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Abstract— It was shown recently that SVMs are particularly
adequate to define action policies to keep a dynamical system in-
side a given constraint set (in the framework of viability theory).
However, the training set of the SVMs face the dimensionality
curse, because it is based on a regular grid of the state space.
In this paper, we propose an active learning approach, aiming
at decreasing dramatically the training set size, keeping it as
close as possible to the final number of support vectors. We use
a virtual multi-resolution grid, and some particularities of the
problem, to choose very efficient examples to add to the training
set. To illustrate the performances of the algorithm, we solve a
six-dimensional problem, controlling a bike on a track, problem
usually solved using reinforcement learning techniques.

I. INTRODUCTION

In general, control techniques and procedures try to provide

action policies which optimise some criteria along a trajectory.

Yet, in some cases, the problem is rather to provide action

policies which keep a set of constraints satisfied. For example,

in ecology or economics, it is easier to define a set of

constraints that the system must satisfy than of an optimum

to reach. Viability theory [1] focuses on such problems. In

this theory, the states from which there exists an action policy

which keeps the constraints satisfied are called viable states.

The set of all the viable states, called viability kernel, is

particularly important in this theory because it is used to define

a variety of action policies: Inside the kernel, there is at least

one action that allows the system to keep the set of constraints

satisfied, and outside, whatever the action policy applied, the

system breaks the constraints after a finite time.

Viability theory is more and more used to solve difficult

control problems in robotics [2], [3], economy [4] or ecology

[5], [6]. However, there is no explicit formula to define the

viability kernel. The algorithm developed by Saint-Pierre [7]

and directly inspired by the work of Aubin [1] is based on

a discrete grid of the state space, and provides the viability

kernel as a subset of points of this grid. This approach faces

directly the curse of dimensionality, which limits its use to

problems in low dimensional state space.

The method proposed in [8] builds on Saint-Pierre’s al-

gorithm [7], but uses a classification function, based on

support vector machines (SVMs) to define the viability ker-

nel. Providing a differentiable function of the distance to

the boundary of the viability kernel approximation, SVMs

allow to use optimization techniques to compute the controls,

which enables to tackle problems with continuous control in

large dimension spaces. Moreover, SVMs generally provide a

very parsimonious controller, limited to the support vectors,

compared with value or policy iteration techniques which

require to keep the whole set of states. Lagoudakis and Parr

[9] also use SVMs to solve optimal control problems, with a

different approach. They train SVMs iteratively on sets the

states associated with the corresponding best action. Their

technique is therefore limited to problems with a small set

of actions. Another difference with our approach is that they

use random distributions of states to train the SVMs, whereas

we use grids to control the precision of our approximation. In

both cases, the dimensionality curse problem remains, because

the size of the SVM training set to get a given accuracy of

approximation increases exponentially with the dimension of

the state space, and with the accuracy of the approximation.

In this paper, we propose some improvements of the

active learning approach described in [10]. Active learning

algorithms try to minimize the number of instances of the

training set, in order to save computation and time, but also

the cost of labeling unneeded examples. Indeed, in some

applications like text classification, the cost of labeling data

can be very important. The aim of active learning is to select

the more informative instances to label and to include into

the training set. An active learner begins with a small training

set and iteratively increases its size. SVMs have drawn much

attention in this context, because they provide a subset of the

most informative instances, the support vectors, to define the

separating surface. For instance, [11] proposed a heuristic to

select the instances, based on their proximity to the SVM

separating surface, because it maximally reduces the version

space. The same procedure is developed in [12], with a more

geometrical justification, and shown to frequently decrease the

computing time.

We combine an active learning procedure with a multi-

resolution grid, in order to dramatically decrease the size of

the training set, while keeping an accurate approximation of

the kernel. The aim is to use a training set which size is close

to the number of support vectors of the SVM. Munos and

Moore [13] similarly use variable resolution discretization and

compare different splitting methods in reinforcement learning

algorithms. The main difference with our method is that

our multi-resolution grid is “virtual”, it is never instantiated
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explicitly. We only use it as a mean to get relevant examples to

add to the SVM training set. We add only pairs of examples of

opposite labels, which are neighbours on the finest resolution

grid. The added pairs of examples are distributed sparsely,

using the coarse grid as a reference. They constrain very

rapidly the SVM, which makes no error at the finest resolution

after few iterations.

