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Abstract— This paper describes backpropagation through an
LSTM recurrent neural network model/critic, for reinforcement
learning tasks in partially observable domains. This combines the
advantage of LSTM’s strength at learning long-term temporal
dependencies to infer states in partially observable tasks, with
the advantage of being able to learn high-dimensional and/or
continuous actions with backpropagation’s focused credit assign-
ment mechanism.

I. INTRODUCTION

There are multiple reasons why neural networks (NNs) are

used for approximate dynamic programming or reinforcement

learning (RL) problems. Probably the most common reason

is that the particular RL problem under consideration has a

large and/or continuous state space, and that generalization

over the state space is required after sampling only parts of

the state space. Likewise, the RL problem may have a large

and/or continuous action space, such that the actions can no

longer be enumerated as in standard RL (such as standard

table-based Q-learning), but instead a high-dimensional, and

possibly continuous-valued action vector is considered. A third

reason may be partial observability, or the problem of hidden

state, which means that the observations (sensor readings)

provide only noisy, limited or ambiguous information about

the underlying (Markov) state.

This paper focuses on the difficult case where all three

issues play a role: a large and/or continuous state space, a large

and/or continuous action space, and partial observability. We

describe how this case may be handled with backpropagation

through a model (BTM), where the model is a recurrent neural

network (RNN). In particular, we use the Long Short-Term

Memory (LSTM) architecture, because it has in previous work

been successful even in hard hidden state problems.

The next section describes different approaches to com-

bining RL with NNs. Section III describes LSTM and back-

propagation through LSTM. Section IV describes some initial

experimental results. Section V, finally, presents conclusions.

II. COMBINING RL WITH NNS

Different approaches to combining RL with NNs can be

taken (see [17], [3] for overviews), and the approach depends

to a considerable extent on the reason to use neural networks.

In the following, first the basics of RL as well as some notation

are discussed. Next, approaches for completely observable RL

problems are discussed, in which feedforward neural networks

can be used. Finally, approaches for partially observable RL

problems are discussed, in which recurrent neural networks

can be used, and the approach described in this paper, back-

propagation through an LSTM model/critic, is introduced.

A. Reinforcement learning

In RL, the learning system (agent, robot, controller) interacts

with an environment and attempts to optimize an objective

function based on scalar reward (or cost) signals (see [15]

for an overview of RL, using the same notation as the

one used here). Its actions a (controls) modify its state in

the environment s, and also lead to immediate rewards r.

Observations o provide the learning system with information

about s.

Generally, the objective of RL (in the discrete time case)

is to determine a policy π which at time t selects an action

at given the state st and which maximizes the expected

discounted future cumulative reward: rt + γrt+1 + γ2rt+2 +
... =

∑

i γirt+i, where γ ∈ [0, 1] is a factor which discounts

future rewards. Many RL algorithms estimate a utility or value

function, which approximates this measure of expected dis-

counted future cumulative reward, and which may be defined

over the state space (V (s)) or the state-action space (Q(s, a)).
If a discrete set of states and actions is considered, and

the observations o are equivalent to states s, the problem can

be formulated as a Markov Decision Process (MDP). If there

is hidden state or partial observability, i.e. the observations

are not equivalent to states but contain partial or incomplete

information about the state, the problem can be formulated

as a Partially Observable Markov Decision Process (MDP).

In this paper we consider the more general case of possibly

continuous states, observations, and actions, as well as the is-

sue of partial observability (but we do not consider continuous

time).

B. Completely observable RL problems

Direct value function approximation. If the state space

is large and/or continuous but completely observable and the

action space is relatively small, discrete, and enumerable, an

NN such as a multilayer feedforward neural network may be

used as a function approximator, to approximate the value

function of a temporal difference-based reinforcement learning
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Fig. 1. Direct value function approximation approach for completely
observable problems: a feedforward neural network is used as function
approximator for an RL value function.

algorithm (see figure 1). The input vector contains state infor-

mation, the output represents values of the RL value function.

