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Abstract— This paper presents the application of an approx-
imate dynamic programming (ADP) algorithm to the problem
of job releasing and sequencing of a benchmark reentrant
manufacturing line (RML). The ADP approach is based on the
SARSA(λ) algorithm with linear approximation structures that
are tuned through a gradient-descent approach. The optimization
is performed according to a discounted cost criterion that
seeks both the minimization of inventory costs and the maxi-
mization of throughput. Simulation experiments are performed
by using different approximation architectures to compare the
performance of optimal strategies against policies obtained with
ADP. Results from these experiments showed a statistical match
in performance between the optimal and the approximated
policies obtained through ADP. Such results also suggest that
the applicability of the ADP algorithm presented in this paper
may be a promising approach for larger RML systems.

I. INTRODUCTION

It is well known that the control of queueing networks
is a particularly difficult problem due to large state and
action spaces commonly associated with these systems. Exact
optimal control solutions for these systems are thus generally
intractable [1]. Reentrant lines [2] are clear examples of
queueing networks with these types of difficulties for control.

Reentrant lines are systems in which jobs can return to pre-
vious processing steps in the production flow. Such models are
commonly utilized to represent complex production systems
as those found in the semiconductor manufacturing industry.
From this point forward we refer to these systems as reentrant
manufacturing lines (RML). The fabrication of semiconductor
devices is a clear example of a RML because such devices
are built in silicon wafers through a repetitive manufacturing
process; that is, jobs return several times to particular work-
stations before completing the fabrication process.

The control problem of RML in semiconductor manufac-
turing systems (SMS), also known as Shop Floor Control
(SFC) [3], has received significant attention from researchers
during the last decades, e.g., see [4], [2], [5], [6]. The research
in this area has been motivated by both the economic and
technological impact of semiconductor devices in many human
activities, and by the challenging nature of the control of these
systems. In general, SFC can be categorized in job sequencing
[4], [2], [7], [6] and job releasing (input regulation) problems
[8], [9]. While in the former problem the control is focused on
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deciding which job is processed next when various jobs are
competing for service in a workstation, in the latter problem
the control decides when to release new jobs into the system.

The difficulties on dimensionality of the state and control
spaces associated with the control of RML make these systems
potential candidates to apply optimization strategies based on
approximate dynamic programming (ADP) [10], [11]. This
idea is reinforced by the fact that in SMS there is an exten-
sive utilization and maintenance of sophisticated simulation
models [12] to assess overall performance. Therefore, ADP
approaches based on the utilization of simulation models (i.e.,
simulation-based optimization) may provide important benefits
in the control of such systems.

The objective of this paper is then to present the application
of an ADP approach to the problem of controlling both
releasing and sequencing of jobs in a RML system under a
discounted-cost (DC) optimization criterion [13], [14]. The
DC criterion is consider because it facilitates the analysis
of the optimal control (e.g., see [15], [16], [17], [18]), and
it could also result useful for improving performance in the
short-term for SMS. The relevance of the optimization of
short-term production performance in SMS is driven by the
current dynamics in this industry where new products have
short life-cycles [19], [20] and require a rapid ramp-up [21]
in the manufacturing process.

The model utilized in this paper was originally presented in
[17], and corresponds to an adapted version of the benchmark
RML system with two workstations and three buffers given in
[6], [15], [16], [22], [23]. The adapted version incorporates an
additional buffer and server for modeling of the job releasing
control. It is important to mention that the results on the
optimal policy presented in [15], [17], [18] are incorrect and
a corrigendum for these results is provided in [24]. Thus,
the results given in [24] and numerical solutions of the
optimal policy, obtained through the modified policy iteration
algorithm [14], [25], are utilized in this paper to provide
a baseline to compare the performance of policies obtained
through the proposed ADP approach. Such comparisons were
performed through a series of simulation experiments that
showed statistical match in performance between optimal
strategies and policies obtained with ADP. In addition, this
paper continues the line of research presented in [15] where an
ADP approach based on a lookup table version of Q-learning
[10], [11], [26], [27] was utilized to approximate the optimal
job sequencing policy of the benchmark RML system given
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in [6], [15], [16], [22], [23].
The remainder of this paper is organized as follows. Section

II provides a brief overview of the literature on the application
of ADP for control of RML systems. In section III, we
present both the benchmark RML model with job releasing and
sequencing control, and the underlying dynamic programming
formulation for the control problem. The ADP algorithm and
simulation results are presented in section IV. Conclusions are
provided in section VI.

