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Abstract— We define a new type of policy, the knowledge gradi-
ent policy, in the context of an offline learning problem. We show
how to compute the knowledge gradient policy efficiently and
demonstrate through Monte Carlo simulations that it performs
as well or better than a number of existing learning policies.

I. INTRODUCTION

We consider a problem in which we are presented with a

finite set of alternatives, allowed to sample their values a fixed

number of times, and then asked to choose one alternative

from among the set. We receive a reward equal to the value

of the alternative chosen. Our goal is to distribute the sample

measurements to maximize the expected reward.

Let (Ω,F , IP) be a probability space and let {1, . . . M}
be the set of alternatives. For each x ∈ {1, . . . M} define

a random variable Yx to be the true value of alternative x. We

will be allotted exactly N measurements, and at each time

n, 0 ≤ n < N , we choose an alternative xn to measure.

Define ŷn+1 to be the measurement value observed, and define

εn+1 := ŷn+1 − Yx to be the error in this measurement.

We assume that the errors εn+1 are unbiased and normally

distributed with a known variance σ2 that is the same across

all alternatives. We also assume that errors are independent of

each other and of the random vector Y . At time N , we choose

an implementation decision xN based on the measurements

recorded and we receive a reward ŷN+1. We assume that the

reward is unbiased, so that ŷN+1 satisfies IE
[
ŷN+1|Y, xN

]
=

YxN . Define the filtration (Fn)n=N
n=0 by letting Fn be the sigma

algebra generated by x0, ŷ1, x1, . . . xn−1, ŷ. Measurement and

implementation decisions xn are restricted to be Fn mea-

surable so that decisions may only depend on measurements

observed in the past.

We assume a Bayesian setting for the problem in which we

have a prior distribution on the random vector Y . Define μ0 :=
IE [Y ] to be the mean and Σ0 := Var [Y ] the covariance under

this prior distribution. We assume the prior is multivariate

normal with independent components so that Y ∼ N (μ0, Σ0)
under IP with Σ0 diagonal. We will use Bayes’ rule to form

a sequence of posterior distributions from this prior and the

successive measurements. Define μn := IEn [Y ] to be the mean

vector and Σn := Varn [Y ] the covariance matrix under the

posterior after n measurements have been made. Because the

error terms εn+1 are independent and normally distributed,

Y will remain normally distributed with independent compo-

nents, so that Y ∼ N (μn, Σn) under IP conditioned on Fn,

with Σn almost surely diagonal.

Let us motivate this problem with an example. Suppose we

are designing software that will transfer large blocks of data

across the internet, e.g. for video on demand. The software

system resides on the user’s computer and the data to be

transferred is mirrored at several different network locations.

When the user requests a particular block of data the software

must decide from which mirror to obtain it. Once the mirror is

chosen, the path established through the network to the mirror

is fixed for the duration of the transfer. Our goal is to choose

the mirror that will provide the fastest transfer. The bandwidth

to each mirror varies with network traffic intensity and cannot

be forecast perfectly, but the software can estimate this band-

width using historical data and geographic location, and can

sample the current bandwidth by briefly transferring some data

from the mirror before starting the full transfer. We assume

that the sample transfers must be performed sequentially to

avoid measurement errors due to congestion on local network

links, and the number of bandwidth measurements the software

may perform is limited by a design requirement to begin the

transfer without undue delay. Our problem is to decide which

mirrors the software should sample and which mirror it should

choose afterward for the full transfer.

Similar problems have been investigated within the litera-

ture. Design of experiments [1] addresses the general question

of how one should make measurements. Within this literature,

algorithms from response surface methods [2] search for

the maximum of some “response surface” using sequential

experiments. This work is similar to our own but differs

in that it assumes a continuous domain and a convex or

concave response surface, and it does not employ the Bayesian,

decision theoretic approach employed here.

Another area, ranking and selection, assumes as we do

that the space of alternatives is discrete, and although the
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largest part of the ranking and selection literature focuses

on non-sequential or partially sequential experimental designs

[3], some investigations into fully sequential designs [5], [6]

have also been made. Ranking and selection differs from our

own work, however, in that it adopts a classical rather than

Bayesian approach. It minimizes the number of measurements

needed to guarantee that the probability of implementing a

sub-optimal alternative is below some threshold, subject to

the condition that the true values of the alternatives are not

too close together. Our desire to penalize a policy more for

implementing an alternative whose true value is very far from

the best true value led us to use a different objective function

than that used by ranking and selection.

The work within sequential design of experiments [7] adopts

a Bayesian approach most similar to our own. Within this

literature, our problem is most similar to the multi-armed

bandit problem [8], [9], with the main difference being that

our problem has a finite horizon and is concerned with offline

learning while the multi-armed bandit problem has an infinite

horizon and is concerned with online learning (although see

generalizations like the restless bandit [10]). In offline learning

there are distinct measurement and implementation phases,

while in online learning, measurement and implementation

occur simultaneously. We discuss these important differences

further in section III-C. Applications of sequential design

of experiments and multi-armed bandits to optimal learning,

speed of convergence, and the issue of exploration vs. exploita-

tion have also been discussed in the reinforcement learning

[11], [16] and optimal control [12] literature.