This is the approach taken, for example, in Tesauro’s well-

known world class backgammon player [16]. In this approach

a single output unit may be used to compute values, and

the network may be recomputed for different possible actions

(as in Tesauro’s work). If a value function over the state-

action space (like Q-learning) rather than the state space is

to be computed, the inputs to the network may include a code

for different actions, or different output units may represent

values of different actions, or multiple networks may represent

different actions. A variation of Q-learning may be used for

training the network. In that case, the desired value dk at time

t for the corresponding output unit k is:

dk(t) = r(t) + γ max
a

Q(s(t + 1), a) (1)

where r(t) is the immediate reward achieved after executing

action a(t) in state s(t) and reaching state s(t + 1), Q(s, a)
is the state-action value function representing cumulative dis-

counted reward (estimated by the network), and γ is a discount

factor. After learning, in each state the best action can then

be selected by simply taking that action which leads to the

highest value computed by the network(s).

Actor-critic system. If the state space is large and com-

pletely observable, but the action space is large and/or con-

tinuous, then an actor-critic architecture (see figure 2) may

be used in which, as above, a network approximates a value

function. This network is called the critic. Now, however, there

is also a second network, called the actor. Like the critic, the

actor receives as input state information. Its output is a vector

coding for the action (or action probabilities). The actor is

trained using “internal rewards” from the critic, e.g. positive

(negative) internal rewards when its actions lead to positive

(negative) temporal difference errors for the critic.

Backpropagation through a model/critic. One disadvan-

tage of standard actor-critic systems is that search for the

best action vector is undirected and can therefore be slow

and fail to converge to good solutions, as it is based on the

actor performing a kind of stochastic hillclimbing in the action

space. The backpropagation through a model/critic (BTM)

approach can remedy this, as it exploits backpropagation’s
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Fig. 2. Actor-critic approach for completely observable problems: one
feedforward neural network, the critic, is used as function approximator for
an RL value function; another, the actor, to learn the policy.
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Fig. 3. Backpropagation through a model/critic approach for completely
observable problems: one neural network is used as a predictive model of the
environment. In addition, this network may estimate a value function. Another
neural network, the actor, learns the policy based on errors backpropagated
through the (frozen) model/critic (dotted lines).

directed credit assignment mechanism to learn the action (see

figure 3). The idea is that rather than using an NN to directly

represent an RL value function, an NN is used to learn a model

of the environment that predicts next observations and rewards

based on current observations and actions. This network is

typically a recurrent neural network. Stochastic RL problems

can be dealt with as well, if the outputs of the model are

interpreted as probabilities.

Additionally or alternatively, the model network may learn

to predict a value function, based on a standard temporal

difference-based reinforcement learning algorithm. This net-

work is called the model/critic [17].

A separate neural network, the actor network, learns map-

pings from its input vector to an action vector, which is

connected to the input side of the model. In the actor-learning

phase of BTM, the weights of the model are fixed, and

errors are backpropagated through the model that reflect not

prediction errors (the model is assumed to be accurate or

already learned), but differences between desired outcomes

in the environment and actual outcomes. These errors are
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Fig. 4. Direct value function approximation approach for partially observable
problems: a recurrent neural network is used as function approximator for an
RL value function.

backpropagated to the input side of the model, where they

represent how the inputs, in particular the inputs representing

actions, should change so as to improve the outcomes in the

environment. The actor then learns the correct actions on the

basis of these errors in a supervised learning way, again using

backpropagation.

In the supervised learning version of backpropagation

through a model [17], [7], [8], [11], desired outputs of the

model (desired environmental states) are used to determine

the errors that are to be backpropagated to the actor. In the

reinforcement learning case [14], an output of the model

is reward. The “desired output” then corresponds to “high

reward” on this output unit, which can be backpropagated

through time to past input activations representing actions.

If the model is (also) a critic and thus estimates a value

function on one of the output units, similarly desired outputs

correspond to high values on this output. Because a value

function explicitly represents future cumulative discounted

rewards available from individual state onwards, this may

make temporal credit assignment easier and help in obtaining

high cumulative discounted rewards. See [12] for an extensive

discussion of the relationship between BPTT and temporal

credit assignment based on value functions.

An elegant property of the BTM approach is that both the

model and the actor can be neural networks, and a single

procedure, backpropagation, can be used to adjust the weights

of the model, to compute the errors for the actor, and to adjust

the weights of the actor. A disadvantage, on the other hand, is

that this approach can be sensitive to small errors in the model,

which may lead to large errors in the signals propagated back

to the actions [7], [17], [3].

