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Abstract— Dynamic programming for discrete time systems
is difficult due to the “curse of dimensionality”: one has to
find a series of control actions that must be taken in sequence,
hoping that this sequence will lead to the optimal performance
cost, but the total cost of those actions will be unknown
until the end of that sequence. In this paper, we present our
work on adaptive dynamic programming (ADP) for nonlinear
discrete time system using neural networks. The neural network
we adopted here is the wavelet basis function (WBF) neural
network. We will exam the performance of an ADP algorithm
using WBF neural networks. The comparison shows that when
WBF neural networks are employed, the ADP algorithm gives
faster training speed than when RBF neural networks are
employed.

I. INTRODUCTION

Dynamic programming is a very useful tool in solving
optimization and optimal control problems. However, it is
often computationally untenable to run true dynamic pro-
gramming due to the backward numerical process required
for its solution, i.e., as a result of the well-known “curse of
dimensionality” [3], [8]. One has to find a series of control
actions that must be taken in sequence, hoping that this
sequence will lead to the optimal performance cost, but the
total cost of those actions will be unknown until the end of
that sequence. If the optimal performance cost J∗ is known,
the optimal control law u∗ can be obtained by applying J∗

as a Lyapunov function for the system. Under some good
analytic conditions for functions, the optimal cost function is
the solution of the Hamilton-Jacobi-Bellman (HJB) equation
[3]. However, the theoretical solution of the HJB equation is
very difficult to obtain, except for systems satisfying some
very good conditions, such as linear systems with quadratic
utility and zero target.

Over the years, progress has been made to circumvent
the “curse of dimensionality” by building a system, called
“critic,” to approximate the cost function in dynamic pro-
gramming (cf. [1], [14], [16], [18], [19], [24], [25], [27],
[28]). The idea is to approximate dynamic programming
solutions by using a function approximation structure to
approximate the cost function.

In 1994, Saridis and Wang [18] studied non-linear stochas-
tic systems described by

dx = F (x, t)dt + B(x, t)udt + G(x, t)dw, (1)
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where x ∈ R
n is a vector of state of the stochastic system,

u ∈ R
m is a control vector and w ∈ R

k is a separable Wiener
process. F (·, ·), B(·, ·) and G(·, ·) are measurable functions.
The performance cost of the system (1) is defined as

J(x0; t0, u) = E

{∫ +∞

t0

[
U(x, t) + ‖u‖2

]
dt

+φ(x(T ), T )
∣∣∣x(t0) = x0

}
,

where U(·, ·) and φ(·) are nonnegative functions. Instead
of solving HJB equation to find the optimal performance
cost J∗, Saridis and Wang [18] gave an iterative algorithm
to approximate a bound V ∗ of J∗ to achieve the so-called
“suboptimal control” of the system.

In 2002, Cox, Lendaris, Murray and Seaks [10], [14] stud-
ied the (deterministic) continuous-time stabilizable systems

dx

dt
= F (x) + B(x)u, x(t0) = x0, (2)

with the cost function

J =
∫ +∞

t0

U(x, u)dt, (3)

where U(x, u) = q(x) + uT r(x)u is a nonnegative function
and r(x) > 0. Similar to [18], an iterative process is pro-
posed. Starting from any stable Lyapunov function J0 [14]
(or alternatively, starting from an arbitrary stable controller
u0 [10]), the algorithm will give two sequences {Ji} and
{ui} which will converge to the optimal cost function J∗

and the optimal control u∗, respectively. By applying radial
basis function approximation, no prior information of F (x)
and B(x) are required in the algorithm. Thus their algorithm
is an adaptive algorithm.

Meanwhile, a neural network approach for approximate
dynamic programming has been developed in the literature.
There are several synonyms used including “Adaptive Critic
Designs” (ACD), “Approximate Dynamic Programming”,
“Neural Dynamic Programming”, “Reinforcement Learning”
(RL), and so on. In the early 1970’s, Werbos set up the
basic strategy of RL system for ACD (cf. [23], [28], [29]
for details). A typical design of ACDs consists of three
modules-Critic, Model, and Action. They are neural networks
used to approximate the optimal cost function, the plant
to be controlled, and the optimal controller, respectively.
These three parts combined together form a “Reinforcement
Learning System” (RLS) or an ACD. In ACDs, neural
networks are designed to approximate the cost function J , to
simulate the derivative of J , and to estimate the solution of
Hamilton-Jacobi-Bellman equation. The principle of optimal
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control is used inside the neural networks to build the weight
updating law. They can achieve good approximation most of
the time.

