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Abstract— In game theoretical approaches to multi-agent sys-
tems, a payoff matrix is often given a priori and used by agents
in action selection. By contrast, in this paper we approach the
problem of decision making by use of the concept of cognitive
distance, which is a notion of the difficulty of an action perceived
subjectively by the agent. As opposed to ordinary physical
distance, cognitive distance depends on the situation and skills
of the agent, ultimately representing the perceived difficulty in
performing an action given the current state. The concept of
cognitive distance is applied to a two-player game scenario, and
it is shown how an agent can learn a model of its skills by
estimating and observing the outcomes of its actions. This skill
model is then used during play in a minimax search for the best
actions.

I. INTRODUCTION

Environmental uncertainty in multi-agent domains can be
considered as being of three different forms: a) the transitions
in the domain itself might be non-deterministic; b) agents
might not know the actions of other agents; c) agents might
not know the outcomes of their own actions [1].

In this work, we investigate the case when the agents have
limited physical capabilities, which causes limited precision
in their actions. We consider the scenario of two agents
playing a simplified tennis game in which the actions have
uncertain outcomes. These uncertainties originate from the
limited physical capabilities of the agents. Because there is
more than one agent and more than one state, this game is
neither a Markov Decision Process (MDP), nor a matrix game;
therefore we use the framework of Markov games (also called
stochastic games), as described in [2], [3].

The perceived distance has an important function in decision
making and action selection. It is assumed that every action
has a target, which may or may not have a physical meaning
depending on the nature of the domain. In sports, in particular,
the target of an action often is a physical location, such as
in passing the ball to a teammate in soccer, basketball, and
countless other sports, or as in hitting the ball to the service
box in a tennis serve. In basketball, although the difficulty of
a shot clearly increases with basket-player distance, this is not
the only factor that influences the difficulty. For example, dif-
ferent players have different skills and will perform differently

even at identical shot distance; and shooting during training
is very different from shooting during an actual match, when
the players are under considerable pressure.

The total effect of these factors on an action’s outcome
can be thought of as the perceived action difficulty. We
call the perceived action difficulty cognitive distance [4].
Fig. 1 illustrates the difference between physical distance and
cognitive distance in a scenario with directed agents. Suppose
that the task is to pass a ball to the other agent. In most sports
in which this situation might occur, the passing skill of the
player depends on the relative angle of the direction the player
is facing and the pass direction. In soccer, for example, most
passes are done in the direction the player is facing, or at
a small angle from it. Because players are bound by physical
constraints [4], it is much harder to pass the ball backward than
forward. Since the agent cannot directly sense its own skills

Agent A near

far

Agent B

Fig. 1. In a ball passing task, cognitive distance is determined not only by
physical distance, but also by the relative facing direction of the agent

and physical constraints, it must use the difference between
predicted average action outcome and actual action outcomes
to assess its cognitive distance [4].

We focus on two questions related to uncertainty in action
outcomes: how to learn the action-outcome relationship, and
how to perform action selection given this relationship. Our
objective is to construct a framework of action selection in
two-player games using cognitive distance to express the
action-outcome map.

This paper is organized as follows. In Section II, we describe
the tennis game model used and define cognitive distance.
Section III describes how strategic behavior is generated in
this game using the cognitive distance. In Section IV, we
describe how an unknown skill parameter can be learned
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by the player and show that a correct estimation of this
parameter is required for good performance. In Section V,
we present simulation results using the tennis game model.
Finally, Section VI contains concluding remarks on this work.

II. MODEL

A model showing that professional tennis players perform
similar to the mixed-strategy equilibrium is given in [5]. In
that work, it is assumed that every point in a tennis match
is played as a 2 × 2 normal-form game, by focusing on the
actions chosen by server and receiver. The play after the serve
is not modeled, and instead a reduced-form representation of
it is used to give the expected payoffs.

By contrast, in this work we attempt to model the action
selection process during the entire play, from serve until a
player scores. We consider two agents playing a tennis-like
two-dimensional game (Fig. 4). By two-dimensional we mean
that the ball altitude is ignored for receiving purposes. Players
serve alternately to any region on the opponent side. The
score of a player is incremented by one when it wins the
current point game. The score is simply incremental, meaning
that there are no games and no sets. The players have three
behaviors: target selection and hitting, moving after hitting and
intercepting the ball to receive (figure 2).