We illustrate our approach on problems in 2, 3 and 6

dimensions. In the last problem, the aim is to balance a bicycle:

Several authors e.g. [14], [9] already treated this problem using

reinforcement learning and shaping. We show that viability

theory can be an alternative to solve it. We present first the

main concepts of viability theory and rapidly recall the SVM

viability controller algorithm. In section 3, we describe the

active learning procedure using a multi-resolution grid. Section

4 reports the results of experiments on examples of different

dimensions. Finally, we discuss the results and draw some

perspectives.

In this paper, we assume that we have the dynamics of

the model, the set of constraints to be satisfied and that the

dynamics are deterministic.

II. SVM VIABILITY CONTROLLER TRAINED ON A GRID

A. Viability kernels to build viability controllers

Viability theory [1] provides tools and methods in order to

control a dynamical system such that it remains inside a set

of admissible states K, called the viability constraints set.

Consider a dynamical system defined by its state �x(t) ∈R
d

and suppose that its evolution can be modified by controls �u,

in discrete time:{
�x(t +dt) =�x(t)+ϕ(�x(t),�u(t))dt, for all t ≥ 0

�u(t) ∈U(�x(t))⊂ R
q.

(1)

Aubin [1] defines the concept of viable state, as a state �x0 for

which there exists at least one control function that allows the

trajectory �x(t), satisfying (1), to remain in K indefinitely:{
�x(0) =�x0

∀t ≥ 0,�x(t) ∈ K.
(2)

The set of all the viable states is called viability kernel, noted

Viab(K):

Viab(K) = {�x0 ∈ K,∃�u(.),∀t ≥ 0,�x(t) ∈ K} . (3)

The issue is then to find the control function t → �u(t)
that allows to keep the system in the viability constraint set

indefinitely. The viability kernel can be used to define control

policies: It is sufficient to choose any control that allows a state

�x(t)∈Viab(K) to stay inside the kernel at the next iteration (by

definition, we know that such a control exists). The simplest

rule (called heavy control) is to keep the control constant as

long as the state remains inside the kernel and to apply the

first control which keeps the system in Viab(K) otherwise.

The main task to solve a viability problem is therefore to

compute the viability kernel. Aubin [1] proves the viability

theorems that enable to determine the viability kernel, under

some general conditions (Marchaud systems1 for example).

These theorems enable to determine a viable state, without

exploring the combination of all the control actions in time.

In general, there is no explicit analytical definition of the

viability kernel, and it is thus necessary to approach it numer-

ically. Saint-Pierre [7] developed a method which computes

a discrete approximation of the viability kernel. It uses the

definition of Viab(K) as the largest subset E of K such that

there exist at least one control action that enables �x(t) to stay

in E at the next time step:

∀�x(t) ∈ E,∃�u(t) ∈U(�x),�x(t +dt) ∈ E. (4)

Moreover, Saint-Pierre’s method uses a discrete approximation

of the dynamical system (1), on a grid G covering K. The

procedure gradually removes the points for which there exists

no control allowing the system to stay inside the current

discrete approximation of the kernel. Saint-Pierre [7] proves

that the discrete approximation of the viability kernel tends

to Viab(K) when the resolution of the grid tends to 0. The

algorithm is fast but suffers several limitations:

• The definition of the problem on a grid limits the appli-

cation to problems of low dimensional state because it is

subject to the curse of dimensionality;

• It also uses a discrete set of controls and is thus limited

to systems with low dimensional controls;

• The final result as a set of points (which can be huge) is

not very convenient.

More recently, Ultra-Bee schemes were tested to solve

viability problems [15]. The viability problem is considered

as an optimal control problem, solved with a value function

approach. The method shows good results, particularly because

of its anti-diffusive properties. However, like for the Saint-

Pierre’s algorithm [7], it is based on a grid covering the state

space. In the same direction, [16] proposed an alternative

approach to approximate viability kernel by using the value-

function of a dynamic programming problem. They defined the

kernel as the set of states for which the value function is below

a given threshold. But the determination of this threshold is

not easy.