In this paper, we study adaptive dynamic programming of
discrete time-invariant nonlinear systems

xk+1 = F (xk, uk), k = 0, 1, 2, . . . . (4)

There is no special requirement for the system functions F
except that F is continuous. The target T is a neighborhood
of zero and we will try to drive the system to reach the target
in finite time (steps). There are no restrictions on the number
of total control steps. The algorithm ADPDN [9] will be used
in this paper. The algorithm ADPDN was developed in [9]
after a step by step exploration of the system to find the re-
lationship of optimal controls and optimal costs for different
control steps. We have applied radial basis function (RBF)
neural networks to approximate the associated functions of
the system, the performance cost, the optimal controller,
and the function to estimate the steps need to complete the
trajectory. In this paper, instead of RBF neural networks, the
new wavelet basis function (WBF) neural networks will be
applied to approximate the functions. We will use wavelet
basis function neural networks to approximate the nonlinear
function F of the plant, the optimal cost function Jo,
the optimal controller uo, and the estimated control steps
Ko. Wavelet basis function neural network is a new kind
of neural networks designed to approximate function via
wavelet basis functions. It is analogous to the radial basis
function neural network with better generalization properties.
We will examine the performance of the algorithm ADPDN
[9] using WBF neural networks. Numerical experiments to
illustrate the performance of our algorithm will be proposed.
The comparison shows that when WBF neural networks are
applied, the ADPDN algorithm gives faster training speed
than when RBF neural networks are applied.

II. PROBLEM STATEMENT

Consider a discrete-time time-invariant plant

xk+1 = F (xk, uk), k = 0, 1, 2, . . . ,

with utility function U(x, u) and φ(x), and performance
measure

J = φ(xN ) +
N−1∑
k=0

U(xk, uk), (5)

where xk ∈ R
n is the state and uk ∈ R

m is the control. The
control target T ⊂ R

n is a simple connected closed region
containing the origin. The initial state is x0 and the final state
is xN .

Here, F (x, u), U(x, u) and φ(x) are continuous functions
of state x and control u. N is the total number of control
steps. They satisfy the following assumptions:

(C2.1) F (0, 0) = 0, and for any x ∈ T , there exists a
control u ∈ R

m such that F (x, u) ∈ T . So if
x0 ∈ T , then we can always find a control sequence
u0, u1, . . . such that xk ∈ T for all k = 1, 2, . . . .

In particular, if x0 = 0, then uk ≡ 0 gives xk ≡ 0,
k = 0, 1, . . . .

(C2.2) U(x, u) ≥ 0 for all (x, u). For each fixed x, U(x, 0)
will be the minimal value of U(x, u). Hence if we
do nothing at one step, then the cost at that step
will be the smallest, although the whole cost may
be bigger. The utility xT Rx+uT Su and the utilities
of the type q(x) + uT Su (with q(x) > 0 [14]) all
satisfy this condition.

(C2.3) φ(x) ≥ 0 for all x, and φ(0) = 0.
(C2.4) xN ∈ T , i.e., the trajectory must reach the target

at the final control step. Notice that one can not
always find a suitable control sequence to make the
state reach the target in finite steps. In this case, we
set N = +∞ and omit the item φ(xN ) in (5).

Now the trajectory starting from x0 under the control of
u is x0 = x, x1 = F (x0, u0), x2 = F (x1, u1), . . . , xN =
F (xN−1, uN−1), and we have xN ∈ T . The total cost of
this trajectory is J(x, u) = φ(xN )+

∑N−1
i=0 U(xi, ui), which

depends on the values of x and u0, u1, . . . , uN−1. So it is a
function of x and u0, u1, . . . , uN−1. Besides, it depends on
N , too. We can express it as

J(x, u) = J(x;u0, . . . , uN−1) = φ(xN ) +
N−1∑
i=0

U(xi, ui).

Define the cost from any step k to step N as follows:

JN ;N
�
= φ(xN )

JN−1;N
�
= JN−1(xN−1;uN−1)
= U(xN−1, uN−1) + JN ,

JN−2;N
�
= JN−2(xN−2;uN−2, uN−1)
= U(xN−2, uN−2) + JN−1,

...

J1;N
�
= J1(x1;u1, u2, . . . , uN−1)
= U(x1, u1) + J2,

J0;N
�
= J0(x0;u0, u1, . . . , uN−1)
= U(x0, u0) + J1.

In the above, J0;N is just J(x, u), i.e.,

J(x, u) = J0(x0;u0, u1, . . . , uN−1).

To find the optimal control signal, we need to minimize
the performance cost. We define the minimum cost from step
k on to the end as follows. For k = 0, . . . , N , let

J∗
k;N (xk) = min

uk,...,uN−1
{Jk(xk;uk, . . . , uN−1)}

= min
uk,...,uN−1

{
N−1∑
i=k

U(xi, ui) + φ(xN )}.

