
Randomly Sampling Actions In Dynamic
Programming

Christopher G. Atkeson
Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA, www.cs.cmu.edu/˜cga, cga@cmu.edu

Abstract— We describe an approach towards reducing the
curse of dimensionality for deterministic dynamic programming
with continuous actions by randomly sampling actions while
computing a steady state value function and policy. This approach
results in globally optimized actions, without searching over a
discretized multidimensional grid. We present results on finding
time invariant control laws for two, four, and six dimensional de-
terministic swing up problems with up to 480 million discretized
states.

I. INTRODUCTION

Dynamic programming [1], [2], [3] has had limited appli-
cation to control problems with continuous states and actions
(controls) because of its large computational cost for any
reasonable discretization of the states and actions. In this paper
we describe an approach to remove the need to discretize
the actions and reduce the dependence of the computational
cost on the dimensionality of the actions for time invariant
problems. We do this by comparing a single randomly sampled
action to the current best action at each state on each sweep. In
current approaches, with a dimensionality of the action vector
of du, and a discretization of each dimension of the action
vector of Ru, the cost of performing a value function update
is proportional to Ru

du . In our approach, we only evaluate 2
actions: the current best action and a randomly sampled action.
Over many such value function updates of the same state, the
random search performs a global optimization.

II. APPROACH

We solve the following approximate deterministic dynamic
programming problem, where we have:
1) Deterministic time invariant discrete time system dynamics:

xk+1 = f(xk,uk) (1)

where xk is the state on the kth time step, and uk is the control
or action vector. We assume a model of f() is available. This
paper does not address simultaneously learning a dynamic
model and finding a good policy.
2) A time invariant one step reward/cost function. We use a
loss function which obeys the convention that costs are positive
quantities which must be minimized, rather than maximizing
positive rewards:

Lk = L(xk,uk) (2)

We optimize the discounted case

min
∞

∑
k=1

γkLk (3)

where γ is the discount factor (γ = 0.9999 in this work).

A. A Simple Solution Scheme (SSS)

We compute a steady state value function V (x) to solve this
optimization problem. We use Bellman’s equation to iteratively
approximate V (x) by solving backwards in time:

Vk(x) = min
u

(L(x,u)+ γVk+1(f(x,u))) (4)

We represent the value function using a large table. The table
is indexed by the components of the state vector, and each cell
holds a value for V (x) for the center of that cell. Each time
a value V (x) for an arbitrary state is accessed, multilinear
interpolation of the stored values is used to produce an
estimate of that value [4]. If neighboring elements of the value
function table do not have a valid value (not yet initialized or
all trajectories from the state go outside the table), distance-
weighted averaging is used instead of multilinear interpolation.
The policy u(x) can be explicitly represented by storing the
minimizing u from Eq. 4 for each state in a similar table, with
multilinear interpolation used to produce actions for arbitrary
states. Eq. 4 can be used to update the value function and
policy for each cell. We refer to the application of Eq. 4 to a
single state as a “Bellman update” of that state. An update of
all states is referred to as a “sweep”. The overall process is
known as value iteration.

In the simple solution scheme a grid of discretized actions
is used to perform the minimization in Eq. 4. Each dimension
of the action u is discretized with a resolution Ru, resulting in
Ru

du elements in the action grid, where du is the number of
action dimensions.

1) Problems With The SSS: The Curse of Dimensionality:
The curse of dimensionality is a general problem in dynamic
programming. With the simple solution scheme it takes several
forms:

1) Storage cost: The number of stored samples of the value
function grows exponentially with the dimensionality dx
of the state vector. If a resolution Rx in each dimension
is used, there are Rx

dx cells in the table. Storing the
resulting policy requires du ∗ Rx

dx table entries. This
paper does not address methods to reduce this cost by
intelligently or adaptively sampling states.

2) The computational cost of a Bellman update is
proportional to the total number of actions: The

185

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

amount of work to perform the minimization in Bell-
man’s equation (Eq. 4) at each state (a Bellman update
or BU) is proportional to Ru

du This paper addresses
reducing the computational cost to find actions, in the
case of continuous actions.

3) The computational cost of a sweep is proportional
to the total number of states: A sweep in which all
states are updated has computational cost proportional
to Rx

dx ∗BU . This paper does not address methods to
reduce this cost by reordering the state updates.