B. SVM viability kernel approximation

Saint-Pierre’s work is the starting point of a recent algorithm

of viability kernel approximation [8] using support vector

machines (SVMs [17], [18]). SVM classification functions

provide several advantages: They are very concise continuous

approximations of a viability kernel which enable to use

optimization techniques to compute the controls. They also

enable to derive more sophisticated control policies, using the

distance between a point and the boundary of the kernel. We

now recall the main step of this algorithm.

SVMs are particular kernel methods, based on a kernel

function k(�x,�y) which defines a scalar product in a feature

space where the data are (implicitly) projected. Considering a

1The most severe condition is that for each state �x, the set of velocities
ϕ(�x,�u), �u ∈U(�x), is convex
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training set S = {(�xi,yi), i = 1 to l}, where �xi is a vector in a

space X ∈ R
N and yi ∈ {−1,+1}, SVM training on a set S

is solving a quadratic problem on a set of variables αi ≥ 0,

which provides function f :

f (�x) =
n

∑
i=1

αiyik(�xi,�x)+b. (5)

The support vectors are vectors �xi such that αi > 0. When

f (�x)≥ 0, �x is classified +1, otherwise −1.

We use Platt’s SMO method [19] to train the SVMs.

We consider a grid G covering the viability constraint set

K:

∀�x ∈ K,∃�xh ∈ G such that d(�x,�xh)≤ h, (6)

where d denotes the distance based on the norm “max”:

d(�x,�y) = maxi |xi− yi| . (7)

The algorithm of approximation of the viability kernel is

iterative. At each step n, we build a training set Sn, by

associating label +1 to points�xh of G that are viable relatively

to the (n−1)th approximation of the viability kernel, and label

−1 otherwise. Training a SVM on this set provides a SVM

function fn which defines Vn, the nth approximation of the

viability kernel, as follows:

Vn = {�x ∈ K such that fn(�x)≥−1} . (8)

We define function Vn with the −1 margin of the SVM because

it enables to dilate the set of viable states and avoid rejecting

points too easily, in order to fulfill the conditions of the

algorithm’s convergence. In addition, the SVM function must

be constructed such that it makes no errors on the grid. The

conditions on the regularity and dilatation of Vn are discussed

in [8].

To compute the states which are viable relatively to Vn, we

look for the control action which tends to bring the system

back to Vn as much as possible. We use the fact that function

fn approximates an algebraic distance to the boundary of Vn
to compute this best control �u∗. We define �x∗, as the point

obtained from �x, by applying the best control �u∗ (with respect

to SVM function fn−1) during the time interval dt:

�x∗ =�x+ϕ(�x,�u∗)dt. (9)

This definition can easily be enlarged to several time steps.

Then, if �x∗h ∈Vn, we associate xh with label +1, −1 other-

wise. The procedure stops when training sets Sn+1 and Sn are

equal. Algorithm 1 summarizes the approximation procedure.

At the beginning of the algorithm, when no SVM is available,

we use the border of K to compute the labels. The convergence

of the algorithm to the actual viability kernel is discussed in

[8].

Algorithm 1 SVM viability kernel approximation algorithm

Define S0 from K
Compute f0 from S0

n = 0

repeat
Sn+1← /0

for all �xh ∈ G do
if fn(�x∗h)≥−1 then

Sn+1← Sn+1
⋃

(�xh,+1)
else

Sn+1← Sn+1
⋃

(�xh,−1)
end if

end for
Compute fn+1(�x) from Sn+1

n = n+1

until Sn = Sn+1

return fn+1

C. SVM viability controller

Viability kernels enable to define control policies. The aim is

not to find an optimal controller like in reinforcement learning,

but to keep the constraints always satisfied. In this section, we

introduce the heavy controller, but other procedures can be

derived from the viability kernel.

The idea of heavy control procedure comes from Aubin [1].