Then J∗
k;N (·) is the optimal cost function from step k to the

final step N . By Bellman’s principle of optimality,

J∗
k;N (xk) = U(xk, u∗

k) + J∗
k+1;N (F (xk, u∗

k)), (6)
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where u∗
k = u∗

k;N (xk) is the optimal control at step k, and

u∗
k;N (xk) = arg min

u
{U(xk, u) + J∗

k+1;N (F (xk, u))}. (7)

According to (7), we can get u∗
k;N (·) from J∗

k+1;N (·). And by
(6), we can get J∗

k;N (·) from u∗
k;N (·) and J∗

k+1;N (·). Thus,
we can get all the optimal costs J∗

k;N (·) and optimal controls
u∗

k;N (·), k = 0, 1, . . . , N − 1, backward from J∗
N ;N (·). Our

aim of this paper is to develop a neural network algorithm
to approximate these functions.

According to (6) and (7), to determine the sequences of
functions J∗

k;N (·) and u∗
k;N (·), k = 0, . . . , N − 1, we need

to study J∗
N−1;N (·) first. (Notice that J∗

N ;N (·) = φ(·) is
known.)

Let x0 be an arbitrary initial state. Choose a sequence
of control signals u0, . . . , uN−1, we will have a trajectory
x0, x1, . . . , xN , where xk+1 = F (xk, uk). First, look at the
region of all possible values of state xN−1. If x ∈ R

n is a
possible value of state xN−1, then there must exists at least
one value u ∈ R

m of the control uN−1 such that

F (x, u) ∈ T .

Hence, if the N th step is the final step of control, then the
equation F (x, u) ∈ T gives the region of all possible values
of state xN−1 and the associated value of control uN−1 such
that the final state (in step N ) xN reaches the target T .
Similarly, if x and u are possible values of state xk and
control uk, respectively, in the kth step of the totally N
control steps, then F (x, u) must be a possible value of state
in the k + 1 step. For N = 1, 2, 3, . . . , k = 0, 1, . . . , N − 1,
define


Ak;N = {(x, u) ∈ R
n+m| F (x, u) ∈ T k+1;N},

T k;N = {x ∈ R
n| ∃u ∈ R

m s.t. F (x, u) ∈ T k+1;N},
Ck;N = {u ∈ R

m| ∃x ∈ R
n s.t. F (x, u) ∈ T k+1;N},

where T N ;N = T for all N . Then we have the following
statements.

(S2.1) For N = 1, 2, . . . , and k = 0, 1, . . . , N , T k;N is
the set of all possible states xk with T N :N = T .
When k < N , if and only if xk ∈ T k;N , there exist
controls uk, uk+1, . . . , uN−1 such that xk+1 =
F (xk, uk) ∈ T k+1;N , xk+2 = F (xk+1, uk+1) ∈
T k+2;N , . . . , xN = F (xN−1, uN−1) ∈ T N ;N =
T . We have Ak;N �= ∅, Ck;N �= ∅ and T k;N �= ∅.

(S2.2) We have T 0;N ⊇ T 1;N ⊇ · · · ⊇ T N−1;N ⊇
T N ;N = T .

(S2.3) The set Ak;N = F−1(T k+1;N ) is the inverse
image of the set T k+1;N ⊂ R

n under F .
(S2.4) T k;N is the orthogonal projection of Ak;N ⊂

R
n+m in R

n, i.e., T k;N = px(Ak;N ).
(S2.5) Similarly, Ck;N = pu(Ak;N ) is the orthogonal

projection of Ak;N ⊂ R
n+m in R

m.
(S2.6) The optimal control u∗

N−1 = u∗
N−1;N (xN−1) at the

final step for any possible state xN−1 ∈ T N−1;N

must satisfy the equation

F (xN−1, u
∗
N−1) ∈ T .

If there is only one solution to this equation, the
solution is just u∗

N−1 since it is the only choice. If
there are more than one solution, we will choose
the one which minimizes the cost. Suppose u =
f (i)(x), i ∈ I , are all the implicit functions defined
by F (x, u) = ξ, ξ ∈ T , where I is a suitable index
set. Then


J∗
N−1;N (xN−1) = mini∈I{φ(xN )+

+U(xN−1, f
(i)(xN−1))}

= φ(xN ) + U(xN−1, u
∗
N−1;N (xN−1)),

u∗
N−1;N (xN−1) = f (i0)(xN−1),

where i0 is the index such that f (i0)(xN−1) mini-
mizes φ(xN ) + U(xN−1, f

(i)(xN−1)).
(S2.7) For k = 0, 1, . . . , N − 2, let xk ∈ T k;N be any

possible state, then

J∗
k;N (xk) = min

uk∈Ck;N

{U(xk, uk) + J∗
k+1;N (F (xk, uk))}

and the minimum is reached when uk = u∗
k;N (xk),

i.e.,

u∗
k;N (xk) = arg min

u
{U(xk, u)+J∗

k+1;N (F (xk, u))}. (8)

Statements (S2.1) and (S2.3)–(S2.6) all come directly from
definitions. Statements (S2.2) and (S2.7) can easily be proved
([9]).