4) The computational cost of interpolating value func-
tion and policy entries grows exponentially with the
dimensionality of the state. The cost of grid-based
interpolation such as multilinear interpolation grows ex-
ponentially with the input dimensionality. This problem
has already been solved by other types of interpolation,
such as barycentric interpolation [4], kernel regression,
and locally weighted regression [5].

B. Globally Optimizing The Action

We wish to minimize a continuous function of the action u
at a given state xi:

g(u) = L(xi,u)+ γV (f(xi,u)) (5)

We globally optimize the action for state xi by comparing
the value of g() at the current best action, which is stored in
the policy u(xi), to the value of g() at a randomly selected
action urandom on each Bellman update. The policy could be
represented in a number of ways, including lookup tables or
parametric representations. We used a lookup table in this
work, so the policy corresponding to each state is explicitly
represented as a parameter u(xi). The random action could be
generated using any distribution function appropriate to the
problem being solved. In this work the action is uniformly
distributed within bounds set by the user. Each component is
independent and bounded by ±10Nm. If the random action
has a lower value g(urandom) than the action from the current
policy, the random action replaces the current action in the
policy: u(xi) = urandom. In either case the value function
is updated with the new value: V (xi) = g(u(xi)). The new
action is compared to other randomly chosen actions on future
Bellman updates.

C. Utilizing a Default Policy

In many robotics problems there is a desired end state
or goal. We have found that policies created by dynamic
programming near the goal are often not as effective as policies
created using Linear Quadratic Regulator (LQR) design [6].
We suspect this is due to the limited resolution we can use in
higher dimensional problems. In cases where LQR techniques
apply, we use the LQR policy as a default policy, and the
policy produced by dynamic programming is a correction to
the LQR policy (Fig. 1). In this paper the default policy is
limited for each action dimension to ±5Nm. The initial value
function is initialized to the value function produced by the
LQR design process.

−6
−4

−2
0

2

−20

−10

0

10

20

−10

0

10

velocity (r/s)

Default policy for one link example

position (r)

to
rq

ue
 (N

m
)

−6
−4

−2
0

2

−20

−10

0

10

20

−10

0

10

velocity (r/s)

Computed policy for one link example

position (r)

to
rq

ue
 (N

m
)

Fig. 1. The default policy and the policy computed by dynamic programming
for the one link pendulum example. The sum of these policies is the actual
policy applied.

III. RESULTS

Randomly sampling actions has greatly reduced the com-
putational cost and produced as good or better results than
fixed resolution action discretizations. We are using swing
up problems to empirically explore the effect of state and
action dimensionality on performance. A pendulum is swung
from the stable equilibrium (hanging down) to the unstable
equilibrium (upright). We can create swing up problems of
any desired dimensionality by subdividing the pendulum into
links connected by powered joints. Each additional joint adds
two dimensions to the state (position and velocity) and one
action (torque at that joint).

One link pendulum example: We initially present the
simplest swing up problem, where the pendulum is made
up of a single link (Fig. 2). Because the state space is two
dimensional (position and velocity of the joint at the base) we
can plot the value function (Fig. 3) and policy (Fig. 4) as a

186

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Configurations from the simulated one link pendulum optimal trajectory at times 0,0.5,1,1.5,2,2.5,3,3.5,4,4.5,5sec., and at the end of the trajectory.
This figure is read first left to right, and then top to bottom.

−6

−4

−2

0

2

−20
−10

0
10

20

0

10

20

velocity (r/s)

Value function for one link example

position (r)

va
lu

e

Fig. 3. The value function computed by the proposed approach for a one
link pendulum swing up. The optimal trajectory is shown as a yellow line.
The value function is cut off above 20 so we can see the details of the part
of the value function that determines the optimal trajectory. The goal is at the
state (0,0).

function of state. We discretized the states with a resolu-
tion of 100 in each dimension, resulting in 10,000 states.
The discretized states were bounded by −2π < θ < π and
−20 < θ̇ < 20, where θ = 0 is upright. The angle bound
was set to prevent too much rotation of the corresponding
joint, which might cause damage to the structure or wiring.
The velocity bounds are somewhat arbitrary. The action (joint
torque) was bounded by ±10Nm. The one step cost function
was a weighted sum of the squared position errors and the
squared torques: L(x,u) = 0.1 ∗T ∗ (θ2)+ T ∗ (τ2) where 0.1
weights the position error relative to the torque penalty, and

−6

−4

−2

0

2

−20
−10

0
10

20

−10

0

10

velocity (r/s)

Policy for one link example

position (r)

to
rq

ue
 (N

m
)

Fig. 4. The policy computed by the proposed approach for a one link
pendulum swing up. The optimal trajectory is shown as a black line with
a yellow border. The goal is at the state (0,0).