The principle is to apply a constant control until the system

would come outside the viability kernel at the next time step,

and then to choose any control which keeps the system inside

the viability kernel (by definition, we know that there exists

at least one control that allows the trajectory to stay in the

kernel). The SVM viability controller adapts the heavy control

procedure, including a security distance to the boundary of the

approximation.

Let V be the final approximation of the viability kernel,

obtained with the final SVM function f . We denote ∂V the

boundary of V . To introduce a security distance, we define Δ
a given positive real number. Given an initial state �x0 and an

initial control �u0 ∈ U(x), the procedure associates a control

�uk+1 at the (k +1)th control iteration as follows:

• If f (�xk + ϕ(�xk,�uk)dt) ≥ Δ, we keep the same control

(�uk+1 =�uk),

• Else, �uk+1 =�u∗.
In addition to the security distance Δ, we can define more or

less cautious controller, by anticipating on several time steps.

The conditions in which this procedure guarantees to keep the

system inside Viab(K) are discussed in [8].

III. ACTIVE LEARNING PROCEDURE

A. Principles

The previous algorithm provides a result that converges to

the actual viability kernel when the resolution h of the grid

tends to 0. But we face the curse of dimensionality: The

size of the grid (and thus the SVM training set size) grows

exponentially with the state space dimension. However, the
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number of support vectors which are finally retained in the

SVM is in general very small compared to the size of the grid.

Typically, we get a few thousand support vectors for a grid of

a few million points. In this paper, we aim at minimizing the

SVM training set size, to keep it as close as possible to the

number of support vectors, in order to dramatically decrease

the size of the memory necessary to deal with large grids. To

achieve this aim, we use the concept of active learning. An

active learner attempts to minimize the number of instances to

label and to include in the training set. It progressively adds

well-chosen instances to an initially small training set.

As a consequence, we must train the SVM with partial

training sets, in which examples are progressively added, until

we are sure that the SVM makes no mistake on the whole grid.

Therefore, there is an additional loop in the global algorithm

1, devoted to the iterative active learning of the SVM. The

choice of examples to add is the typical problem of active

learning. A compromise between the number of SVM training

iterations and the size of the training set must be found. In

our particular problem, we look for pairs of close points with

opposite labels, because such points constrain very sharply a

classification function. Compared with a strategy adding single

examples, we get a slightly bigger learning set, but much less

iterations.

Let fn−1 be the SVM function obtained at the previous

global iteration. The active learning procedure involves two

steps:

• Compute the initial training set S0
n and SVM function f 0

n
from fn−1;

• Repeat: Define Sk+1
n from Sk

n and f k
n , then train f k+1

n on

it, until f k+1
n makes no mistake on the whole grid.

Algorithm 2 sums up the main steps of the active learning

viability kernel approximation procedure.

Algorithm 2 Active learning global procedure

S0← initialiseFirstTrainingSet()

f0← SVMTrain(S0)

n = 0

loop
S0

n+1← initialiseTrainingSet( fn)

if globalStoppingCriterion( fn) then
return fn

end if
f 0
n+1← SVMTrain(S0

n+1)

k = 0

repeat
Sk+1

n+1← updateTrainingSet(Sk
n+1)

f k+1
n+1 ← SVMTrain(Sk+1

n+1)

k++

until Sk−1
n+1 = Sk

n+1

fn+1← f k
n+1

n++

end loop

The main contribution of this paper is the active learning

procedure for updating the training set. The main idea is to

add a limited number of pairs of instances which constrain the

SVM f k
n as much as possible in each update of the training

set in the internal loop (on k).

To describe the procedure in more detail, we need additional

notations.

B. Multi-resolution grid

We use a virtual grid of the state space, through which we

can go at different resolutions: Each point of the coarsest grid

represents the root of a tree, and the children are points along

all d dimensions, leading to 2d children at each level.