In this paper we formulate our problem as a dynamic

program, and then define a knowledge gradient policy which is

optimal in some special cases and computationally tractable in

all cases. We compare the knowledge gradient policy against

existing policies with Monte Carlo simulation and demonstrate

that the knowledge gradient policy performs as well or better

than other policies across a broad class of problem settings.

II. DYNAMIC PROGRAMMING

We will analyze the problem using dynamic programming.

First we develop the transition function and an objective

function which explicitly considers the choice of the imple-

mentation decision. We show that the optimal implementation

decision is one of pure exploitation, and once the implementa-

tion decision is fixed to the optimal one, the objective function

can be simplified. We formulate the problem as a dynamic

program using this simplified objective function.

A. State Space and Transition Function

Our state space at time n is the space of all possible prior

distributions for Y under IP conditioned on Fn. It can be

shown by induction that all possible priors are multivariate

normal, which allows us to parameterize the space by the mean

vector μn and covariance matrix Σn.

Fix a time n. We use Bayes’ rule to update the prior, IP
conditioned on Fn, to reflect the observation ŷn+1 = Yx +
εn+1, obtaining a posterior which is IP conditioned on Fn+1.

Since εn+1 is an independent normal random variable and the

family of normal distributions is closed under sampling, the

posterior distribution is also normal. Thus writing our posterior

distribution as a function of the prior and the observation

reduces to writing μn+1 and Σn+1 as functions of μn, Σn

and ŷn+1. Bayes’ rule tells us these functions are

μn+1 = Σn+1
(
(Σn)−1μn + σ−2ŷn+1exn

)
Σn+1 = ((Σn)−1 + σ−2exneT

xn)−1,

where ex is a column vector of zeros with a single 1 at index

x.

Since Σ0 is assumed diagonal, it follows via induction that

Σn is diagonal for all n. This implies that the random vector

Y has independent components under the probability measure

conditioned on the filtration at any time n, and it allows

discarding all but the diagonal elements of Σn from the state

space. It also simplifies the transition function to

μn+1
x =

{
Σn+1

xx

(
(Σn

xx)−1μn
x + σ−2ŷn+1

)
if xn = x,

μn
x otherwise,

(1)

Σn+1
x =

{
((Σn

xx)−1 + σ−2)−1 if xn = x,

Σn
xx otherwise.

(2)

Under IP conditioned on Fn, ŷn+1 is a normal random variable

with mean μn
x and variance σ2 + Σn

xx. Note that Σn+1 is Fn

measurable rather than merely Fn+1 measurable.

When considered as a random variable conditioned on Fn,

μn+1 is a multivariate normal random variable whose mean

and variance we can compute. First, we use the tower property

of conditional expectation, and the definitions of μn and μn+1

as the conditional means of Y with respect to Fn and Fn+1

respectively, to write

IEn

[
μn+1

]
= IEn [IEn+1 [Y ]] = IEn [Y ] = μn.

Then, we compute the variance of μn+1 componentwise. For

those alternatives x �= xn which we do not measure at time n,

our posterior is equal to our prior and μn+1 = μn. This shows

that Varn

[
μn+1

x

]
= 0 if x �= xn. Fixing x = xn momentarily,

the variance of the component μn+1
x is computed using (1) as

Varn

[
μn+1

x

]
= Varn

[
Σn+1

xx

(
(Σn

xx)−1μn
x + σ−2ŷn+1

)]
= σ−4(Σn+1

xx )2Varn

[
Yx + εn+1

]
= σ−4(Σn+1

xx )2
(
Σn

xx + σ2
)

= σ−4
(
(Σn

xx)−1 + σ−2
)−2 (

Σn
xx + σ2

)
=

(
σ2(Σn

xx)−1 + 1
)−2

Σn
xx

(
1 + σ2(Σn

xx)−1
)

= Σn
xx/

(
1 + σ2(Σn

xx)−1
)
. (3)

Later, it will be more natural to parameterize the family of

prior and posterior distributions by the mean and inverse vari-

ance of the distribution of Y under the current filtration, rather

than by the mean and variance. Under this transformation, our

state space at time n is S := IRM × IR
M

+ , where IR+ = [0,∞].
S is indexed by μ ∈ IRM and β ∈ IR

M

+ , where βx = (Σxx)−1.
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We will often write S = (μ, β) for a generic state at any time,

and Sn = (μn, βn) for a state at time n.
Using the inverse variance, and fixing x = xn, we define

a function σ̃ : IR+ → IR+ that gives the standard deviation

of μn+1
x with respect to Fn as a function of βn

x . We already

calculated this quantity as a function of the variance in (3), so

we simply rewrite it as a function of the inverse variance,

σ̃(b) :=
√

Var
[
μn+1

x | βn
x = b

]
=

√
Var

[
μn+1

x | Σn
xx = 1/b

]
=

√
b−1/ (1 + bσ2) = 1/

√
b(1 + bσ2). (4)