T is the time step of the simulation (0.01s). There were no
costs associated with the joint velocity. Randomly sampling
one action vector per Bellman update resulted in the trajectory
shown in Figures 2, 3, 4, and 6. This trajectory has a cost
of 7.2. We applied local trajectory optimization (an approach
known as Differential Dynamic Programming or DDP) to
the trajectory produced by dynamic programming, and got a
further improvement to a cost of 7.1 (Fig. 6) [7], [8]. The
value function computed using our approach differs from the
value function computed using an action grid of size 100 (and
all other solution details kept the same) by at most 0.02.

Two link pendulum example: The next more complex

187

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5. Configurations from the simulated two link pendulum optimal trajectory at times 0,0.2,0.4,0.6,0.8,1,1.2,1.4,1.6,1.8,2sec., and the end of the
trajectory.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Angle

Time (seconds)

A
ng

le
 (r

ad
ia

ns
)

DDP

DP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6

−4

−2

0

2

4

6

8
Angular Velocity

Time (seconds)

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

ia
ns

/s
ec

on
d)

DDP

DP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−7

−6

−5

−4

−3

−2

−1

0

1
Torque

Time (seconds)

To
rq

ue
 (N

ew
to

n−
m

et
er

s)

DDP

DP

Fig. 6. The positions, velocities, and torques for the simulated one link
swing up. The trajectory generated by our approach (DP) is shown with the
red solid line (cost = 7.2). A trajectory obtained by performing local trajectory
optimization (DDP) on the red trajectory is shown with the black dashed line
(cost = 7.1).

example is a two link pendulum which is also swung up
from the stable equilibrium (hanging down) to the unstable
equilibrium (upright) (Fig. 5). In this case the state has four
dimensions (a position and velocity at each joint) and a two
dimensional action (a torque at each joint). We discretized
at a number of resolutions: 148 in each dimension resulting
in 480 million states, 100 in each dimension resulting in 100
million states, and 60 in each dimension resulting in 13 million
states. The two finer discretizations produced essentially the
same results, and the lowest resolution produced a slightly
higher cost trajectory. The discretized states were bounded by
−2π < θ1 < π, −π < θ2 < π, −20 < θ̇1 < 20, and −40 <

θ̇2 < 40 where θi = 0 is upright. The two actions (torques)
were bounded by ±10Nm. The one step cost function was an

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

−1

0

1

2

3
Joint angles

Time (seconds)

A
ng

le
 (r

ad
ia

ns
)

DDP joint 1

DDP joint 2

DP joint 1

DP joint 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−15

−10

−5

0

5

10

15

20

25
Joint velocities

Time (seconds)

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

ia
ns

/s
ec

on
d)

DDP joint 1
DDP joint 2
DP joint 1
DP joint 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−8

−6

−4

−2

0

2

4

6

8
Joint torques

Time (seconds)

To
rq

ue
 (N

ew
to

n−
m

et
er

s)
DDP joint 1
DDP joint 2
DP joint 1
DP joint 2

Fig. 7. The trajectory generated by dynamic programming (DP) for the
two link swing up, and the locally optimized trajectory (DDP) using the DP
trajectory as the initial trajectory.

extension of the one link pendulum cost function, a weighted
sum of the squared position errors and the squared torques:
L(x,u) = 0.1∗T∗ (θ2

1 +θ2
2)+T∗ (τ2

1 +τ2
2). Again, 0.1 weights

the position errors relative to the torque penalty, T is the
time step of the simulation (0.01s), and there were no costs
associated with joint velocities. Randomly sampling one action
vector per Bellman update resulted in the trajectory shown in
Figures 5 and 7. This trajectory (DP) had a cost of 3.0. Local
trajectory optimization (DDP) of the DP trajectory reduced the
cost further to 2.9 (Fig. 7).

