDP

VI. CONCLUSIONS

In this paper, we presented a recurrent neural network
based Q-learning POMDP framework. An efficient realiza-
tion of the RNN yielded a scalable architecture, while train-
ing was improved via the stochastic-meta descent technique.
Simulation results of several POMDP test cases clearly
demonstrated the performance advantages of the proposed
scheme, with respect to both accuracy in estimating the av-
erage reward as well as speed and precision in convergence.

VII. ACKNOWLEDGEMENTS

The authors would like to thank Derek Rose for his review
of the manuscript. This work has been partially supported
by the Department of Energy research contract DE-FG02-
04ER25607.

REFERENCES

[1] D. Budik and I. Elhanany, “TRTRL: a localized resource-efficient
learning algorithm for recurrent neural networks,” in IEEE Midwest
Symposium on Circuits and Systems (MWSCAS), August 2006, puerto
Rica.
A. Delgado, C. Kambhampati, and K. Warwick, “Dynamic recurrent
neural network for system identification and control,” in /EE Proceed-
ings - Control Theory and Applications.
N. Euliano and J. Principe, “Dynamic subgrouping in RTRL provides
a faster o(n?) algorithm,” in Acoustics, Speech, and Signal Processing,
2000. ICASSP ’00. Proceedings. 2000 IEEE International Conference
on, vol. 6, Istanbul, 2000, pp. 3418-3421.
[4] S. E. Fahlman, “An empirical study of learning speed in back-
propagation networks,” Computer Science Technical Report, 1988.
[5] F.J. Gomez and J. Schmidhuber, “Co-evolving recurrent neurons learn
deep memory pomdps,” in GECCO '05: Proceedings of the 2005
conference on Genetic and evolutionary computation. New York,
NY, USA: ACM Press, 2005, pp. 491-498.

[6] L. Jain, Recurrent Neural Networks. CRC Press, February 2000.
[7] J. Kivinen and M. Warmuth, “Exponentiated gradient versus gradient
descent for linear predictors,” Tech. Rep. UCSC-CRL-94-16, 1994.

[8] J. Kivinen and M. K. Warmuth, “Additive versus exponentiated
gradient updates for linear prediction,” in Proc. of the twenty-seventh
annual ACM symposium on Theory of computing, 1995, pp. 209-218.
L. Lin and T. Mitchell, “Memory approaches to reinforcement learning
in non-Markovian domains,” Pittsburgh, PA, USA, Tech. Rep., 1992.

[2

=

[3

[t}

=)
X2

125

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

[10] G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, “Improving
the convergence of the backpropagation algorithm using learning rate
adaptation methods,” Neural Computation, vol. 11, no. 7, pp. 1769—
1796, 1999.

[11] D. Nguyen and B. Widrow, “Neural networks for self-learning control
system,” JEEE Cont. Sys., vol. 10, no. 4, pp. 18-23, April 1990.

[12] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural
Computation, vol. 6, no. 1, pp. 147-160, 1994.

[13] J. Schmidhuber, “A fixed size storage o(n3) time complexity learning
algorithm for fully recurrent continually running networks,” Neural
Computation, vol. 4, pp. 243-248, 1992.

[14] N. Schraudolph, J. Yu, and D. Aberdeen, “Fast online policy gradient
learning with smd gain vector adaptation,” in Advances in Neural
Information Processing Systems 18, Y. Weiss, B. Scholkopf, and
J. Platt, Eds. Cambridge, MA: MIT Press, 2006, pp. 1185-1192.

[15] N. N. Schraudolph, “Local gain adaptation in stochastic gradient
descent,” Tech. Rep. IDSIA-09-99, Aug 1999.

[16] N. N. Schraudolph, J. Yu, and D. Aberdeen, “Fast online policy
gradient learning with SMD gain vector adaptation,” 79th Annual
Conference on Neural Information Processing Systems, Dec 2005,
vancouver, Canada.

[17] G.-Z. Sun, H.-H. Chen, and Y.-C. Lee, “Green’s function method for
fast on-line learning algorithm of recurrent neural networks.” in NIPS,
1991, pp. 333-340.

[18] T. tollenaere, “Supersab: fast adaptive backpropagation with good
scaling properties,” Neural Networks, vol. 3, no. 5, pp. 561-573, 1990.

[19] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation, no. 1,
pp. 270-280, 1989.

[20] D. Zipser, “A subgrouping strategy that reduces complexity and speeds
up learning in recurrent networks,” Neural Computation, no. 1, pp.
552-558, 1989.

126