We may also rewrite the state transition equations (1) and (2) in

terms of the mean and inverse variance. When we write these

transformed state transition equations, we replace dependence

on ŷn+1 with dependence on a standard normal random

variable Zn+1 that is determined by yn+1. This makes the

probability distribution of the state transition more apparent,

and simplifies our calculations.
Since μn+1 is a normal random variable with respect to IP

conditioned on Fn with the parameters computed above, there

exists a random variable Zn+1 that is standard normal, also

with respect to IP conditioned on Fn, such that

μn+1 = μn + σ̃(βn
xn)Zn+1exn (5)

βn+1 = βn + σ−2exn . (6)

We will also use the notation SM with Sn+1 =
SM (Sn, xn, Zn+1) to denote the state transition function, or

“model” equation. This function SM is defined as

SM ((μ, β), x, z) := (μ + σ̃(βx)zex, β + σ−2ex). (7)

B. Objective Function
First we consider policies that include both measurement

decisions and the single final implementation decision. We call

these “combined” policies. Later we will specify the optimal

implementation decision and restrict our focus from combined

policies to measurement-only policies by specifying that, after

all measurements have been made, the optimal implementation

decision rule will be used. Ultimately we will see that the

optimal implementation decision is one of pure exploitation

and the value of this exploitive implementation decision will

determine the objective function for our measurement prob-

lem.
Let the set of combined policies Π̃ be the class of policies

π̃ that specify decision functions X π̃,n : S
n+1 → {1 . . . M}

for n up to and including the terminal time N , as in

Π̃ :=
{
π̃ = (X π̃,0, . . . X π̃,N ) | X π̃,n : S

n+1 → {1 . . .M}} .

In this notation, xn = X π̃,n(S0, . . . Sn) under policy π̃ and

S
n+1 is the cross-product of n+1 orthogonal state spaces, one

for the state at each time from 0 up to and including n. Taking

the domain of the decision function as this cross-product of

state spaces allows for non-Markovian policies.
Any policy π̃ ∈ Π̃ proceeds by making a measurement,

receiving a measurement value, calculating the posterior dis-

tribution of Y using this measurement, making a new mea-

surement, and repeating until all N measurements have been

made. After the final measurement, the policy π̃ provides an

implementation decision xN ∈ FN . The alternative xN is

chosen and the policy receives a terminal reward ŷN+1 =
YxN + εN+1. At this point we have the option of generaliz-

ing the problem by introducing a concave, increasing utility

function and maximizing the expected value of the utility of

the reward. This would induce risk aversion in the optimal

policy. Instead, we simply seek to maximize over all policies

the expected value of the reward itself. Our problem can be

written,

sup
π̃∈Π̃

IEπ̃
[
ŷN+1

]
, (8)

where the notation IEπ̃ means the expectation with the policy

fixed to π̃. The unbiasedness of εN+1 implies IEπ̃
[
ŷN+1

]
=

IEπ̃
[
YxN + εN+1

]
= IEπ̃ [YxN ], so (8) can be rewritten as

sup
π̃∈Π̃

IEπ̃
[
ŷN+1

]
= sup

π̃∈Π̃

IEπ̃ [YxN ] . (9)

Then, let us consider any combined policy π̃ ∈ Π̃ as the

explicit combination of a measurement policy and an imple-

mentation decision. Define the set of measurement policies

Π as the set of policies that specify measurement decision

functions Xπ,n : S
n+1 → {1 . . . M} for 0 ≤ n < N but leave

XN unspecified, as in

Π :=
{
π = (Xπ,0, . . . Xπ,N−1) | Xπ,n : S

n+1 → {1 . . .M}} .

From this definition, we see that any combined policy π̃ ∈ Π̃
can be written as π̃ = (π,XN ) = (Xπ,0 . . . Xπ,N−1, XN ) for

some π ∈ Π and some XN : S
N+1 → {1 . . .M}. Using this

we rewrite (9) as

sup
π̃∈Π̃

IE [YxN ] = sup
π∈Π

sup
XN

IEπ
[
YXN (S0...SN )

]
= sup

π∈Π
sup
XN

IEπ
[
IEN

[
YXN (S0...SN )

]]
= sup

π∈Π
sup
XN

IEπ
[
μN

XN (S0...SN )

]
,

since Yx has mean μN
x given FN . When the objective function

is written in this way, we find the optimal choice for XN ,

X∗N (S0, . . . SN ) = arg max
x∈{1...M}

μN
x ,

which constitutes a pure exploitation strategy at implementa-

tion time. This reduces our problem to finding the optimal

measurement policy π ∈ Π by solving

sup
π∈Π

IEπ
[
max

x
μN

x

]
. (10)

Then, if we can find an optimal solution π∗ to the measurement

problem (10), the combined policy π̃∗ = (π∗, XN∗) is optimal

for the combined problem (8).
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C. Dynamic Programming

As just shown, solving the simpler measurement-only prob-

lem (10) provides an immediate solution to the combined prob-

lem (8). We therefore focus our effort on the measurement-

only problem. We apply a dynamic programming approach.