C. Partially observable RL problems

Direct value function approximation. If the action space

is relatively small but the state space is partially observable, a

direct value function approximation approach may be used

(see figure 4) based on recurrent neural networks (RNNs)

[9]. However, in this case the state is not given. The system

makes observations containing partial information about the

state. The interesting element here is that the RNNs must now

not only learn to approximate the value function, but at the

same time learn to infer the environment’s state based on the

observation o

value V(s)

FFNN

action a

c
ri

ti
c

a
c

to
r

internal reward

observation o

RNN

inferred

  s

inferred s

Fig. 5. Actor-critic approach for partially observable problems.
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Fig. 6. Backpropagation through a model/critic approach for partially
observable problems: one recurrent neural network is used as a predictive
model of the environment. In this paper, this is an LSTM network. In
addition, this network may estimate a value function. Another neural network,
the actor, learns the policy based on errors backpropagated through the
(frozen) model/critic (dotted lines). The actor receives the state inferred by
the model/critic as (additional) input.

recurrent activations representing the history of observations

and actions. Desired, target outputs are provided by a temporal

difference RL algorithm (such as Q-learning). Essentially,

temporal patterns in the observed sequence of observations

and actions must be discovered which allow the network to

correctly estimate the value functions. A problem here is that

in general learning temporal patterns in timeseries data is dif-

ficult, especially if there are long-term dependencies between

inputs and outputs that must be discovered [4]. In previous

work, we showed that a Long Short-Term Memory (LSTM)

RNN [6] is capable of this in an RL context even if it must

learn to detect complex and long-term temporal dependencies

between past and current observations and actions to infer the

correct state [1].

Actor-critic system. Actor-critic systems can be used in

partially observable domains (see figure 5), but as in the the

completely observable case it suffers from the problem that

search for the best action vector is undirected and can be slow,
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being based on a kind of stochastic hillclimbing in the action

space.

Backpropagation through a model/critic. If the state

space is large and/or continuous and only partially observable,

and the action space is large and/or continuous, the BTM

approach based on recurrent neural networks is one of the

few options to handle this very difficult case [13], [17].

As in the completely observable case, one neural network

serves as a model/critic, learning to predict next observations

and rewards and/or values (see figure 6). In the partially ob-

servable case however, this modeling task is significantly more

difficult as it only sees observations with partial information

about the state. As in the direct value function approximation

approach to partially observable problems, a recurrent neural

network must be used which learns to infer the state based

on the experienced sequence of observations, actions, and

rewards. For the actor, as well, the task is more difficult

because it has no access to the complete state. One can use

the state as inferred by the model/critic as input to the actor.

The actor can then learn the mapping from the inferred state

to actions, again based on errors backpropagated through the

model/critic.

In this paper we describe how the BTM approach can be

realized with the LSTM architecture in partially observable do-

mains. The idea is that this combines the advantage of LSTM’s

strength at learning long-term temporal dependencies to infer

states in partially observable tasks, with the advantage of being

able to learn high-dimensional and/or continuous actions with

backpropagation’s focused credit assignment mechanism. Both

of these advantages reflect important issues in RL, for which

there are very few alternatives to (recurrent) neural networks.

To the best of our knowledge, this is the first time the LSTM

architecture is combined with the BTM approach, either in a

supervised learning context or reinforcement learning context.

III. BACKPROPAGATION THROUGH AN LSTM

MODEL/CRITIC

A. The LSTM architecture

LSTM is a recurrent neural network architecture, originally

designed for supervised timeseries learning [6]. Figure 7

shows a typical network. It is based on an analysis of the

problems that conventional recurrent neural networks and their

corresponding learning algorithms, e.g. simple recurrent net-

works with standard one step backpropagation [5], or recurrent

networks with backpropagation through time (BPTT) [17]

or real-time recurrent learning (RTRL), have when learning

timeseries with long-term dependencies. These problems boil

down to the problem that errors propagated back in time tend

to either vanish or blow up (see [4], [6]).