Now we have sequences:

{J∗
k;N (·), k = 0, 2, . . . , N},

{u∗
k;N (·), k = 0, 1, . . . , N − 1},

{T k;N , k = 0, 1, . . . , N − 1},
{Ck;N , k = 0, 1, . . . , N − 1},
{Ak;N , k = 0, 1, . . . , N − 1},

for N = 1, 2, 3, . . . . For any initial state x0, we need to
use all of these sequences to find the optimal control for x0.
First, we need to find which one of J∗

0;N (x0), N = 1, 2, . . . ,
is the smallest. If we can find N∗ such that J∗

0;N∗(x0) =
minN{J∗

0;N (x0)}, then J∗
0;N∗(x0) is the optimal cost and the

associated control law u∗
k;N∗(·) will be used to determine the

optimal control sequence.
Since the system considered here is time-invariant, we

have the following relationships between items of these
sequences for different N and k. We will state these re-
lationships as Proposition 2.1. From these relationships, one
can see that many items of T k;N ,Ck;N ,Ak;N , J∗

k;N (·), and
u∗

k;N (·) are equivalent. Hence we do not need to handle so
many items when we try to find the optimal control sequence.

Proposition 2.1: Let N ≥ 1 and k = 0, 1, . . . , N − 1.
Then 



T k;N = T 0;N−k,
Ck;N = C0;N−k,
Ak;N = A0;N−k,
J∗

k;N (·) = J∗
0;N−k(·),

u∗
k;N (·) = u∗

0;N−k(·).

(9)
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If the total number of steps of the system to reach the
target is restricted to N ≤ maxN, then the optimal cost and
control are

Jo(x) = J∗
0;maxN(x),

uo(x) = u∗
0,maxN(x). (10)

If there is no restriction on the total number of steps to reach
the target, the optimal cost and control will be determined
as follows. Let T 0 = T , T k = {x ∈ R

n|∃u ∈ R
m such that

F (x, u) ∈ T k−1} for k = 1, 2, 3, . . . . If x ∈ T N , then


Jo(x) = inf{J∗
0;K(x)|K ≥ N},

uo(x) = u∗
0,K(x), if K is the smallest K

such that Jo(x) = J∗
0;K(x).

(11)

III. WAVELET BASIS FUNCTION NEURAL NETWORK

Wavelet basis function (WBF) neural network is analo-
gous to the well known radial basis function (RBF) neural
network. The radial basis function, which is used in an RBF
neural network, is replaced by a wavelet basis function.

In an RBF neural network, a function f(x) is approxi-
mated as

f(x) ≈ α0 +
K∑

k=1

αkϕ

(
‖x − µk‖

σk

)
, (12)

where αk is the connecting weight of the kth neuron to
the output neuron, µk is the center and σk is the width
of the neuron, respectively, k = 1, . . . , K. The radial basis
function ϕ(r) = exp(−r2) is the Gaussian function. During
the training, the weights αk and centers µk will be adjusted
according to the input training pairs, while the width σk will
decrease from a bigger number εmax to a smaller number
εmin.

In a WBF neural network, instead of the radial basis
function, a target function will be approximated as a linear
combination of wavelet basis. A wavelet basis is constructed
with a multiresolution approximation of function space.
Multiresolution approximation presents a way to approxi-
mate functions in multiple resolutions. Recall that the inner
product of functions f and g ∈ L2 is defined as 〈f, g〉 =∫

f(x)g(x)dx. A multiresolution approximation (MRA) of
the function space L2 is a doubly infinite nested sequence
of subspaces of L2

· · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·

with properties [7]

(S3.1) ∪jVj is dense in L2, i.e., limjVj = L2.
(S3.2) ∩jVj = {0}.
(S3.3) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1 for all j ∈ Z.
(S3.4) f(x) ∈ Vj ⇐⇒ f(x−2−jk) ∈ Vj for all j, k ∈ Z.
(S3.5) There exists a function φ ∈ L2 so that {φ(x −

k) : k ∈ Z} forms an orthonormal basis of V0. The
function φ is called the scaling function of the MRA
{Vj}.

(S3.6) Let φk
j (x) = 2j/2φ(2jx − k) for j, k ∈ Z. Then

for any fixed integer j ∈ Z, the set of functions
{φk

j |k ∈ Z} is an orthonormal basis of Vj .