In this approach, the value function is defined as the value of

the optimal policy given a particular state Sn, and may also

be determined recursively through Bellman’s equation. If the

value function can be computed efficiently, the optimal policy

may then also be computed from it. Although in this problem

the “curse of dimensionality” makes direct computation of the

value function difficult even for M as small as 3, the dynamic

programming principle still provides a valuable method for

studying the problem.

The terminal value function, V N : S → IR, is given by (10),

V N (SN ) := max
x∈{1...M}

μN
x .

The dynamic programming principle tells us that the value

function at any other time 0 ≤ n < N is given recursively by

V n(Sn) := max
x

IEn

[
V n+1(SM (Sn, x, Zn+1))

]
.

We define the Q-factors, Qn : S × {1 . . . M} → IR, as

Qn(Sn, x) := IEn

[
V n+1(SM (Sn, x, Zn+1))

]
, (11)

and the dynamic programming principle tells us that the policy

choosing its measurement decisions via

X∗n(Sn) := arg max
x∈{1...M}

Qn(Sn, x) (12)

is optimal. Finally, we define the value of a measurement

policy π ∈ Π as

V n,π(Sn) := IEπ
n

[
V N (SN )

]
.

III. THE KNOWLEDGE GRADIENT POLICY

In the problem discussed so far, we supposed that the entire

reward was received after the final measurement. Instead, we

may formulate an equivalent problem in which the reward is

given in pieces over time. We define the knowledge gradient

policy as that policy which maximizes the single period reward

under this alternate formulation.

A. Definition

The problem given by (10) has a terminal reward

V N (SN ) := maxx μN
x , but no rewards at any other times. We

restructure these rewards by writing V N (SN ) as a telescoping

sequence, V N (SN ) =
(
V N (SN ) − V N (SN−1)

)
+ . . . +(

V N (Sn+1) − V N (Sn)
)

+ V N (Sn). Thus the problem that

provides single period reward V N (Sk) − V N (Sk−1)1{k>n}
at times k = n, n + 1, . . . N is equivalent to problem (10)

because the total reward provided is the same. The knowledge

gradient policy πKG is defined as the policy that chooses

its measurements to maximize the expectation of the single

period reward provided under this restructured formulation.

The knowledge gradient policy has decision function

XKG,n(Sn) :=

arg max
x∈{1...M}

IEn

[
V N (SM (Sn, x, Zn+1) − V N (Sn)

]
. (13)

Since V N (Sn) is measurable with respect to Fn and does

not depend on the quantity x which the arg max varies,

the knowledge gradient policy’s decision function may be

rewritten as

XKG,n(Sn) = arg max
x∈{1...M}

IEn

[
V N (SM (Sn, x, Zn+1)

]
= arg max

x∈{1...M}
QN−1(Sn, x). (14)

Note that the knowledge gradient policy is optimal when N =
1 by (12) and (14).

Only the decision function’s argument, Sn, depends on n
while the decision function itself, arg maxx QN−1(·, x), does

not. Thus the knowledge gradient policy is stationary in time,

and we drop the time index n when we write XKG.

If we think of V N (Sn) as a measure of the amount of

“knowledge” contained in the state Sn, we see from (13) that

the knowledge gradient policy chooses its decisions in the

direction of steepest expected ascent of this metric. This is

the reason for the name knowledge gradient.

B. Computation

We can compute an analytical and computationally tractable

expression for XKG. For each x ∈ {1, . . . M} define a

function ζx : S → IR+ by,

ζx(μ, β) := −
∣∣∣∣μx − maxx′ �=x μx′

σ̃(βx)

∣∣∣∣ , (15)

and define ζn
x := ζx(Sn). Except for the sign, ζn

x is the

variance adjusted minimum distance that a measurement of

alternative x must alter μn+1
x from its pre-measurement value

of μn
x to make arg maxx′ μn+1

x′ �= arg maxx′ μn
x′ — that is, to

make IP conditioned on Fn disagree with IP conditioned on

Fn+1 about which alternative has the largest expected value.

Theorem:

XKG(Sn) = arg max
x∈{1,...M}

σ̃(βn
x ) [ζn

x Φ(ζn
x ) + ϕ(ζn

x )] , (16)

where Φ is the normal cdf and ϕ is the normal pdf.

Proof: From (14) we see that we may compute XKG(Sn)
by computing the Q-factors QN−1(Sn, x) for each action x.

Using the definition of the Q-factors (11), we have for a fixed

state S and a generic standard normal random variable Z,

QN−1(S, x) := IE
[
V N (SM (S, x, Z)

]
= IE

[
(μx + σ̃(βx)Z) ∨ max

x′ �=x
μx′

]
. (17)

This expectation is the expectation of the maximum of a

constant and a normal random variable. Let a ∈ IR be an
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arbitrary constant and W ∼ N (b, c2) an arbitrary normal

random variable. Then, [13] tells us

IE [W ∨ a] = aΦ
(

a − b

c

)
+ bΦ

(
b − a

c

)
+ cϕ

(
a − b

c

)
.