LSTM’s solution to the problem of vanishing errors with

respect to past activations is to enforce constant error flow in a

number of specialized units, called Constant Error Carrousels

(CECs). Access to and from them is regulated using other

learning, specialized multiplicative units, called input gates,

output gates, and forget gates. The combination of a CEC with

its associated input, output, and forget gate is called a memory

memory cells

hidden

input

 output

Fig. 7. Typical LSTM network. Each layer consists of multiple units. Arrows
indicate unidirectional, fully connected weights.

CEC

input gate

output gate

forget gate

memory cell

cell output

cell input

Fig. 8. One memory cell. Access to and from the Constant Error Carrousel
(CEC) is regulated using a specialized, multiplicative input gate, output gate,
and forget gate.

cell, and typical networks (see figure 7) have a number of

them. See figure 8 for a schematic of a memory cell.

The network’s activations are computed as follows. The net

input net i(t) of any unit i at time t is calculated by

net i(t) =
∑

m

wimym(t − 1) (2)

where wim is the weight of the connection from unit m to

unit i.1 A standard hidden unit’s activation yh, output unit

activation yk, input gate activation yin , output gate activation

yout , and forget gate activation yϕ is computed as

yi(t) = fi(net i(t)) (3)

where fi is the standard logistic sigmoid function, squashing

the net input to the range [0, 1]. The CEC activation zcv
j
, or

the state of memory cell v in memory block j, is computed

as follows:

zcv
j
(t) = yϕj

(t)zcv
j
(t − 1) + yinj

(t)g(netcv
j
m(t)) (4)

where g is a logistic sigmoid function scaled to the range

[−2, 2], and zcv
j
(0) = 0. Note how the memory cell’s input

gate activation yinj
determines, in a multiplicative way, to

what extent the net input “enters” the memory cell. This net

input comes from the input layer, standard hidden layer, the

1For the purpose of notation, inputs to the network are viewed as activations
of units from one timestep ago, so they can be described in the same way as
recurrent activations.
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gates, and the memory cell outputs. The forget gate resets

the activation of the CECs (in a gradual way) when the

information stored in the memory cell is no longer useful.

The memory cell’s output ycv
j

is calculated by

ycv
j
(t) = youtj (t)h(zcv

j
(t)) (5)

where h is a logistic sigmoid function scaled to the range

[−1, 1]. Similar to the input gate, the output gate activation

youtj determines, in a multiplicative way, to what extent the

memory cell’s contents are made available to other units,

among which are the output units. An output unit’s activation

yk, finally, is computed using

yk(t) = fk(netk(t)) = netk(t). (6)

In the architecture used here, output units receive input from

all normal hidden units and from all memory cell outputs.

B. Learning an LSTM model/critic for BTM

When using LSTM as the model in a BTM approach (see

figure 6), one must first have a phase in which the LSTM

model is learned. This can be done by following an exploration

policy and using LSTM’s learning algorithm [6], [1]. Based

on the observations and actions selected by the exploration

policy, the next observation and reward are observed, which

the LSTM model learns to predict. The exploration policy can

be completely random, but in many cases it would be better

to follow a policy which focuses on somewhat reasonable

trajectories.

An interesting variation (described above, and explored

below), is to let the LSTM model learn, in addition to or

instead of the next observation and reward, a value function.

In that case, we call it an LSTM model/critic. The advantage

of that approach is that the value function takes care of part

of the temporal credit assignment problem. At the same time,

we still have the advantage of being able to backpropagate

error vectors toward action vectors. One must still use an RNN

(such as LSTM) for the model/critic if we do backpropagation

through a critic, because the state is partially observable. Note

that even if the LSTM network learns a value function, it is

often still useful to also learn to predict the next observation

and reward. Using the next observation and reward as addi-

tional, supervised training information will in many cases help

to infer a good approximation to the state (see [9]).

Learning the weights of an LSTM network is done using

an efficient version of Real-Time Recurrent Learning (RTRL),

i.e. a variation of the backpropagation algorithm for RNNs

[6]. Variations of this can be used in an RL context to learn

the value function [1] based on a variation of Q-learning (see

eq. 1).

C. Real-time recurrent backpropagation through LSTM

After training the LSTM model/critic, the actor can be

trained. It is natural to use the state as inferred by the model

as input to the actor. The actor can then learn the mapping

from the inferred state to actions.

For BTM, we must compute the partial derivatives of the

error on the output side of the model (in this case an LSTM

network) with respect to the input units of model, in particular

the input units coding for the action.