(S3.7) There exists a function ψ ∈ V1 so that 〈φ, ψ〉 = 0
and ‖ψ‖ = 1. Let W0 = Span{ψ(x − k), k ∈ Z}.
Then the set of functions {ψ(x − k)|k ∈ Z} is an
orthonormal basis of W0, W0⊥V0 and V1 = V0 ⊕
W0, where the symbol ⊕ denotes the orthogonal
direct sum of function spaces [7]. ψ is called the
wavelet function of the MRA {Vj}.

(S3.8) Let ψk
j (x) = 2j/2ψ(2jx − k) for j, k ∈ Z. Let

Wj = Span{ψk
j : k ∈ Z}. Then the set of functions

{ψk
j |k ∈ Z} is an orthonormal basis of Wj , Wj⊥Vj

and Vj+1 = Vj ⊕ Wj .
(S3.9) For any Hmin,Hmax ∈ Z, we have

VHmax = VHmin⊕WHmin⊕WHmin+1⊕· · ·⊕WHmax−1.

Furthermore,

L2 = lim
Hmax→∞

VHmax = VHmin ⊕ (⊕∞
k=Hmin

Wk).

(S3.10) For any f(x) ∈ L2 and any integer j ∈ Z, there
exists a unique function Pjf ∈ Vj such that f −
Pjf⊥Vj . Pjf is called the approximation of f at
resolution j. We have limj→∞ Pjf = f.

(S3.11) For any f(x) ∈ L2 and any integer j ∈ Z,
there exists a unique function Qjf ∈ Wj such that
f − Qjf⊥Wj . Qjf is called the deviation of f
at resolution j. We have Pjf + Qjf = Pj+1f .
Consequently, for any Hmin,Hmax ∈ Z,

PHmaxf = PHminf +
∑

Hmin≤k<Hmax

Qkf.

(S3.12) Let f ∈ L2. Since Pjf ∈ Vj and {φk
j : k ∈ Z} is

an orthonormal basis of Vj , we have

Pjf =
∑

k

Cj,kφk
j ,

where Cj,k = 〈f, φk
j 〉.

(S3.13) Let f ∈ L2. Since Qjf ∈ Wj and {ψk
j : k ∈ Z}

is an orthonormal basis of Wj , we have

Qjf =
∑

k

Dj,kψk
j ,

where Dj,k = 〈f, ψk
j 〉.

(S3.14) Let f ∈ L2. For any given Hmin,Hmax ∈ Z, we
have the approximation

f(x) ≈
∑
k∈Z

CHmin,kφk
Hmin

(x)+
Hmax∑

s=Hmin

∑
k∈Z

Ds,kψk
s (x). (13)

(13) is called the wavelet approximation of f with
resolutions from Hmin to Hmax.

In a WBF neural network, a function is approximate by
(13). The coefficients Cj,k and Dj,k are the weights of
neurons. During the training, the values of the weights will be
adjusted according to the training pairs. Comparing with the
RBF neural network (12), we have the following differences:

(S3.15) A WBF neural network has two kind of basis
functions, φk

j and ψk
j , coming from the scaling
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function φ and the wavelet function ψ, respectively,
while an RBF neural network only has one kind of
basis coming from one function ϕ.

(S3.16) During the training of a WBF neural network,
only the weight coefficients Cj,k and Dj,k will
be adjusted. But in the training of an RBF neural
network, not only the coefficients αk but also the
centers µk and the widths σk will be modified.

For the scaling function φ and the associated wavelet
function ψ of an MRA {Vj}, we know that V0 ⊂ V1 and
W0 ⊂ V1. Hence φ and ψ can be written in terms of the
basis of V1. For k ∈ Z, define{

hk = 〈φ0
−1(x), φ(x − k)〉,

gk = 〈ψ0
−1(x), φ(x − k)〉.

Then (refer to [7]){
gk = (−1)k−1h1−k,∑

k hkhk−2s = δ0s,

and {
φ(x) =

∑
s∈Z

hsφ
s
1(x),

ψ(x) =
∑

s∈Z
gsφ

s
1(x). (14)

For integers j, k ∈ Z, replacing x by 2jx − k in (14) gives{
φk

j (x) =
∑

s∈Z
hsφ

2k+s
j (x),

ψk
j (x) =

∑
s∈Z

gsφ
2k+s
j (x).

(15)

The formulas (15) give the relationship between basis
functions with different resolution levels. According to this
relationship, it can be proved that the weights Cj,k and Dj,k

of different resolution levels have the following relationship:{
Cj−1,m =

∑
k∈Z

hk−2mCj,k,
Dj−1,m =

∑
k∈Z

gk−2mCj,k.
(16)

Formulas (16) and statements (S3.12) and (S3.13) describe
the way to adjust the weights Cj,k and Dj,k during the
training. We will get Cj,k and Dj,k for the biggest j = Hmax

according to (S3.12) and (S3.13). Then we will calculate
weights Cj,k and Dj,k backward from j = Hmax − 1 to
j = Hmin using (16). Thus, we get all the values of Cj,k and
Dj,k (j = Hmin,Hmin + 1, . . . , Hmax) of the WBF neural
network.