We suppose that the state space is the set [0,1]d , and we set

h = 1/(m−1), where m is an integer. The coordinates xi of a

point �x of the grid of resolution h/2 j, where j is an integer,

are given by integers qi with 0≤ qi ≤ m×2 j, with:

xi =
qih
2 j for i = 1, ...,d. (10)

Therefore, the grid of resolution h/2 j includes ((m×2 j)+
1)d points. To simplify, in the following, we shall refer to res-

olution h/2 j as resolution j, and we call G j the corresponding

grid. We call jM the finest resolution. For all resolutions j, we

have:

∀�x ∈ K,∃�y ∈ G j such that d(�x,�y)≤ h
2 j+1

. (11)

Considering �x ∈ K, we call G j(�x) the point of G j which is

the closest to �x.

The multi-resolution grid is organized as a tree. For j < jM ,

we define the children of point �x∈G j as the set C(�x) of points

belonging to G j+1:

C(�x) =
{
�y =�x+ εi

h
2 j+1

, such that �y ∈ K (12)

with εi ∈ {0,1} and i = 1, ...,d} . (13)

The children of a point is therefore a set of size 2d , except

for a subset on some borders of K (in which the number of

children is lower, because some of the “natural” children do

not belong to K). Note that�x∈C(�x). The set of children allows

us to define recursively the tree of level k at point �x:

T0(�x) = {�x} ;Tk+1(�x) =
⋃

�y∈Tk(�x)

C(�y). (14)

C. Updating the training set

To update the training set Sk+1
n , we first consider each point

�x of the coarse grid G0 and test if it is closer than h to the

border ∂V k
n of the current viability kernel approximation V k

n .

If it is, and if it is well-classified, then we go through each

tree level: T0(�x), T1(�x),..., TjM (�x), considering only the points

which are closer than the considered resolution to ∂V k
n , until

we find a point which is misclassified by f k
n . Let us define

function l(�x, f ):

l(�x, f ) = +1 if f (�x)≥−1, −1 otherwise. (15)
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Following this procedure (detailed in Algorithm 3), if we find

one misclassified point, we add to Sk+1
n a pair of points from

the finest grid G jM , with opposite labels, and chosen in order

to maximize the learning efficiency (called getClosestPair (see

next section) in algorithm 4, which sums up the procedure). In

this procedure, we add at most one pair of training examples

for each point of the coarse grid. The advantage of using a

coarse grid is that the pairs of points we add are well-spread

on the whole grid.

If we don’t keep in memory all the tested points associated

with their label, the main drawback of this procedure is to

compute at each iteration the labels of all the examples which

are close to ∂V k
n , if this surface did not change much, we make

the same computations several times. This can be expensive

in computational time, especially when the dynamics of the

model is complex, and when the optimization is made over

several time steps. An interesting compromise is to keep in

memory only the coarse grid points for which there was no

misclassification, and the first misclassified example otherwise.

Generally, this list is much smaller than the total set of tested

examples. With this information, we can use the previous SVM

to label directly the examples. If a coarse grid point�x, is in the

list of well-classified points, then the previous SVM provides

the good labels to all its children. If one child of �x is in the

list of misclassified points, then the previous SVM provides

the good labels to all children up to this one. If �x is in none

of the lists, then the tests must be done completely. With this

approach, the complete computation of a label is made only

once for each point.

At the first loop of the procedure, we define f 0
n using

the support vectors of fn−1, which gives it good chances to

be good on the coarse grid. This initialisation also calls the

procedure providing pairs of points on the finest grid, chosen

to maximise the learning efficiency. We now describe this

procedure, which is essential in our approach, in the next

paragraph.

To sum up,

• The tested points are those located near the boundary, at

the resolution of the coarse grid;

• The trained points are pairs of points of opposite labels,

located on the coarse grid.

Algorithm 3 firstMisclassifiedInAllChildren(point �x)

for j = 0 to jM do
for all �y ∈ Tj(�x) do

if d(�y,∂V k
n ) < h

2 j then
if l(�y, f k

n ) �= l(�y∗, fn−1) then
return �y

end if
end if

end for
end for
return nil

Algorithm 4 updateTrainingSet(set S)

Sk+1
n ← Sk

n
for all �x ∈ G0 do

�y← firstMisclassifiedInAllChildren(�x)

if �y �= nil then
Sk+1

n ← Sk+1
n

⋃
getClosestPair(�y)

end if
end for

Fig. 1. Training set update. The gray area is the area to approximate. The
dotted line is the separating surface of the current SVM in the training loop.
We note that in the part of the surface where there is no mistake, the tests up
to the finest grid are made around the separating surface. On the contrary, in
the zones where there are mistakes, the number of tests is lower. The pairs
of added points to update the training set are represented by squares. In this
case, 4 pairs are added.