Thus, we wish to compute
∂E(t)
∂yn

, where E(t) is the error

measure at time t, and yn is the activation of input unit n. Let

us assume E is the standard sum of squared errors, then

∂E(t)

∂yk(t)
= −2(dk(t) − yk(t)) (7)

where dk(t) is the “desired” or target value for output unit

activation yk(t). This leaves us with the task of computing
∂yk(t)
∂yn

, the partial derivatives of network outputs with respect

to input unit activations.

In the variation of RTRL used for learning the LSTM

weights, most partial derivatives of errors with respect to

weights are truncated, in the sense that recurrent activations

from more than one timestep ago are not taken into account

(similar to how standard backpropagation can be applied

to simple recurrent networks [5]). This happens everywhere

except for the connections feeding into the memory cells [6],

where the important memory for past events is located. We

use the same principle for our Real-Time Recurrent Backprop-

agation Through a Model (RTR-BTM) algorithm, but in our

case gradients of errors with respect to presynaptic activations

are truncated, such that recurrent activations from more than

one timestep ago are not taken into account except for the

ones feeding into the memory cells. This truncation allows us

to limit the computation and storage requirements, while not

losing important memory for past events because the important

recurrent connections are within the memory cells where the

partial derivatives are not truncated.

Let us introduce the notation
∂yk(t)
∂yim

to indicate the partial

derivative of an output unit k with respect to unit m as a

result of intermediate unit i via weight wim. This allows us

to individually compute the partial derivatives backpropagated

via those weights wim and later compute
∂yk(t)
∂ym

by summing

over all
∂yk(t)
∂yim

. More formally:

∂E(t)

∂ym

=
∂E(t)

∂yk(t)

∂yk(t)

∂ym

=
∂E(t)

∂yk(t)

∑

i

∂yk(t)

∂yi

∂yi

∂ym

=
∂E(t)

∂yk(t)

∑

i

∂yk(t)

∂yim

.

(8)

Thus, we are left with the task of computing
∂yk(t)
∂yim

for all

units i and m. They can be derived from the activation update

equations by repeated application of the chain rule.

This yields the following equations. Without loss of gener-

ality, the specific equations described below are for the case of

the network architecture depicted in figure 7. For the weights

from memory cell outputs and standard hidden units to output

units (i = k),

∂yk(t)

∂ykm

= f ′

k(netk(t))wkm. (9)
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For the memory cell outputs and input units feeding into

standard hidden units h,

∂yk(t)

∂yhm

= wkhf ′

k(netk(t))f ′

h(neth(t))whm. (10)

For the input units, memory cell outputs, gates, and standard

hidden units feeding into output gate units outj ,

∂yk(t)

∂youtjm

=

Zj
∑

v=1

h(zcv
j
(t))

(

wkcv
j
f ′

k(netk(t))

+
∑

h

wkhf ′

k(netk(t))whcv
j
f ′

h(neth)(t)
)

· f ′

outj
(netoutj

(t))woutjm

(11)

where Zj is the number of CECs in memory block j. For the

input units, memory cell outputs, gates, and standard hidden

units feeding into CEC units cv
j ,

∂yk(t)

∂ycv
j
m

=
(

wkcv
j
f ′

k(netk(t))

+
∑

h

wkhf ′

k(netk(t))whcv
j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂ycv
j
m

(12)

where
∂zcv

j
(t)

∂ycv
j

m
is updated as follows:

∂zcv
j
(t)

∂ycv
j
m

=
∂zcv

j
(t − 1)

∂ycv
j
m

yϕj
(t) + g′(netcv

j
(t))yinj

(t)wcv
j m.

(13)

For the input units, memory cell outputs, gates, and standard

hidden units feeding into input gates inj ,

∂yk(t)

∂yinjm

=

Zj
∑

v=1

(

wkcv
j
f ′

k(netk(t))

+
∑

h

wkhf ′

k(netk(t))whcv
j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂yinjm

(14)

where
∂zcv

j
(t)

∂yinjm
is calculated by

∂zcv
j
(t)

∂yinjm

=
∂zcv

j
(t − 1)

∂yinjm

yϕj
(t)

+ g(netcv
j
(t))f ′

inj
(net inj

(t))winjm.