By [7], there exists wavelet basis which only has finite
non-zero coefficients hk and gk. Such wavelets are called
Daubechies’ wavelets. It has the good property that both φ
and ψ are functions with compact support, i.e., there exists a
finite number R such that φ(x) = ψ(x) = 0 when |x| > R.
We will use Daubechies’ wavelets in this paper for our WBF
neural networks. Thus, all the summations in the formulas
(13) and (16) are for finite terms.

Since φ and ψ are functions with compact support, all the
φk

j and ψk
j are functions with compact support. Consequently,

for any given state x, only finite number of basis functions
will have non-vanish value at x. So, we only need to adjust
the weights of these basis functions. In fact, it can be proved
that there exists a limit N , no matter how many neurons the

WBF neural network has, the number of weights which need
to be adjusted are always smaller than N .

To modify the coeffiecients CHmax,k and DHmax,k for the
highest resolution, we will calculate the error first. Suppose
that we already have a WBF neural network

F̂ =
∑
k∈Z

CHmin,kφk
Hmin

(x) +
Hmax∑

s=Hmin

∑
k∈Z

Ds,kψk
s (x).

Give a training pair (x0, y0). Then we have the error � =
y0 − F̂ (x). Define an error function

E(x) = max{1 − |x − x0|, 0}�.

Let �Cj,k = 〈E(x), φk
j (x)〉, �Dj,k = 〈E(x), ψk

j (x)〉. Then
the weights can be adjusted by{

Cnew
j,k = Cj,k + �Cj,k,

Dnew
j,k = Dj,k + �Dj,k.

(17)

We describe the method of the training of WBF neural
network as follows,

(S3.17) For a given pair of training data, update CHmax,k

and DHmax,k for the highest resolution by (17).
(S3.18) For Hmin ≤ j < Hmax, update Cj,k and Dj,k by

(16).

We can also update all the weights by (17), but that will
need lots of integrations and require more training time. So
we only calculate integrations for j = Hmax and then obtain
other weights with smaller j by (16).

IV. DISCRETE-TIME ADAPTIVE DYNAMIC

PROGRAMMING USING WBF NEURAL NETWORK

Now we recall the algorithm ADPDN ([9]), adaptive
dynamic programming for discrete-time systems using neural
networks. We will apply WBF neural networks to approxi-
mate the functions in the ADPDN algorithm.

(6) and (7) give a method for obtaining the optimal cost
and optimal control for each individual k and N . The optimal
control is always determined by the cost function. According
to (10) and (11), the optimal control uo(x) of an arbitrary
state x depends on two factors: which one of T k contains x
and the number of steps to reach the target. If x ∈ T k, then
x ∈ T i for any i ≥ k. So, if the initial state is x0 = x, then
there exist control sequences which can make the system
reach the target in k steps, k + 1 steps, k + 2 steps, . . . ,
and so on. The optimal control will be chosen from all these
controls by minimizing the cost values.

For every state x, we assign an integer k = K(x) which
indicate that the optimal cost will be realized in just k steps.
Let x ∈ R

n be an arbitrary state. If there are some k’s such
that J∗

0;k = minN J∗
0,N , then K(x) is the smallest k. If there

is no k satisfying J∗
0;k = minN J∗

0,N , then K(x) is infinite. In
other words, if K(x) = k0 then J∗

0;k0
(x) is the optimal cost

and if K(x) = +∞, then the optimal cost cannot be reached
in finite steps. It is clear that if K(x) ≤ k then x ∈ T k (but
the converse conclusion does not hold). When K(x) ≤ k,
the optimal control and optimal cost of x can be calculated
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by formula (10) or (11). Define T ∗
k = {x|K(x) = k}. Then

T ∗
k is the set of all such state x whose optimal control is

uo(x) = u∗
0;k(x). We have that T ∗

k ⊆ T k and T = T ∗
0 ⊆

T ∗
1 ⊂ T ∗

2 ⊆ · · · . If x ∈ T ∗
k, then F (x, uo(x)) ∈ T ∗

k−1,
Jo(x) = J∗

0;k(x) = minv(U(x, v) + Jo(F (x, v)).
The plant is deterministic but unknown. So we need to

approximate it from the observation while it is running. We
use neural networks to perform the approximation. We will
use four neural networks, named F̂ (x, u), K̂(x), Ĵ(x, k),
and û(x), respectively, to approximate the functions F (x, u),
K(x), J∗

0;k(x), and uo(x) in our algorithm. The neural
networks F̂ (x, u), K̂(x), Ĵ(x, k) and û(x) will be trained
whenever some observations are obtained. We will compare
the performance of RBF neural networks and WBF neural
networks for implementing the ADPDN algorithm.