(18)

Fix x and consider two cases. First, consider the case that

μx > maxx′ μx′ . This is the case in which we measure the

alternative that is uniquely best according to the prior. We

rewrite (18) as

IE [W ∨ a]

= aΦ
(

a − b

c

)
+ b

(
1 − Φ

(
a − b

c

))
+ cϕ

(
a − b

c

)

= b + (a − b)Φ
(

a − b

c

)
+ cϕ

(
a − b

c

)

= b + c

[(
a − b

c

)
Φ

(
a − b

c

)
+ ϕ

(
a − b

c

)]
.

In the case we are considering, μx − maxx′ �=x μx′ is positive

and (maxx′ �=x −μx)/σ̃(βx) = ζx. Compare this expression

with (a − b)/c and write (17) as

QN−1(S, x) = μx + σ̃(βx) [ζxΦ(ζx) + ϕ(ζx)] ,

which can be rewritten in this case using μx = maxx′ μx′ as

QN−1(S, x) = max
x′

μx′ + σ̃(βx) [ζxΦ(ζx) + ϕ(ζx)] .

Now consider the case that μx ≤ maxx′ μx′ . We rewrite

(18) again using the substitution Φ(−z) = 1−Φ(z), and also

using the symmetric property of the normal pdf, ϕ(−z) =
ϕ(z), as

IE [W ∨ a] = a + c

[(
b − a

c

)
Φ

(
b − a

c

)
+ ϕ

(
b − a

c

)]
.

In the case we are considering, μx − maxx′ �=x μx′ ≤ 0 and

(μx − maxx′ �=x)/σ̃(βx) = ζx. Compare this expression with

(b − a)/c and write (17) as

QN−1(S, x) = max
x′ �=x

μx′ + σ̃(βx) [ζxΦ(ζx) + ϕ(ζx)] ,

which can be rewritten in our case using maxx′ �=x μx′ =
maxx′ μx′ as

QN−1(S, x) = max
x′

μx′ + σ̃(βx) [ζxΦ(ζx) + ϕ(ζx)] .

In both cases the expression for QN−1(S, x) is the same,

and we rewrite (14) as

XKG(Sn) = arg max
x∈{1,...M}

max
x′

μn
x′ + σ̃(βn

x ) [ζn
x Φ(ζn

x ) + ϕ(ζn
x )]

= arg max
x∈{1,...M}

σ̃(βn
x ) [ζn

x Φ(ζn
x ) + ϕ(ζn

x )] ,

since maxx′ μn
x′ does not depend on x.

Computation of the knowledge gradient policy via (16)

scales linearly with the number of alternatives M . This

compares well with other offline learning policies. To com-

pute the knowledge gradient policy’s decision at time n,

we must first find the largest and second largest μn
x across

all alternatives x, which will be used to compute ζn
x . This

may be implemented either by an initial pass through the

alternatives at each time period, or by storing and updating

the two values across time periods. Once we have the largest

and second largest μn
x , we iterate through the alternatives,

calculating σ̃(βn
x ) [ζn

x Φ(ζn
x ) + ϕ(ζn

x )] for each one, and return

the alternative with the largest value for this expression. This

iteration may be streamlined by recomputing the expression

only for those alternatives that changed ζn
x or βn

x from the

previous iteration.

C. Exploration vs. Exploitation

The knowledge gradient policy balances two considerations

when it chooses its measurement decisions. First, it prefers

to measure those alternatives about which comparatively little

is known. These alternatives are the ones with large vari-

ance Σn
xx or equivalently with small inverse variance βn

x .

Second, the knowledge gradient policy prefers to measure

alternatives x with |μn
x − maxx′ �=x μn

x′ | close to 0. We call

−|μn
x −maxx′ �=x μn

x′ | the influence of alternative x. Similarly,

we call ζn
x the normalized influence of alternative x because

it is the influence normalized by σ̃(βn
x ). Measurements of

alternatives with large influence are more likely to cause a

change in the optimal implementation decision; that is, to

cause arg maxx′ μn
x′ �= arg maxx′ μn+1

x′ .

We can explicitly see these effects by computing derivatives

of the two terms in (16). First consider the effect of increasing

the influence, or, equivalently, decreasing |μn
x −maxx′ �=x μn

x′ |.
This affects only the second term, ζn

x Φ(ζn
x )+ϕ(ζn

x ). By (15),

ζn
x increases as we decrease |μn

x − maxx′ �=x μn
x′ |, and as ζn

x

increases so does the entire second term because,

d

dz
[zΦ(z) + ϕ(z)] = Φ(z) + zϕ(z) − zϕ(z) = Φ(z) ≥ 0.