(15)

Finally, for the input units, memory cell outputs, gates, and

standard hidden units feeding into forget gates ϕj ,

∂yk(t)

∂yϕjm

=

Zj
∑

v=1

(

wkcv
j
f ′

k(netk(t))

+
∑

h

wkhf ′

k(netk(t))whcv
j
f ′

h(neth)(t)
)

· youtj
(t)h′(zcv

j
(t))

∂zcv
j
(t)

∂yϕjm

(16)

where
∂zcv

j
(t)

∂yϕjm
is calculated by

∂zcv
j
(t)

∂yϕjm

=
∂zcv

j
(t − 1)

∂yϕjm

yϕj
(t)+zcv

j
(t−1)f ′

ϕj
(netϕj

(t))wϕjm.

(17)

The only information that must be stored in this RTR-BTM al-

gorithm for LSTM are the partial derivatives
∂zcv

j
(0)

∂yim
described

above. Because the initial state of the network does not depend

on the weights,
∂zcv

j
(0)

∂yim
= 0 for all units i that need to store

this information, i.e. the CECs, the input gates, and the forget

gates.

Finally, we can determine
∂E(t)
∂yn

, the partial derivatives of

the output errors with respect to input units n, by summing

over all partials

∂E(t)

∂yn

=
∑

k

∂E(t)

∂yk(t)

(

∑

h

∂yk(t)

∂yhn

+
∑

outj

∂yk(t)

∂youtjn

+
∑

inj

∂yk(t)

∂yinjn

+
∑

cv
j

∂yk(t)

∂ycv
j n

+
∑

ϕj

∂yk(t)

∂yϕjn

)

.

(18)

These are the backpropagated errors to the input side of

the LSTM model/critic network. For those input units that

represent the action vector, these backpropagated errors yield

the training errors for the separate actor neural network. In

our experiments, the actor neural network is a multilayer

feedforward neural network, and it is trained using standard

supervised backpropagation learning based on these errors.

IV. EXAMPLE EXPERIMENT

A. Learning problem and architecture

We have done several experiments, focusing initially on

conceptually simple, artificial RL problems in which the

resulting models and policies are easy to analyze and in

which the problems of multi-dimensional, continuous action

vectors as well as partial observability with long-term temporal

dependencies play a role and can be varied.

In our example experiment, the LSTM model also learns a

value function while learning the model of the environment,

and thus is an LSTM model/critic. A separate multilayer feed-

forward neural network, the actor network, learns mappings

from its input vectors to action vectors based on errors that

are backpropagated through the LSTM model/critic. The actor

network’s inputs consist of the observations, which represent

a partial view on the partially observable state, and the LSTM

model/critic network’s internal state, i.e. its memory cell

activations, which are supposed to capture the environment

state inferred by the LSTM model/critic.

Our example problem is a variation of an artificial “nav-

igation problem” which we as well as others studied before

[10], [1], [2]. In the variation of the problem considered here,

the learning system must take sequences of actions to a goal

state. The task is deterministic but partially observable. The

observation is a 3-dimensional continuous vector, the action

is a 5-dimensional continuous vector. The learning system

has at its disposal discrete movement actions “North”, “East”,
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“South”, or “West”, each of which is represented by one

element in its action vector, and which can bring the learning

system closer to the goal state, at which point it can receive

a large reward. But this reward also depends on a continuous

element in its action vector. The maximum final reward is 5.

There are no other rewards in the task, but the rewards are

discounted, using discount factor γ = .99, meaning that there

is an incentive to reach the goal as quickly as possible.

The difficulty of the task lies in particular in the fact that

its rewards depend on an observation vector which it can only

see at the start state and the important elements of which it

must remember until it reaches the goal state—this makes the

problem partially observable. That important observation at the

start state consists of discrete and continuous elements. The

discrete elements determine the final action to reach the goal

state. The continuous elements determine the best value of the

continuous element in the action vector at the goal state.

The problem can be varied such that the minimum number

of actions until the goal state is reached is varied, and with

that the minimum number of timesteps that the system must

remember this observation (making it more or less difficult

to learn this temporal pattern). In the example experiment

described here, this number is 20, meaning that the LSTM

model/critic must learn to temporal dependencies bridging at

least 20 timesteps. If non-optimal actions are taken between

start state and goal state, the system must remember this

observation for a longer time. Note that detecting and learning

temporal dependencies bridging 20 timesteps or more and

remembering information for that long is difficult for most

RNNs.