As a computer algorithm, we only consider bounded
regions and finite control steps. We use a number maxN to
express the upper bound of the control steps. We will require
that the total steps of the system to reach the target from any
initial state be restricted to N ≤ maxN. In other words, for
an initial state x, if one cannot control the system to reach
the target within maxN steps starting from x, then we will
consider x to be uncontrollable.

Now we recall the algorithm ADPDN, adaptive dynamic
programming for discrete-time systems using neural net-
works.

Algorithm ADPDN (Adaptive Dynamic Programming for
Discrete-time systems using Neural networks)

A01 Initialize neural networks F̂ , K̂, Ĵ and û;
A02 Choose an array of initial states x0 randomly.
A03 Determine the number of control steps for x0 by

k = K̂(x0);
A04 Determine the control signal by u = û(x0, k);
A05 Run the plant to obtain x1 = F (x0, u);
A06 Train neural network F̂ by F̂ (x0, u) = x1;
A08 Train neural network K̂ by K̂(x0) = K̂(x1) + 1;
A09 Adjust neural networks Ĵ and û according to (S2.6)

and (S2.7).
A10 Let x0 = x1. Repeat A03–A09 for maxN times,

where maxN is a prespecified positive number.
A11 Repeat A02–A10 until Ĵ is convergent.

The initial states x0 are given in A02 randomly. When
the iteration time is big enough, we can consider that x0

will cover the entire state space, or the place in the state
space where one expects to operate the system. Hence the
algorithm will explore over the entire (interesting) state
space. The update of Ĵ and û depend on the statements
(S2.6) and (S2.7). (S2.6) and (S2.7) are obtained by applying
the optimal principle to the sequences of functions J∗

k;N and
u∗

k;N . The limit of Ĵ and û will approximate the optimal cost
J∗

k;N and the optimal control u∗
k;N , respectively.

The final outputs of the algorithm ADPDN are four neural
networks. F̂ and Ĵ give the approximations to the plant F

and the optimal cost J∗
0;N , and û is an approximation to the

optimal controller uo. Meanwhile, K̂ gives the region where
optimal control exists and how long it will last for controlling
x to reach the target. For a state x, if K̂(x) = maxN then
we can consider x to be uncontrollable. If K̂(x) < maxN,
then K̂(x) is an estimate of the number of control steps to
drive x to the target. Before applying the controller û, use
K̂ to check whether the initial state is controllable. Then use
û as controller to control it.

The algorithm ADPDN can apply to both linear and
nonlinear systems. We just need that F and U are (uniformly)
continuous functions and satisfy the conditions (C2.1)–
(C2.4). In the next section, numerical experiments on an
unstable nonlinear system will be provided. Our algorithm
works well for this system.

V. EXPERIMENT

To evaluate the performance of the algorithm ADPDN
when WBF neural networks are applied, and compare it with
the case when RBF neural netwoks are applied, we select
a simple system for numerical experiment. We consider a
nonlinear system given by

xk+1 = F (xk, uk)
�
= xk + sin(xu + uk), (18)

where xk, uk ∈ R, and k = 0, 1, 2, . . . . The control target is
T = {0} and the utility functions are U(x, u) = |x| + u2

and φ(x) ≡ 0. Since F (0, 0) = 0, 0 is an equilibrium state
of system (18). But dF

dx (0, 0) = 2 > 1, (18) is unstable at
x = 0.

The region of states considered here is |x| ≤ 15 and the
number of control steps is restricted to 18. The size of the
set of initial states x0 (in the line A04 of the algorithm) will
be 500 each time, i.e., at the beginning of the each inner
loop iteration, we choose 500 initial states randomly.

When WBF neural networks are applied to approximate
the functions, we choose the Haar wavelet as the basis, which
is the wavelet with the shortest support on all Daubechies’
wavelets. We choose the minimal resolution as Hmin = −4
and set the maximal resolution to be Hmax = 8. Notice
that 2−Hmin = 24 = 16 is close to the radius of the region
[−15, 15], and 2−Hmax = 2−8 = 0.0039 will limit the error
of the approximation.

When RBF neural networks are applied, we choose upper
bound of the width of the basis as εmax = 15 and the lower
bound of the width of the basis as εmin = 0.0025. Notice
that εmin < 2−Hmax , which indicates that in this experiment,
the RBF neural networks may give more accurate approxima-
tions than WBF neural networks will give. But the simulation
results show that WBF neural networks have better accuracy.