Now consider the effect of decreasing βn
x . The first term,

σ̃(βx), increases because, from (4),

d

dβn
x

σ̃(βn
x ) = −1

2
(1 + 2βn

x σ2)
[
βn

x (1 + βn
x σ2)

]−3/2 ≤ 0.

Also, we see from (15) that as σ̃(βn
x ) increases so does ζn

x ,

and we just saw that as ζn
x increases so does the entire second

term.

Compare the classic tradeoff of exploration against exploita-

tion with the knowledge gradient policy’s tradeoff of variance

against influence. The benefits of variance are exactly the

benefits of exploration. Exploration pushes us to learn about

things which we do not already know; if we already know

something perfectly, there is little point in measuring it further.

The parallel between the exploitation strategy and the

knowledge gradient policy’s desire to measure influential al-

ternatives is more subtle. Often, considerations of exploitation

and maximizing influence agree on which measurement is

best. For example, if alternative x is neither the best nor

the second best alternative at time n, that is if there are

two distinct alternatives i and j such that μn
x < μn

i and

μn
x < μn

j , then increasing μn
x by a small amount while
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holding all other parameters constant increases the influence of

alternative x but does not the change the influence of any other

alternative. Thus increasing μn
x makes the knowledge gradient

policy more willing to measure alternative x. This is the same

behavior advocated by the exploitation strategy. However, if

μn
x = maxx′ μn

x′ , then increasing μn
x decreases the influence of

all alternatives, which, depending on the relative values of the

inverse variances, may make the knowledge gradient policy

less likely to measure alternative x.

The difference between exploitation and influence maxi-

mization stems from the different problem settings. Exploita-

tion is appropriate for online learning while influence maxi-

mization is appropriate for offline learning. In online learning,

a policy is given an immediate reward at each stage based

on the true value of the alternative chosen. This explicitly

discourages the policy from choosing poor alternatives. In

offline learning, the only reward is at the end, so there is

no explicit penalty for measuring poor alternatives. Instead,

choosing poor alternatives is discouraged by an opportunity

cost. If an alternative’s estimated value is so poor that its true

value is almost certainly suboptimal, then there is little value

in measuring it. If we know that we will not be implementing

a particular alternative, then we already know everything we

need to know about it. Offline learning only has value if it can

change the implementation decision.

D. Summary of Theoretical Results

It can be shown that the knowledge gradient policy is opti-

mal in the following special cases [14]. First, the knowledge

gradient policy is optimal by construction when we only have

one measurement to make, i.e. when N = 1. Second, the

knowledge gradient policy is asymptotically optimal in the

limit as the number of measurements N becomes arbitrarily

large. This property is due to the fact that, as N goes to infinity,

the knowledge gradient policy samples every alternative in-

finitely often. Third, the knowledge gradient policy is optimal

when there are only two alternatives to measure, i.e. when

M = 2. Fourth, the knowledge gradient policy is optimal when

the measurements are free from noise and the components

of the time 0 prior are ordered by μ0
1 ≥ μ0

2 ≥ . . . μ0
M and

Σ0
11 ≥ Σ0

22 ≥ . . .Σ0
MM .

A knowledge gradient policy is also optimal in other offline

learning problems. For example, the game of twenty questions

may be formulated as an offline learning problem [15] in

which the terminal payoff is 1 if the final guess is correct

and 0 otherwise. In this game we assume that the answers to

our questions are correct (i.e. no measurement noise), and that

the prior distribution over the space of objects to be guessed

is uniform. The optimal policy is bisection, in which each

question eliminates half of the possible objects. This bisection

policy is also the knowledge gradient policy according to a

reformulation using a telescoping sequence similar to the one

we use in section III-A.

These theoretical results demonstrate that the knowledge

gradient policy performs well in at least some problem set-

tings, and they lead us to hypothesize that the knowledge

gradient policy may perform well across a broader range of

problem settings than just those for which optimality may be

proven theoretically.

IV. EXPERIMENTAL RESULTS

We compare the knowledge gradient policy using Monte

Carlo simulation against the following policies:

Interval Estimation: Interval estimation [16] chooses its

measurements by computing for each x the upper bound of a

symmetric confidence interval for the true value of alternative

x. It then measures the alternative with the largest upper

bound according to X(Sn) = arg maxx μn
x +(βn

x )−1/2zα/2,

where zα/2 is the solution to Φ(z) = α/2. Interval estimation

is parameterized by the confidence level α, or equivalently

by zα/2.

Boltzmann Exploration: Under Boltzmann exploration, the

probability of measuring an alternative x is proportional to a

function of the expected value of alternative x and the current

“temperature”, IPn {X(Sn) = x} ∝ exp (μn
x/Tn), where

the policy is parameterized by the choice of a decreasing

sequence of temperatures, T = (Tn)N−1
n=0 .

Gittins Index: The Gittins index policy chooses decisions by

X(Sn) = arg maxx μn
x + (βn

x )−1/2ν(0, σ2βn
x , 1, α), where

values for ν may be found in [9]. This policy is provably

optimal for an online discounted infinite horizon version of

our problem with discount factor α. In the online problem,

the discount factor α is specified by the objective function,

but in our offline undiscounted problem α is a free parameter

of the policy.