In addition, the observation vectors between the start state

and the goal state are very noisy; uniformly distributed noise

is added to these observations. This means that both the LSTM

model network and the actor must be robust under noisy

perturbations of the inputs.

In summary, discrete and continuous information must be

remembered for extensive periods of time, requiring a robust

mechanism for learning long-term dependencies to infer the

state; and a continuous-valued multi-dimensional action vector

must be learned, requiring a mechanism like BTM.

B. Training and results

LSTM model/critic learning. The first learning phase

is the LSTM model/critic learning phase. In this phase, an

exploration policy takes actions, and the LSTM model/critic

is trained, using LSTM’s normal RTRL algorithm (see section

III-B), to predict the next observation, the next reward, and

the value of the value function. The value function is learned

based on temporal difference Q-learning (eq. 1).

Note that Q-learning is an off-policy RL method (see [15]),

meaning that a value function is learned which is independent

of the specific exploration policy (given that there is sufficient

exploration). Off-policy value function learning is necessary,

as the final policy learned by the actor differs from the

exploration policy used here, but must make use of the same

value function. The exploration policy in this case was a
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Fig. 9. Sum of Squared Errors (SSE) achieved by the LSTM model/critic
as a function of learning steps (the first learning phase).
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Fig. 10. Cumulative discounted reward achieved by the actor as a function
of learning steps (the second learning phase).

heuristic policy based on estimating the state-action value with

the LSTM model/critic a number of times using different

random action vectors, and selecting one of those action-

vectors using ǫ-greedy exploration.

As an illustration, figure 9 shows a running average of the

Sum of Squared Errors (SSE) of a typical run of the LSTM

model/critic during its learning process. It is interesting to

note that the SSE initially increases for a period of time.

We hypothesize that this is caused by the developing value

function. Eventually, however, the SSE decreases to a low

level, and an accurate model is learned. Note that this implies

that long-term temporal regularities have been learned to

correctly infer the state, which allows the model to accurately

predict next observations and rewards.

Actor learning. After the LSTM model/critic has been

trained, the actor learning phase starts. Now, the standard ex-

ploration policy is turned off, and exploration is continued by

the actor. It is trained by using standard backpropagation. Its

desired outputs (target values) are obtained by applying BTM
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through the trained, fixed LSTM model/critic, with desired

outputs for the value function output unit corresponding to

high values.

Figure 10 shows a running average of the cumulative dis-

counted reward (which the system is attempting to optimize)

obtained by the actor as a function of the number of learning

steps in a typical run (the second learning phase). It is apparent

that in the course of the learning process, the performance

gradually increases. Final performance is near-optimal, as op-

timal behavior corresponds to a cumulative discounted reward

of 4.09.

V. CONCLUSIONS AND DISCUSSION

In this paper we have described backpropagation through

LSTM models, and applied it to reinforcement learning under

partial observability of the state. An efficient algorithm, Real-

Time Recurrent Backpropagation Through a Model (RTR-

BTM), backpropagates errors from the output side of the

LSTM model/critic to the action vector of a separate actor,

allowing the latter to learn high-dimensional and/or continuous

actions using the focused credit assignment of backpropaga-

tion. Experimental results in test problems demonstrate the

feasibility of the approach.

An interesting possibility for future research would be

to investigate procedures to go back and forth between the

model/critic learning phase and the actor learning phase. This

would allow the model/critic to improve its predictions of next

observations and rewards (and the value function) based on the

latest policy learned by the actor. The reason is that the latest

policy learned by the action will, if it is already reasonable,

help in focusing exploration on the most interesting parts of

the state-action space and help in getting better estimates of

how much reward can be obtained. The model/critic improved

in this way may then be used to improve the policy learned

by the actor, and so on.

In general, the most interesting part of the approach dis-

cussed in this paper may be that it allows for a relatively

focused search for good high-dimensional and/or continuous

action vectors, without having to resort to supervised learning.

There may be other ways of doing such a focused search

for good high-dimensional action vectors, but it seems clear

that that is what is needed for many interesting real-world RL

problems.
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