D. Providing a pair of points of opposite labels on the finest
grid

We consider point �x ∈ G j, which is misclassified. We look

for a pair of points �x1 and �x2, neighbours on the finest grid,

such that l(�x∗1, fn−1) �= l(�x∗2, fn−1), and which are as close as

possible to�x. We navigate on grid G jM , following the direction

of the gradient ∇ f k
n (�x). The procedure involves two steps:

• We look for the point x2 such that d(�x,�x2) = h and

l(�x∗, fn−1) �= l(�x2
∗, fn−1). This step allows to navigate

more quickly on the grid.

• We then divide recursively the segment into two parts,

keeping the part cutting the border, until the size of the

segment is the finest resolution.

The algorithm 5 sums up this procedure and Fig. 1 represents

the points requested and added to the training set.

E. Initial training set S0
n and global stopping criterion

In order to limit the size of S0
n, we start from the support

vectors (SV s) of function fn−1. S0
n is made of the set of the

pairs of neighbours of opposite labels in the most refined grid

provided by algorithm 5, applied to the SVs of fn−1. The size

of S0
n is thus limited to (2× Number of SV of fn−1). The

global stopping criterion is met if all the SVs of fn−1 remain
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Algorithm 5 getClosestPair(point �x1)
x2← x1

repeat

�x2 = G jM

(
�x2 + l(�x∗1, fn−1)

∇ f k
n (�x1))

‖∇ f k
n (�x1))‖h

)
until l(�x∗1, fn−1) �= l(�x2

∗, fn−1)
while d(�x1,�x2) > h/2 jM do

�y = G jM ((�x1 +�x2)/2)
if l(�y∗, fn−1) = l(�x2

∗, fn−1) then
�x2←�y

else
�x1←�y

end if
end while
return {(�x1, l(�x∗1, fn−1)),(�x2, l(�x∗2, fn−1))}

at the border (each SV is the first member of the pair returned

by algorithm 5), and if there is no error around fn−1 at the

most refined resolution.

IV. EXPERIMENTS

We use the Sequential Minimal Optimization algorithm to

compute the SVMs, because it has the good property to require

a memory space growing linearly with the sample size [19].

We consider a gaussian kernel:

k(�x1,�x2) = exp

(
−‖�x1−�x2‖2

2σ2

)
(16)

and we use the library LIBSVM [20], which implements a

SMO-type algorithm written in Java, to compute the SVM.

We made the experiments on a 2.8 Ghz computer and 512

Megabytes of RAM.

A. A two-dimensional problem :Population problem

We consider a simple dynamical system of population

growth on a limited space. The state (x(t),y(t)) of the system

represents the size of a population x(t), which grows or

diminishes with the evolution rate y(t). The population must

remain in an interval K = [a,b], with a > 0. The dynamical

system was studied by Maltus and later on by Verhulst, and

then redeveloped by [21] with an inertia bound. The inertia

bound c limits the derivative of the evolution rate at each time

step. The system in discrete time defined by a time interval dt
can be written as follows:

{
x(t +dt) = x(t)+ x(t)y(t)dt
y(t +dt) = y(t)+u(t)dt

with − c≤ u(t)≤+c.
(17)

It is possible to derive analytically the viability kernel of

this problem [21], in order to compare the approximation to

the actual viability kernel.

Figure 2 shows the result of the viability kernel approx-

imation and an example of heavy trajectory. The points on

the graph are those used to compute the last SVM. Table II

Fig. 2. Final approximation (in gray) using a whole grid of 6561 points
on the finest grid (81 points by dimension) and example of heavy trajectory.
The optimisation is made on 3 time steps. dt is computed for defining moves
of size h in one time step. The continuous lines delimit the actual viability
kernel.

presents the main characteristics of the approximation. The

trajectory includes 80 time steps, anticipating on 5 time steps

and with a security distance of Δ = 8.