Fig. 2. Block diagram of the behavior generation algorithm using cogni-
tive distance in the tennis game. Hit target is selected by minimizing the
weighted opponent time available and cognitive distance. After hitting, the
move destination is selected by assuming the opponent will try to minimize
the player’s time available, and then maximizing the worst case (maximin
algorithm). When the opponent hits, the ball is intercepted at the position that
maximizes the time available.

We assume that four factors influence the probability that a
hit action is successful: agent skill, hit target, hit strength, and
the time available for preparing to hit (see Fig. 6 for a list of
the most important symbols and their meanings). Player skill is
assumed invariable during play. Hit target and hit strength are
chosen by the hitting player and constitute the hitting action.
The last factor, time available to hit, is defined as the time
during which the player was still before hitting. It is used in
action selection to encode both the fact that the agent tries to
hit the ball to places out of reach of its opponent, and the fact
that the agent positions itself in order to have as much time
to prepare to hit as possible.

We assume that the players have limited precision when
hitting the ball. This is denoted by a bivariate normal dis-
tribution of the landing point of the ball given hit target
PT (t) = (µx, µy):

pdfPT
(x, y) =

1
2πσxσy

exp
(
−

(
(x− µx)2

2σ2
x

+
(y − µy)2

2σ2
y

))
(1)

where σx = σy = σ is the standard deviation1. The higher the
σ, the less the probability that the ball will go where intended.
In other words, σ represents the lack of precision of the player.
We assume it depends on the time available ta to prepare for
hitting and on the hitting speed vh. Intuitively, the longer the
time available to hit ta and the slower the hitting speed vh,
the smaller the deviation, and therefore the more precise the
hit outcome is.

The hitting precision also depends on parameters repre-
senting the skill of the player, as shown in (2). The hitting
skill parameter σ0 is the minimum deviation achievable by
the player in optimal conditions; the smaller the σ0, the more
precise the player is overall. The parameters tac and tas in (3)
control the shape of the sigmoid function T (ta), which dictates
how the hitting precision changes with ta; tac represents how
much ta is necessary for the hit precision to be average,
and tas represents how abruptly the hitting precision changes
with ta. Likewise, vhc and vhs in (4) control the shape of
the sigmoid function V(vh), with vhc representing the hitting
speed at which precision is average, and vhs representing how
abruptly the hitting precision changes with vh. Fig. 3 shows
scatter plots of hit outcomes for different ta.

σ =
σ0

T (ta)(1− V(vh))
(2)

T (ta) =
1

1 + exp(− ta−tac

tas
)

(3)

V(vh) =
1

1 + exp(−vh−vhc

vhs
)

(4)
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Fig. 3. Scatter plot of 1000 hits with target (x, y) = (0, 0), global hitting
skill σ0 = 0.4, and hitting speed vh = 12

Let PH(t), PT (t) and PR(t) denote the positions of hitting
player, hit target (where hitting player is targetting) and
receiving player, respectively, at time t. A hitting action

1We assume that the random variables x and y are uncorrelated and have
the same standard deviation.
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(PH , PT , vh) is characterized by hit origin PH (that is, ball
position when hit), hit target PT and hit speed vh. The actual
outcome of the hit is drawn from the probability distribution
function described in (1). By the definitions above the hit
outcome does not depend on the hit origin PH , which is
assumed for the sake of simplicity.

A hit action is considered successful if the ball bounces
inside the opposite side of the court (Fig. 4). Success, here,
does not mean scoring a point, or even sending the ball
to a desired target, but rather hitting the ball to any valid
position on the side of the opponent. In other words, success
is the opposite of fault. Let gPT

(ta, vh) denote the success
probability of hitting the ball to target PT with speed vh,
given that the player had time available ta to prepare the
hit. Likewise, let fPT

(ta, vh) = 1 − gPT
(ta, vh) denote the

fault probability. The success probability gPT
can be calculated

by integrating pdfPT
(x, y) over the region S of the half-

court of the opponent as in (5). This is done by numerically
approximating the cumulative bivariate distribution.

gPT
(ta, vh) =

∫
x∈S

pdfPT
dx (5)

We define the cognitive distance DPT
of the hit action as

DPT
(ta, vh) ≡ fPT

(ta, vh) = 1− gPT
(ta, vh) (6)

i.e., the cognitive distance of a hit action equals its fault prob-
ability. This agrees with the concept that cognitive distance
expresses the difficulty in accomplishing an action.