How does our approach compare to using a grid to
search for actions on each update? Table I compares the
computation time per sweep and the cost of the trajectory
generated after 100 sweeps for different action grid resolutions
on the two link swing up problem. To keep the test duration
reasonable, the state resolution was set to 60 ∗ 60 ∗ 60 ∗ 60 =

188

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

action resolution seconds/sweep trajectory cost
5x5 204 5.1

10x10 865 3.4
15x15 1958 3.3
20x20 3596 3.3
25x25 5659 3.3

1 random action 24 3.3

TABLE I
EFFECTS OF ACTION GRID SIZE.

50 100 150 200 250 300 350 400 450 500

101

Optimized Trajectory Cost vs. Sweep

Sweeps

C
ur

re
nt

 T
ra

je
ct

or
y

C
os

t

3

30

Fig. 8. Comparing convergence curves for multiple runs. Note the log scale
on the vertical axis.

12,960,000 total states and as a result the best trajectory
cost achievable was higher (3.3). While randomly selecting
actions, a sweep took 24 seconds on a hyper-threaded P4
3GHz computer with 3 gigabytes of memory, producing a
trajectory with a cost of 3.3 after 100 sweeps. Discretizing
the actions with a 5x5 grid resulted in a trajectory with a cost
of 5.1 after 100 sweeps. Each sweep took 204 seconds. The
table shows how the computational costs grow with increased
action grid resolution. Grids 15x15 and larger produced the
same quality solution as random search. Using a grid has a
greater computational cost than sampling actions randomly,
and does not produce significantly better answers, at least for
this simple example and the grid sizes explored.

Do random updates cause erratic convergence? To ex-
plore whether the random Bellman updates caused conver-
gence to be erratic, we conducted multiple runs of the two link
example at the 1004 resolution. We used the policy computed
on each sweep to compute a swing up trajectory. The cost of
that trajectory is plotted vs. sweep number in Fig. 8 for 8 runs.
The convergence curves are tightly clustered and surprisingly
repeatable. The convergence curve for the 1484 resolution is
also plotted in the same figure, and is indistinguishable from
the other curves.

Should we consider more than one random action on
each Bellman update? Fig. 9 shows similar convergence

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

101

Random actions/sweep

Time (seconds)

C
ur

re
nt

 T
ra

je
ct

or
y

C
os

t

20 random actions/sweep
10 random actions/sweep
5 random actions/sweep
3 random actions/sweep
2 random actions/sweep
1 random action/sweep

3

30

Fig. 9. Effect of changing the number of random actions per Bellman update.
Note the log scale on the vertical axis.

curves plotted against wall clock time (to allow comparison)
for sampling 1, 2, 3, 5, 10, and 20 random actions per Bellman
update. Most of the time the curves for 1, 2, and 3 random
actions per update lie on top of each other, indicating that any
speedup due to sampling more actions is compensated by the
higher computational cost. The single action curve (red solid)
is the lowest (fastest convergence) most of the time when the
curves do separate. More random actions per update (5, 10, and
20) cause slower convergence. We do not see any advantage
to sampling more than one action per Bellman update in this
example. These results support minimizing computation per
Bellman update. Our philosophy is to minimize the work done
to optimize an action on any one sweep, because the value
function estimates used in the optimization may change, and
the local optimization process will finely tune an action over
several sweeps if the value function estimates have stopped
changing.

Three link pendulum example: We were not able to
reliably get convergence on the 3 link example due to limited
state resolution: 22∗22∗22∗22∗38∗44 = 391,676,032 states.
The discretized states were bounded by −5 < θ1 < 1, −3 <

θ2 < 3, −3 < θ3 < 3, −10 < θ̇1 < 20, −35 < θ̇2 < 35, and
−35 < θ̇3 < 35 where θi = 0 is upright. The three actions
(torques) were bounded by ±10Nm. As in the previous ex-
amples, the one step cost function was a weighted sum of
the squared position errors and the squared torques: L(x,u) =
0.1∗T∗ (θ2

1 +θ2
2 +θ2

3)+T∗ (τ2
1 + τ2

2 + τ2
3).

However, we did apply local trajectory optimization (DDP)
to the trajectory generated by the computed policy after each
sweep. The best locally optimized trajectory produced had a
cost of 1.9 and is shown in Figures 10 and 11. Future work
will explore adaptive sampling of states to more effectively
allocate representational resources.

Comparison with an analytic solution: In the case of lin-
ear dynamics and a quadratic cost we can use LQR techniques

189

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10. Configurations from the simulated three link pendulum optimal trajectory at times 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1sec., and the end of the
trajectory.