Pure Exploration: The pure exploration strategy chooses its

measurement randomly among the alternatives according to

a uniform distribution: IPn {X(Sn) = x} = 1/M .

Pure Exploitation: The pure exploitation strategy always

chooses the alternative with the largest expected value:

X(Sn) = arg maxx μn
x .

Simulations were performed in which true function values

were generated according to the prior, a policy was simulated,

and the contribution achieved by the policy was collected.

The policy in question determined the measurement decisions,

but the optimal implementation decision was always used at

the final time. Many samples were collected and averaged

to estimate the value of the policy in each problem setting.

In each sample simulation, the same true function values

were used to simulate each policy to reduce variance. Sample

variances were estimated for each data point and used to

estimate the standard deviation of our estimate of the expected

value of the policy. These standard deviations are pictured as

error bars.

The space of problem settings has many dimensions: Num-

ber of measurements N ; number of alternatives M ; initial

mean μ0 ∈ IRM ; initial inverse variance β0 ∈ IR
M

+ ; and

measurement noise σ2 ∈ IR+. This space is too large to allow

numerical investigation of every scenario, so we restrict our

investigations by focusing on the following scenarios: fixing

N constant while varying M (figure 1); fixing M constant

while varying N (figure 2); and holding the ratio of N/M
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Fig. 1. Varying M with N constant and a homegenous prior.

constant while varying both of them (figure 3). In all cases

we use a measurement noise (σ2) equal to 1. In the first two

scenarios the prior is homogenous with μ0 = [0, . . . 0] and

β0 = [1, . . . 1]. In the third case, the prior is nonhomogenous

with μ0
1 somewhat larger than μ0

x and β0
1 much larger than β0

x

for x �= 1. This nonhomegenous prior corresponds to a case

in which we have one existing alternative which has been

tried often and found to perform well, and several untried

alternatives of which none are expected to perform as well.

Interval estimation, Boltzmann exploration, and Gittins in-

dex all have tuneable parameters. No single parameter was

best across all problem settings sampled, but a few parameter

choices were consistently better than others. For each policy

with a parameter to tune, we simulated a representative set

of problems with several parameter choices and chose the

parameter that performed the best across this set of problems.

We subsequently used this parameter whenever simulating the

policy. We ultimately chose a constant temperature of 1 for

Boltzmann exploration, a discount factor of 0.7 for the Gittins

index policy, and zα/2 = 2.5 for interval estimation. This

choice of zα/2 is consistent with [16], which ran a different

set of calibrating experiments and found that “the interval

estimation algorithm performs best in all of these problems

with a zα/2 value between 2 and 3”. Although we only picture

each policy with one choice of parameter, and in some cases

another parameter choice made a policy perform better in that

problem setting, in no case did any policy with any choice of

parameter outperform the knowledge gradient policy.

In the experiment pictured in figure 1 we hold N constant

at 20 while varying M from 2 to 20. Knowledge gradient and

interval estimation perform best, and identically so, followed

by Boltzmann exploration and uniform exploration. Uniform

exploration performs as well as it does because in the early

iterations the homogeneous prior does not distinguish between

alternatives. In later iterations, however, some alternatives do

distinguish themselves as better, reducing the effectiveness of

uniform exploration. The Gittins index policy performs poorly
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Fig. 2. Varying N with M constant and a homegenous prior.

because it places too large an emphasis on exploitation.

Note that once the number of alternatives M grows larger

than the number of measurements N , the values of the

knowledge gradient, interval estimation, and Gittins index

policies remain constant due to the homogeneous prior. No

matter how a policy distributes the N measurements, the

at least N − M alternatives that remain unmeasured at im-

plementation time will retain their initial priors. Under the

homogenous prior, these are all normal with mean 0 and

variance 1 so that μN
x = 0 for all x ∈ U , where U is

this set of unmeasured alternatives, and the terminal value

function may be written as V N (μN , βN ) = maxx μN
x =(

maxx∈U μN
x

) ∨ (
maxx�∈U μN

x

)
= 0 ∨ maxx�∈U μN

x , which

is distributed identically for all M > N under these policies.

The value of the Boltzmann exploration and pure exploration

policies will change, however, because they will be less likely

to sample an alternative twice.

In the experiment pictured in figure 2 we hold M constant

at 10 while varying N . We see a similar situation to figure

1, in which the knowledge gradient policy and interval esti-

mation perform best, followed by Boltzmann exploration, with

uniform exploration again performing better than expected due

to the homogeneous prior.

As N grows much larger than M , all policies that do at least

some exploration, including the knowledge gradient, Boltz-

mann exploration, and pure exploration policies but excluding

pure exploitation and interval estimation, will sample every al-

ternative often enough to obtain accurate estimates of their true

values. The value of any such policy grows toward the value of

learning the value of every alternative exactly before making

an implementation decision. That is for any policy π sampling

every alternative infinitely often, limN→∞ V 0,π(μ0, β0) =
IE [maxx Yx], where Yx ∼ N (μ0

x, (β0
x)−1).