A

B

S

Fig. 4. The fault probability is calculated by integrating the cumulative
bivariate distribution over the region S. Darker areas are more likely outcomes.

The cognitive distance, or fault probability, of a hit action
can be considered the immediate cost associated with per-
forming the action. It is an immediate cost because it is the
probability that the player might commit a fault. However, it
is different from the expected cost, which we define as the
probability of losing the point game, because even if the hit
is successful, the player might still lose the point game. In
order to estimate the expected cost associated with a hit action,
the player must calculate the receive fault probability of the
opponent given that his own hit was successful. This would

require knowing the opponent skill parameters σ0, tac, tas, vhc

and vhs (see Fig. 6 for the list of symbols), as well as how
much time the opponent will have to prepare for receiving the
ball.

The time available is defined as the slack time the player
has to prepare for receiving the ball. Intuitively, the larger the
slack, the more accurate and powerful the reception can be.
Therefore, the hitting player should choose a target such as to
minimize both the immediate cost and the time available to
the opponent for reception.

III. STRATEGIC BEHAVIOR GENERATION

A. Ball interception
In this model the only randomness lies in the actual hit out-

comes. Once the ball is hit, its trajectory is exactly determined
and has a fixed speed until it is hit again by the other player.
Therefore, if the receiving player can observe the incoming
ball direction at all times and with no noise, it can determine
the optimal position P ∗

R from which to receive.
The optimal receiving position P ∗

R can be calculated by
assuming that the receiver approaches the ball with a constant
bearing angle [6] (Fig. 5). The time-optimal trajectory for
interception is given by

φ = arcsin
(

vB sinβ

vR

)
(7)

where vR and vB are the receiver and ball velocity, respec-
tively. If the receiver is too slow (vR < vB sinβ) there
is no solution to (7) and the ball cannot be intercepted. If
vR > vB sinβ, then there are two solutions to (7) but only
one of these makes the receiver approach the ball.

The angle φmin that requires the minimum speed and still
allows interception is found by letting vR = vmin = vB sinβ.
The angle φmin requires the least speed from the receiver
compared to any other angle. Therefore, if the receiving player
moves according to φmin with its maximum speed and stops
when it gets to P ∗

R, it will have maximized the time available
ta to prepare for the hit.

Fig. 5. Time-optimal target interception
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B. Hit target selection

The hitting player must choose a target that simultaneously
has a small fault probability fPT

and imposes a small ta on
the opponent. A player that attempts to minimize the fault
probability when choosing a target will always hit to the
center (which, incidentally, is what many inexperienced human
players tend to do). On the other hand, a player that attempts
to minimize the imposed ta on the opponent will always try
to hit to the corner furthest away from the opponent. Neither
of these two extremes are good playing strategies: the former
tends to miss chances to settle the point, and the latter tends
to miss too many hits. Clearly, a balance must exist.

Let lPT
denote the cost associated with hitting the ball to

target PT . We define

lPT
(ta, fPT

) = γτ + (1− γ)fPT
(8)

τ =
ta −minta

maxta −minta
(9)

where τ is the normalized time available ta for reception
imposed on the opponent and fPT

is the fault probability when
hitting to target PT , as defined in (6). Here, γ represents how
much the agent is willing to risk. The two extremes mentioned
earlier are γ = 0 (minimum risk, always hit to the center), and
γ = 1 (maximum risk, always hit to the corners). A balanced
strategy is obtained by using an intermediate value for γ.

The hit target P ∗
T selected is the one that minimizes the

cost:
P ∗

T = argmin
PT

lPT
(ta, fPT

) (10)

C. Moving after hitting

In the interval between hitting the ball and the opponent
receiving it, where should the player move to? In real tennis
it is common to see professional players running to the center
of the baseline after hitting. This is intuitive to understand as
they do not know where the opponent will hit next. However,
the players also go up to the net, and do not always stay near
the center. This is not an easy matter, for the best position
depends not only on the skills of both players, but also on
their strategies.