0 0.2 0.4 0.6 0.8 1 1.2
−4

−3

−2

−1

0

1

2

3
Joint angles

Time (seconds)

A
ng

le
 (r

ad
ia

ns
)

joint 1
joint 2
joint 3

0 0.2 0.4 0.6 0.8 1 1.2
−20

−15

−10

−5

0

5

10

15

20

25

30
Joint velocities

Time (seconds)

A
ng

ul
ar

 v
el

oc
ity

 (r
ad

ia
ns

/s
ec

on
d)

joint 1
joint 2
joint 3

0 0.2 0.4 0.6 0.8 1 1.2
−6

−4

−2

0

2

4

6

8
Joint torques

Time (seconds)

To
rq

ue
 (N

ew
to

n−
m

et
er

s)

joint 1
joint 2
joint 3

Fig. 11. The simulated trajectory for the three link swing up resulting from
dynamic programming followed by local trajectory optimization (DDP).

to analytically solve for the value function and policy [6]. We
used the one link pendulum dynamics, linearizing about the
upright position:

xk+1 =

(

0.999 0.00954
0.147 1.0

)

xk +

(

0.0
0.0299

)

uk (6)

The quadratic costs are taken from the one step cost function
already presented for the one link pendulum. The LQR policy
is u(x) = −(9.37,2.42)∗x and

V (x) = xT
(

12.6 3.25
3.25 0.839

)

x (7)

Fig. 12 plots the maximum error for both the value function
and policy approximations at each sweep. We see that the
maximum policy error is reduced by 1.5 orders of magnitude,
and the maximum value function error is reduced by 2.5 orders
of magnitude by sweep 500 (note the log scale on the vertical

0 100 200 300 400 500 600 700 800 900 1000
10−2

10−1

100

101

102

Sweeps

M
ax

im
um

 e
rr

or
 (c

os
t,

N
m

, b
ot

h
lo

g
sc

al
e)

Maximum value and policy error

Value error
Policy error

Fig. 12. Maximum policy and value function approximation errors plotted
against sweep number. The value function and policy are compared to an
analytic LQR solution of a problem with linear dynamics and quadratic cost.

axis). For the policy errors, further iterations (to 10000) reduce
the maximum error from 0.25 to 0.19. For the value function
errors, further iterations reduce the maximum error a negligible
amount, from 0.028 to 0.026. The standard deviation of the
policy and value function errors is an order of magnitude
smaller than their respective maximum errors.

IV. DISCUSSION

Related Work: Although we failed to find this approach
in the dynamic programming literature, we would be very
surprised if others had not made the same or similar observa-
tion. Jacobson and Mayne pointed out that actions could be
optimized using a wide variety of algorithms in Differential
Dynamic Programming, a trajectory optimization procedure
derived from dynamic programming [7]. We draw inspiration
from this work. Function optimization approaches based on

190

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

random search such as simulated annealing are especially
relevant to this work. References [9] and [10] apply different
versions of evolutionary algorithms, a form of random search,
to action search in dynamic programming. Reference [11]
presents an approach that adaptively samples a discrete action
space in dynamic programming.

We are taking advantage of the repetitive sweeps done
in dynamic programming for time invariant problems by
distributing the action optimization over many value function
updates for any particular state. One can view random search
as being a form of high resolution grid search on the integers.
Trying a single pseudo-random number per Bellman update is
like trying a single grid element in the grid approach. Thus,
Asynchronous Dynamic Programming is another inspiration
for this work [12], [13], [14]. Instead of reordering which
states are updated, we reorder and spread out in time which
actions are checked in the update process. One could also
take the view that the random search is not necessary, and
simply selecting a new element from an action search grid on
each Bellman update would also work as well. Reinforcement
learning approaches based on simulation or Monte Carlo
evaluation have some similarities to the approach proposed
here, although often actions are chosen greedily [13], [14].
Exploration, or choosing a random action, is used to avoid
local minima in such approaches. One could argue that the
approach proposed here is similar to a 100% exploration-based
approach, although in our approach we visit all discretized
states, rather than follow trajectories as in simulation-based
reinforcement learning.