In the experiment pictured in figure 3, we vary both N and

M while holding their ratio constant. In addition, the true value

of alternative 1 is known almost exactly by the prior, and this

true value is larger than the expected value under the prior of
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Fig. 3. Varying both M and N with a constant ratio between them, and
with a non-homegenous prior.

each of the other alternatives. This special case illustrates one

important aspect of the comparison between the knowledge

gradient and interval estimation policies. The knowledge gra-

dient policy measures every alternative infinitely often given

enough measurements [14] while interval estimation may

become stuck measuring one alternative repeatedly. In this

experiment, interval estimation chooses to measure alternative

1 initially because its mean under the prior is large enough

to offset its low variance. Almost no additional information is

gained by this measurement because the variance of alternative

1 was so initially so low, and the posterior is nearly identical

to the prior. Thus, on subsequent measurements the interval

estimation algorithm will continue measuring alternative 1,

and as a result learns very little.

In contrast, the knowledge gradient policy penalizes low

variance more heavily and it chooses not to measure alternative

1, measuring another alternative with larger variance instead.

Frequently, because the mean of alternative 1 is largest under

the prior, the measurement reveals that the other alternative

is worse than alternative 1, and nothing is gained from its

measurement. On occasion, however, the measurement reveals

that another alternative has larger true value, and the knowl-

edge gradient realizes this additional reward. Indeed, if the

prior is fixed to μ0 =
[
zα/2, 0, . . . 0

]
, β0 = [∞, 1, . . . 1], the

additional value that the knowledge gradient policy achieves

over the interval estimation policy becomes arbitrarily large in

the limit as both N and M become large.

V. CONCLUSION

We formulated an offline learning problem and defined a

new type of policy for this problem, the knowledge gradient

policy. We showed how to compute the knowledge gradient

policy efficiently and compared its decision making process to

the classic exploration vs. exploitation tradeoff. Using Monte

Carlo simulation we compared the knowledge gradient policy

to interval estimation, Boltzmann exploration, Gittins index,

pure exploration and pure exploitation policies. The knowledge

gradient policy performed as well or better than these other

policies in all problem situations simulated, and it should be

considered for use in offline learning applications because of

its ease of use and rapid learning rate.

REFERENCES

[1] G. Box, W. Hunter, and J. Hunter, Statistics for Experimenters: An
Introduction to Design, Data Analysis, and Model Building. New York:
John Wiley & Sons, 1978.

[2] R. Myers and D. Montgomery, Response Surface Methodology: Process
and Product Optimization Using Designed Experiments. New York:
John Wiley & Sons, 2002.

[3] R. Bechhofer, J. Kiefer, and M. Sobel, Sequential Identification and
Ranking Procedures. Chicago: University of Chicago Press, 1968.

[4] R. Bechhofer, T. Santner, and D. Goldsman, Design and Analysis of Ex-
periments for Statistical Selection, Screening and Multiple Comparisons.
New York: J.Wiley & Sons, 1995.

[5] E. Paulson, “A sequential procedure for selecting the population with the
largest mean from k normal populations,” The Annals of Mathematical
Statistics, vol. 35, no. 1, pp. 174–180, March 1964.

[6] Hartmann, “An improvement on paulsons procedure for selecting the
population with the largest mean from k normal populations with a
common unknown variance,” Sequential Analysis, vol. 10, no. 1-2, pp.
1–16, 1991.

[7] H. Robbins, “Some aspects of the sequential design of experiments,”
Bulletin of the American Mathematical Society, vol. 58, pp. 527–535,
1952.

[8] J. C. Gittins and D. M. Jones, “A dynamic allocation index for the
sequential design of experiments,” in Progress in Statistics, J. Gani,
Ed., 1974, pp. 241–266.

[9] J. Gittins, Multi-Armed Bandit Allocation Indices. New York: John
Wiley and Sons, 1989.

[10] J. Nino-Mora, “Restless bandits, partial conservation laws and indexa-
bility,” Advances in Applied Probability, vol. 33, no. 1, pp. 76–98, Mar.
2001.

[11] R. Sutton and A. Barto, Reinforcement Learning. Cambridge, Mas-
sachusetts: The MIT Press, 1998.

[12] I. Witten, “The apparent conflict between estimation and control-a
survey of the two-armed bandit problem,” Journal of the Franklin
Institute, vol. 301, pp. 161–189, 1976.

[13] C. Clark, “The greatest of a finite set of random variables,” Operations
Research, vol. 9, pp. 145–163, 1971.

[14] P. Frazier and W. Powell, “A knowledge gradient policy for sequential
information collection,” 2007, working paper.

[15] T. Cover and J. Thomas, Elements of Information Theory. New York:
John Wiley, 1991.

[16] L. Kaelbling, Learning in embedded systems. Cambridge, MA: MIT
Press, 1993.

150

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