In both cases when RBF neural networks or WBF neural
networks are applied, we perform our ADPDN algorithm and
save F̂ , Ĵ , K̂ and û at the end of the outer loop of each outer
loop iteration. Thus we obtain sequences of F̂ , Ĵ , K̂ and û.
They will approximate F (x, u), J∗(x, k), K(x) and uo(x),
respectively. Let Ĵo(x) = limk→∞ Ĵ(x, k). Then Ĵo(x) will
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Fig. 1. The trajectories from initial state x0 = 12.

approximate Jo while L is increasing, where L is the number
of outer loop iterations.

Figure 1 shows the trajectories starting from the initial
state x0 = 12 under the control law û. Figure 1 (a) shows
the trajectories when WBF neural networks are applied while
Figure 1(b) shows those when RBF neural networks are
applied. In Figure 1(a), we can see that the algorithm find the
optimal trajectory at L = 3000 when WBF neural networks
are applied. This optimal trajectory will go from 12 to the
target 0 in 14 steps. But as shown in Figure 1(b), when RBF
neural networks are applied, the algorithm has not found the
way to make the trajectory go to the target at L = 1000.
Even till L = 3000, the trajectory is not the optimal one: it
can only reach the target in 17 steps instead of 14 steps. The
trajectory tends close the optimal one when L = 7000.

Figure 2 shows the comparison of the performance costs.
Figure 2(a) shows ĴL(x0) for 0 ≤ L ≤ 10000. When WBF
neural networks are applied, ĴL(x0) tends to reach stable
after L go through 200. But when RBF neural networks are
applied, ĴL(x0) tends to reach stable after L go through
2000. Figure 2(b) shows the mean square errors between ĴL

and Jo, i.e.,

eL =
1
30

∫ 15

−15

(ĴL − Jo)2dx.

Similar with the case Figure 2(a), when WBF neural net-
works are applied, eL tends to reach stable after L go through
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Fig. 2. Performance costs and its mean square errors

500, but when RBF neural networks are applied, eL tends to
reach stable after L go through 4000.

VI. CONCLUSIONS

In this paper, instead of the RBF neural networks, the new
WBF neural networks are applied in the algorithm ADPDN,
for adaptive dynamic programming of discrete-time systems
using Neural networks, to approximate the associated func-
tions F , J , K and u. Numerical experiments are performed.
The results indicate that WBF neural networks work better
than RBF neural networks in dynamic programming. When
WBF neural networks are applied, the time for training
controller will be shorter. The algorithm ADPDN can find
the optimal control more quickly when WBF neural networks
are employed.

To get the optimal trajectory {xi} from an initial state x0,
one has to find a series of control actions which will act in
sequence. In Section II, we indicate that all these different
optimal control signals depend on the number of steps of
the control. We introduce the symbols u∗

k;N and J∗
k;N to

represent the optimal controllers and the optimal costs. The
subscripts k and N means the kth step in the total of N
steps.

We proved that u∗
k;N = u∗

0;N−k and J∗
k;N = J∗

0;N−k

in Proposition 2.1. But in general, one cannot say that
u∗

0;k = u∗
0;m or J∗

0;k = J∗
0;m when k �= m. In fact, it is well

known that the optimal control law of linear discrete-time
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time-invariant system with quadric utility can be obtained by
a backward iterated formula (cf., e. g., [12]). All the control
laws for different steps are different in this case.

The algorithm ADPDN is based on the discussion of
Section III. The control steps K̂(x) plays an important role
in the algorithm. It will give the region where the states are
controllable and will indicate how long it will need to control
the state to reach the target. It also enables our algorithm to
have the ability for exploring new values of control and to
approximate the optimal costs J∗

0;k for all k = 0, 1, 2, . . . .
Because of errors in the numerical algorithm, the target T

in fact is just {x+r|x ∈ T , |r| < ε} during the running of the
program. Hence we can finally have û ≈ uo as the resulting
optimal controller. It will serve as the unique controller which
can be applied to all states in all the steps to get an optimal
trajectory.

The algorithm ADPDN avoid to solve the HJB equation.
Instead of solving differential equation, the ADPDN algo-
rithm find the minimal cost by direct calculations from the
associated neural networks. Thus, the ADPDN algorithm can
deal with a wide range of systems. As we have stated in
Section II, F (x, u) is just a continuous function. We do not
need to restrict F to be a differentiable function. We also
do not have the restriction such as F (x, u) to be the form
A(x) + B(x)u or θ1x

2
1 + θ2x1x2 + θ3x2u.

The learning behavior of algorithm ADPDN is quite
similar to the learning behavior of a human being. At the
beginning, the algorithm cannot find the optimal control. It
even cannot drive the state along the right way to the target.
But after some times of running, it will know how to reach
the target. When it has enough trials, it will find a good
approximation of the optimal controller.
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