Have we avoided a curse of dimensionality? Rust has
shown that random sampling of states can avoid the curse of
dimensionality for stochastic dynamic programming problems
with a finite set of discrete actions [15]. However, Nemirovsky
and Yudin have shown that static continuous optimization
problems cannot avoid a curse of dimensionality [16]. The
static continuous optimization of g(u) on each Bellman update
thus cannot avoid a curse of dimensionality as well. However,
these results are theoretical and apply in the limit. It is an em-
pirical question as to whether we can reduce the computational
cost of dynamic programming sufficiently to solve practical
problems.

It may be that random sampling of actions allows underlying
simplicity of the action optimization process to become evi-
dent. An example of such simplicity is LQR problems, where
the dynamics are linear and the cost function is quadratic. In
this case there is no curse of dimensionality [17]. Another
type of simplicity is when the optimization problem is always
convex.

For many problems with mostly smooth dynamics and
a mostly smooth value function, discretizing actions on a
uniform grid introduces a lot of unnecessary work, which
grows exponentially with the number of action dimensions.
This work can be avoided by choosing problem and state
specific action discretizations. Sophisticated design of actions
for each state is also expensive in human time. Selecting
actions randomly and only trying one per Bellman update

seems a reasonable compromise. If the underlying problem is
simple, selecting a few random actions will adequately explore
the space, and it doesn’t really matter which actions those
are exactly. If the underlying problem is complex or highly
discontinuous, a large number of actions must be explored to
find good actions. In this case random sampling of actions
does not penalize the computational cost relative to the cost
of using a large regular grid of actions.

One of the elements that makes random sampling of actions
relatively efficient is that a good policy is created relatively
quickly, allowing propagation of correct values earlier and
for longer distances in state space. Approaches that examine
many actions before the values of subsequent states are “in the
ballpark” waste a lot of computation. Only evaluating a few
actions per Bellman update allows value iteration to behave
more like policy iteration.

There will be a curse of dimensionality in the time required
to reach any desired search density (proportional to the volume
of the action space ≈ boundsdu) if that is necessary. We note
that the use of random actions allows the bounds on the actions
to be very approximate. Making them too large merely slows
down the random search, but eventually the search density will
be arbitrarily large within the bounds.

Convergence: Proving convergence of this algorithm is
a straightforward extension of existing convergence proofs
for dynamic programming algorithms based on contraction
mappings [12]. There are at least two approaches that can be
taken. The first is to acknowledge that the random sampling
is actually pseudo random, and that a very large grid of
possible actions is actually being deterministically sampled. In
this case the algorithm is deterministic, with Bellman updates
spread over multiple sweeps. Gordon shows how contraction
mapping approaches can be used to prove convergence for
the simple solution scheme (Section II-A) used as the basis
for the algorithm here [18]. His proof can be extended to
random sampling by showing that a Bellman update based on
one novel action alone does not violate the conditions for the
contraction mapping. Random sampling of actions also satisfy
convergence conditions requiring that each possible action be
evaluated an infinite number of times. Williams and Baird give
a convergence proof for asynchronous value iteration when
considering a random sequence of single actions [19].

The second point of view is a stochastic one. In this case,
convergence in the limit with probability 1 as the number
of sweeps increases is desired. The techniques used to show
the convergence of Q learning carry directly over to the case
described in this paper [20]. Again, assuming finite resolution
of the random actions, the algorithm proposed here satisfies
the conditions needed of visiting every state and trying every
possible action infinitely often.

Convergence results such as these have little to say about
practical performance. The empirical performance seen in
experiments is order of magnitudes better than what these
convergence results would predict.

Alternate algorithms: There are several variations on the
proposed approach that are of interest: 1) applying local

191

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

optimization on each Bellman update, 2) prioritizing and
reordering Bellman updates, and 3) using other action dis-
tributions.

Our attempts to apply local optimization such as gradient
descent to the current action slowed down convergence as
measured in wall clock time, due to the overhead of local opti-
mization outweighing the improvement in the action selected.
In the end we abandoned trying to apply local optimization to
the actions.

It is likely that a more sophisticated approach to distributing
the action optimization and scheduling Bellman updates will
produce even better results. It is clear that the current approach
spends a lot of computational effort trying to update actions
that are already optimized. Perhaps a failed or small action
update should cause a cell to be ignored for several sweeps,
while a successful update should give that cell high priority for
future updates. We are sure there are other effective approaches
to scheduling Bellman updates.