This example shows some advantages of the SVM viability

controllers using active learning and adaptive grid: Good

quality of approximation, facility to compute the control

action, and limited number of points to train the SVM. At the

maximum, the training set size is less than 2% of the size of

the finest grid and less than 12% of the points of the finest grid

have been requested for one iteration. The full computation of

the approximation takes 98 sec. In this example, the dynamics

are simple and the number of support vectors of the final

approximation is very small, and so the time to evaluate one

action.

B. A three-dimensional problem :Car on the Hill

We consider the well-known car on the hill problem. The

state is two-dimensional (position and velocity) and the system

can be controlled with an continuous one-dimensional action

(the thrust). For a description of the dynamics and the state

space constraints, one can refers to [22]. The aim of the car

on the hill system is not only to keep the car inside a given set

of constraints, but also to reach a target (the top of the hill).

In viability theory, this type of problem is called capture

basin problems, and they can be seen as an extension of the

standard viability problems. Let target C be a closed subset

of K. The set of initial set �x0 ∈ K such that C is reached in

finite time before leaving K is called the capture basin of C
in K and is noted Capt(K,C). The capture basin of a system

is the viability kernel of an extended system, where a state

describing the evolution of time is added:{
�x′(t) = ϕ(�x(t),�u(t))
�τ ′(t) =−1 if �x /∈C, 0 if �x ∈C.

(18)

and (�x(t),�τ(t)) ∈ K′ ×R
+ is the viability constraint set of the

extended system.

The car on the hill problem can thus be solved with a

viability approach in 3 dimensions (adding one dimension for

time). In this particular case, the 3 dimensions problem can

be transformed into several problems in 2 dimensions. Each
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Fig. 3. Final approximation (in gray) using a whole grid of 6561 points on
the finest grid (81 points by dimension) and example of heavy trajectory. The
optimisation is made on 8 time steps, dt = 0.015.

problem in 2 dimensions is in a plane defined at a given value

of time left before reaching the target (we do not have the

space here to describe the method in full details). Figure 3

represents the projection of the viability kernel limits in such

hyperplanes and an example of a heavy control trajectory

for the car on a hill problem. Table II presents the main

characteristics of the approximation. We notice that, like in

the population problem, the maximal number of points used

to learn the boundary is very small (about 4.5% of the total

size of the grid). The computation of the approximation of the

viability kernel takes 30 minutes.

The trajectory includes 96 time steps, anticipating of 8

time steps and with a security distance of Δ = 3. For states

which are close to the viability kernel boundary, the viability

controller provides the same actions as the ones provided by

optimal control approaches. In average, the controller takes

about 0.4 sec to choose one action.

C. A six-dimensional problem :Driving a bike on a track

Several researchers of [14], [9] test their algorithms on

the problem to balance a bicycle and to drive it to a goal.

They solve this problem by using reinforcement learning

and shaping. The problem is a six-dimensional state space

problem: Angle of the handlebars are displaced from normal

and velocity of the angle, angle from the bicycle to vertical and

its velocity, position of the front wheel and angle of tilt of the

center of the mass. The bike can be controlled by modifying

the torque applied to the handlebars and by displacing the

center of its mass. We consider the same dynamical system

(for a description of the dynamics, see [14]), but instead of

learning to reach a target, we learn the bike to drive on a track,

without falling and going outside the road.

1) Viability kernel approximation: First of all, to approxi-

mate the viability kernel of the problem, constraints must be

put on all the dimensions of the problem state space. Tab. I

details the different boundaries of the state space, which define

the viability constraint set K. Tab. II gives some details about

the SVM active learning algorithm.

We notice that the training set size is relatively small

compared to the size of the finest grid (only 6.5%). This ratio

is not as good as the one for the population problem: The

State Intervals
Angle the handlebars are displaced from normal (θ ) ± π

2 radians

Velocity of the angle (
.