In this work, we adopt a solution that is suboptimal but still
allows for realistic game play. Let A denote the player who
just hit and B the player who is receiving. If B chooses the
reception point P ∗

R such as to maximize its ta, as described
in Section III-A, then A knows the ball will be received from
P ∗

R the moment it observes the outcome of its hit. Let PD(t)
denote the destination chosen by A. It can search for the best
PD by calculating the ta imposed on itself, considering that
B will hit from P ∗

R and try to minimize the ta imposed on A.
All A has to do, then, is choose P ∗

D such that the minimum ta
imposed on itself is maximized; this is known as the maximin
strategy [7].

IV. COGNITIVE DISTANCE LEARNING

In order to calculate the cognitive distance DPT
used in hit

target selection, the player must know its skill parameters σ0,
tac, tas, vhc and vhs. An algorithm for learning a cognitive

Symbol Meaning Type
ta time available to prepare hit variable
vh hitting speed variable
σ0 player hitting skill parameter
tac characteristic ta parameter
tas slope of T (ta) parameter
vhc characteristic vh parameter
vhs slope of V(vh) parameter
PH(t) hit position variable
PT (t) hit target position variable
P ∗

T (t) optimal target position variable
PR(t) receiver position variable
P ∗

R(t) optimal receiving position variable
PD(t) player destination after hitting variable
P ∗

D(t) optimal destination after hitting variable
PB(t) ball position variable
vR(t) receiver speed variable
vB(t) ball speed variable
gPT hit success probability variable
fPT hit fault probability variable
DPT cognitive distance variable
φ interception angle variable
β angle between player–ball line variable

and ball trajectory
lPT hit cost variable
γ1 risk strategy of player 1 parameter
γ2 risk strategy of player 2 parameter

Fig. 6. Symbol list

distance parameter using Q-learning [8] was described in [4].
It consists in assessing Q-values for different values of the
parameter by observing actual outcomes of the action. First, it
selects a target and a value of the cognitive distance parameter
and derives the error between estimated success probability
and the actual average success probability over N outcomes
of the action. A reward value derived from the error is then
used to update the Q-value of the currently used value of the
parameter. A different target is then selected and the process
repeated until the Q-values converge.

We used the algorithm described in [4] with a minor sim-
plification; namely, we used random instead of directed target
selection. Although there is more than one skill parameter,
we only considered the case that tac is unknown and the
other parameters are known. Although it might be argued that
this is simplifying the problem too much, we believe these
preliminary results are significant. Also, there is no reason
the algorithm should not extend to multiple parameters, but
we leave this verification as future work. Fig. 7 describes the
Q-learning algorithm used. A typical run of the algorithm is
shown in Fig. 8.

The importance of correctly estimating the parameter tac

can be seen in Fig. 9. Both players had exactly the same skill
parameters and used the same strategy (γ1 = γ2 = 0.3),
but whereas player 2 used the actual value of tac when
estimating fault probability, player 1 used an estimate t̂ac. For
small values of t̂ac, the winning ratio of player 1 is lower,
because it is underestimating its fault probability and therefore
performing risky hits, i.e., targeting the borders even when
the fault probability is high. For t̂ac = 0.8, player 1 is only
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begin
initialize Q(t̂ac) = 0 ∀ t̂ac

repeat
select target PT

select ta

select vh

select t̂ac with exploration
calculate ĝPT (ta, vh)
repeat N times

execute hit with target PT

if hit successful:
un = 1

else:
un = 0

G = 1
N

PN
n=1 un

E = G− ĝPT

Q(t̂ac)← (1− α)Q(t̂ac) + αr(E)
end

Fig. 7. Q-learning algorithm for learning skill parameter tac
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Fig. 8. Sample error of learned parameter tac. Each time step consists
in randomly selecting a target and performing N = 100 hits. Simulation
conditions are α = 0.1, tac = 1.0. Running the simulation 25 times resulted
in an average of 5351 iterations until convergence, with a convergence rate
of 96%

slightly underestimating its fault probability and performs as
well as player 2. For larger values of t̂ac, including the correct
value tac = 1.0, the winning ratio is also close to 50%.
Overestimating the fault probability in this situation does not
incur in reduced performance for player 1, since both players
are using a risk-avoiding strategy.