Other action distributions could be considered. For example
the actions could be selected from a multidimensional Gaus-
sian centered either at a user selected constant point or at the
current best action. The Gaussian could also have a shape,
selecting actions with an ellipsoidal distribution. The variance
of the Gaussian could be held constant or decreased over time.
This approach eliminates the need for hard bounds on the
action distribution.1

Applying this approach to the discrete action case: Given
the power of random search shown here in the continuous
action case, it is interesting to consider randomly sampling ac-
tions in the discrete action case of dynamic programming [21],
[22].

V. CONCLUSION

This work shows the benefits of not discretizing actions
and using random search during dynamic programming. Dis-
tributing the action optimization for a value function entry
over many Bellman updates results in a much more efficient
optimization process. We globally optimize actions by testing
some number of random actions on each Bellman update. We
avoid searching over a discretized grid of multidimensional
actions, and produce finely tuned rather than coarse actions.
This approach is easy to apply, and the bounds for the actions
do not need to be carefully chosen. With this approach we
successfully solved two, four, and six dimensional problems
at a variety of resolutions with up to 480 million discretized
states.

ACKNOWLEDGMENT

This material is based upon work supported in part by the
National Science Foundation under NSF Grant ECS-0325383
and the DARPA Learning Locomotion Program.

1This approach was suggested by Martin Stolle.

REFERENCES

[1] R. Bellman, Dynamic Programming. Dover, 2003.
[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena

Scientific, 1995.
[3] J. Si, A. Barto, W. B. Powell, and D. W. II, Handbook of Learning and

Approximate Dynamic Programming. IEEE, 2004.
[4] S. Davies, “Multidimensional triangulation and interpolation

for reinforcement learning,” 1996. [Online]. Available: cite-
seer.comp.nus.edu.sg/56687.html

[5] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” Artificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[6] F. L. Lewis and V. L. Syrmos, Optimal Control, 2nd Edition (Hard-
cover). Wiley-Interscience, 1995.

[7] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming.
Elsevier, 1970.

[8] P. Dyer and S. McReynolds, The Computational Theory of Optimal
Control. Academic, NY, 1970.

[9] H. S. Chang, H. G. Lee, M. C. Fu, and S. I. Marcus, “Evolutionary policy
iteration for solving Markov decision processes,” IEEE Transactions on
Automatic Control, vol. 50, pp. 1804–1808, 2005.

[10] J. Hu, M. C. Fu, V. R. Ramezani, and S. I. Marcus, “An evolutionary
random policy search algorithm for solving Markov decision processes,”
INFORMS Journal on Computing, vol. to appear, 2007.

[11] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sampling
algorithm for solving Markov decision processes,” Operations Research,
vol. 53, pp. 126–139, 2005.

[12] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed
Computation—Numerical Methods. Prentice Hall, 1989.

[13] ——, Neuro-Dynamic Programming. Athena Scientific, Belmont, MA,
1996.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[15] J. Rust, “Using randomization to break the curse of dimensionality,”
Econometrica, vol. 65, no. 3, pp. 487–516, 1997. [Online]. Available:
citeseer.ist.psu.edu/rust96using.html

[16] A. S. Nemirovsky and D. Yudin, Problem Complexity and Method
Efficiency in Optimization. Wiley, New York, 1983.

[17] J. Rust, “Dynamic programming,” in New Palgrave Dictionary of
Economics, 2006.

[18] G. Gordon, “Approximate solutions to Markov decision processes,”
Ph.D. dissertation, Carnegie Mellon University, 1999. [Online].
Available: citeseer.ist.psu.edu/gordon99approximate.html

[19] R. J. Williams and L. C. Baird, III, “Analysis of some incremental
variants of policy iteration: First steps toward understanding actor-critic
learning systems,” Northeastern University, Tech. Rep. NU-CCS-93-11,
1993. [Online]. Available: citeseer.ist.psu.edu/williams93analysis.html

[20] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992.

[21] S. M. LaValle, “From dynamic programming to RRTs: Algorithmic de-
sign of feasible trajectories,” in Control Problems in Robotics. Springer-
Verlag, 2002, pp. 19–37.

[22] D. Burfoot, J. Pineau, and D. Dudek, “RRT-Plan: a randomized algo-
rithm for STRIPS planning,” in International Conference on Automated
Planning and Scheduling (ICAPS), 2006.

192

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