θ ) ±6 radians/second
Angle from vertical to bicycle (ω) ± π

15 radians

Velocity of the angle (
.

ω) ±0.75 radians
Position of the front wheel (x) ±2 meters
Angle of tilt of the center of the mass (φ ) ± π

2 radians

TABLE I

DIMENSIONS AND CONSTRAINTS

Problem Pop Car Bike
Number of points of the coarse grid 121 121 15625
Number of points of the finest grid 6561 6561 531441
Maximal depth of tree 4 4 2
Average training number by iteration 6 8 21
Number of SV of the last approximation 28 32 3914
Max. size of the training set 124 294 34028
Max. number of points requested 761 1024 258900

TABLE II

DETAILS OF THE ALGORITHM OF THE APPROXIMATION OF VIABILITY

KERNEL FOR THE POPULATION, CAR ON THE HILL AND BIKE PROBLEMS.

main reason is that the adaptive grid is defined only with

a tree of depth 2. The algorithm presented here allows to

dramatically decrease the number of the training set size, but

the time to compute the solution is still exponential with the

dimensionality, because we check the SVM on all the finest

grid points around the border of the separating surface, and

the dynamics are complex. The time used to train the SVM

becomes negligible compared to the time to check it. We need

several days of computation to find the approximation of the

kernel. Lagoudakis and Parr [9] use a number of rollouts which

is much smaller than the size of our finest grid (about 100

times).

2) Driving the bike on the track: The bike is then controlled

by the SVM on the track. The track is in dimension 2. It

includes 2 parts: Straight lines and curves. The controller

views the track in the bike’s relative coordinates, considering

the tangent direction of the track at the position of the bike.

To control the bike on the bends, we have only to update the

angle of tilt of the center of the mass with the slope of the

curve. By this means, the controller is operational on any track

of any shape, provided that the curves are not too sharp.

Fig 4 represents an example of trajectory of the bike, starting

from the initial state in dimension 6 �x0 = (0,0,0,0,0,0) and

an initial control �u0 = (0,0). We represent a bike trajectory,

starting from a point of departure �x′0 located on a straight

line of the track, and during 800 time steps. When the bike

approaches a dangerous area (the bounds of the tracks or the

boundary of the viability kernel approximation), the controls

are modified, in order to keep the system viable. We noticed

that, in the straight line of the track, the bike go straight on:

The control allows it to be safe and does not need to be

updated. But, when it approaches the bend, it must change

its trajectory by modifying the controls, and the bike begins

to turn.
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Fig. 4. Trajectory of the bike on a track, starting from x′0 and during 800
time steps. The track is in white. The controller is defined with a security
distance Δ = 2 and anticipating on 4 time steps.

Even if it is very expansive to compute the viability kernel

of the system, SVMs provide a parsimonious controller. It

takes 2 seconds to compute one action on average. The time

consuming part is the optimisation to find the control, when

the controller anticipates an exit from the viability kernel. It

is probably possible to decrease this time significantly with

more appropriate choices of the optimisation parameters.

V. CONCLUSION AND PERSPECTIVES

We proposed a new procedure of active learning with

SVMs, which is adapted to the problem of viability kernel

approximation. It uses a virtual multi-resolution grid, and

the distance to the separating surface defined at the previous

iteration. The gradient of the SVM function is essential in the

whole process, to compute if the distance is larger than the

considered resolution, or to determine the pairs of examples,

with opposite labels, which are added to the training set.

The whole procedure allows us to decrease dramatically the

number of examples to keep in memory for such problems.

This opens the possibility to tackle larger dimension problems.

However, the procedure is still time-consuming due to the

number of points to test at each iteration of the learning

procedure.

We illustrate the performance of the algorithm on three

examples of different dimensions. One is a six-dimensional

problem, usually solved by reinforcement learning techniques:

The aim is to drive balance a bike and to drive it on a track,

using SVM viability controller active learning algorithm.

In the future, we intend to test more extensively the method

on other problems of different dimensions. Moreover, we plan

to launch some theoretical investigations about the conditions

of convergence of the algorithm, and possibly on more appro-

priate kernel methods.
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