V. SIMULATION RESULTS

We conducted a series of simulations to verify the validity of
the action selection algorithms and the relevance of cognitive
distance in strategic behavior generation. All results were
obtained by running the simulation until 1000 points were
scored. Players served alternately in order to average out
serve advantages (or disadvantages). Hitting speed was fixed
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Fig. 9. Winning ratio of player 1 for different estimates t̂ac of tac. Simulation
conditions are tac = 1.0, γ1 = γ2 = 0.3, σ0 = 0.2.

at vh = 12 and both players had the same hitting skill σ0.
Fig. 10 shows a snapshot of the simulation.

Fig. 10. Snapshot of the simulation

In the first simulation (Fig. 11), player 1 used a fixed
strategy of γ1 = 0.3 while player 2 used the entire range
of strategies, from risk-avoiding (γ2 = 0.0) to risk-seeking
(γ2 = 1.0).

For skilled players (σ0 = 0.2), the winning ratios were
close to 50%; when γ2 > γ1, player 1 scored somewhat more
frequently.

For average players (σ0 = 0.4), player 1 clearly beat player
2 when γ2 > γ1, meaning that more aggressive strategies lead
to too many faults when the uncertainty in hit outcomes is
moderate.

For unskilled players (σ0 = 0.8), the situation above repeats,
except that the winning margin is not so wide. This reduced
winning ratio for player 1 compared to the σ0 = 0.4 case can
be explained by noting that, since both players are unskilled,
they are committing many faults already, and a more risky
strategy has a reduced effect on the winning ratio.

In the second simulation (Fig. 12), the skill of the players
was fixed at σ0 = 0.2, and the winning ratio for player 1 was
obtained for different pairs of strategies.

A very conservative strategy (γ1 = 0.0) lost to slightly more
aggressive strategies (γ2 = 0.1, γ2 = 0.2), but had an edge
over very aggressive ones (γ2 > 0.5).
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Fig. 11. Winning ratio of player 1 in function of γ2 for different values of
σ0,γ1 = 0.3.

When slightly aggressive (γ1 = 0.3), player 1 obtained a
winning ratio of at least 50%, usually higher, for any strategy
employed by the opponent. This indicates that γ = 0.3 is a
dominating strategy.

When using a very risky strategy (γ1 = 1.0), player 1 is
clearly at a disadvantage, especially when the opponent is only
slightly aggressive (γ2 = 0.1, γ2 = 0.2). When player 2 also
employs a risky strategy, however, the winning ratio is close
to 50%.

These results show that there is a balance between safe
strategies and risky strategies. The largest expected payoff can
only be obtained by correctly assessing the fault probability,
which requires knowing the skill parameters as discussed in
Section IV. Even in matches between players with exactly
the same skills, different strategies might yield very different
payoffs.

VI. CONCLUSION

We have discussed how the problem of action selection in
a two-player game with uncertain action outcomes can be for-
malized in a framework using cognitive distance. Uncertainty
in the actions of embedded agents arises because the agents
are limited by physical constraints. In this context, cognitive
distance is a measure of the difficulty in accomplishing an
action given the current situation. By using the cognitive
distance an agent can assess, given the current situation, how
likely its actions are to succeed, and perform action selection
based on this success probability.

The approach has been tested in simulation of a tennis-like
game. We described how cognitive distance can be used for hit
target selection and that a trade off is needed between trying
to score a point and trying not to commit a fault.

The next steps on our research agenda include extending
the learning algorithm to multiple parameters. While we have
only done experiments of skill parameter learning with one
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Fig. 12. Winning ratio of player 1 in function of γ2 for different values of
γ1 , σ0 = 0.2.

unknown parameter, there is nothing in principle that precludes
the use of the same algorithm for learning multiple unknown
parameters. Another aspect that was not approached in this
work was learning the skill parameter during play. The algo-
rithm described requires selecting a target and averaging the
outcomes of N hits in succession, which is not possible during
play. The reason is that, in its present form, the Q-learning
algorithm only stores the Q-values and the outcomes of the
last batch of hit trials. Learning during play, however, would
require storing past targets and their respective conditions, ta
and vh.
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