II. BRIEF REVIEW OF LITERATURE ON ADP FOR
CONTROL OF RML SYSTEMS

Research on the application of ADP in the control of
RML systems has been the subject of research in e.g., [15],
[16], [28], [29]. In [28], the problem of job sequencing in a
closed reentrant line with a fixed number of circulating jobs is
presented. By using a simulation model, a learning approach
based on TD(λ) and linear approximation architectures [30]
was utilized to obtain policies that maximize the through-
put of a RML system with two stations, four buffers, and
exponentially distributed processing times. Simulation results
demonstrated that the ADP approach produced policies with
good performance compared to policies based on heuristics
and common dispatching rules; however, no optimal policies
were provided to compare performance of the ADP approach.

Contrary to the work in [28], in [29] open reentrant lines
are considered. This body of research presents the evaluation
of different linear architectures in the approximation of the
relative value function [13], [14] for an average cost (AC) op-
timization problem. This work considers simple RML models
with finite capacity buffers and exponential processing times.
The optimization seeks the maximization of throughput in the
system while maintaining logical correctness in the process
flow, i.e., deadlock-free operation [29]. The approximation
of the optimal relative value functions is obtained by using
a linear programming formulation and linear approximation
architectures. This approach did not utilize a simulation-
based strategy and it is subject to previous knowledge of the
transition probabilities of the system.

In contrast to the work in [29], in [15], [16] a Q-learning and
simulation-based approach is utilized to obtain near optimal
job sequencing policies for the benchmark (open network)
RML model given in [6], [22], [23] with exponential process-
ing times and Poisson arrivals. In this case no previous knowl-
edge of the transition probabilities of the system were required
and the optimization problem considered the minimization of a
discounted-cost criterion. Results from simulation experiments
showed that a gradual approximation to the optimal policy is
obtained as well as a statistical match in performance between
the optimal and approximated policies. However, given that
in [15] a lookup table version of Q-learning was utilized,
extensive computational work was required, i.e., memory
and processing. To overcome this difficulty, in [16] a state-
aggregation approach is presented to obtain a compact state
space representation that provide good performance in the case

of the benchmark RML. Still, the proposed state aggregation
approach may result non practical for larger RML systems.

The work presented in this paper contributes to the research
in this area by extending the work in [15], [16] and by
considering a more challenging problem on which the control
space now includes both job sequencing and releasing. Given
the computational difficulties found in [15], here we present
the application of an ADP approach based on the SARSA(λ)
algorithm [10], [11] with parametric and linear approximations
of the optimal Q-factors. In this approach, the parameters of
the approximation structures are tuned through the use of a
gradient-descent algorithm and temporal difference learning
[10], [11].

III. BENCHMARK RML MODEL WITH JOB
SEQUENCING AND RELEASING CONTROL &
DYNAMIC PROGRAMMING FORMULATION

In this section we present an overview of both the model
of the RML system utilized in this paper and the dynamic
programming formulation of the control problem. Additional
details can be found in [15], [16], [17].

A. Benchmark RML with job sequencing and releasing control

Figure 1 illustrates the model utilized in this paper. As
mentioned earlier, such system was originally presented in
[17] and represents an adapted version of the benchmark RML
model given in e.g., [6], [15], [16], [22], [23].
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Fig. 1. Benchmark Reentrant Manufacturing Line with job releasing and
sequencing control [17].

The system in Figure 1 corresponds to a Semi-Markov
Decision Process (SMDP) with a continuous-time Markov
chain. The state of the system is given by the tuple s(t) :=
(w(t), i(t), j(t), l(t)) corresponding to the buffer levels at
time t, with s(t) ∈ S, where S := {(w, i, j, l)| ξ ≤ Lξ <
+∞, with ξ, Lξ ∈ Z

∗, and ξ = w, i, j, l} is the state space
and Z

∗ := Z
+ ∪ {0}. Thus, the dimension of S is determined

by the buffer finite capacities Lξ, with ξ = w, i, j, l, respec-
tively. If a buffer reaches its maximum capacity Lξ, then a
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blocking mechanism is activated and no jobs are allowed to
be received in that buffer.

The production sequence of the system in Figure 1 is as
follows: new order arrival→Buffer 0 (order pool), job releasing
station→Buffer 1, Station 1→Buffer 2, Station 2→Buffer 3,
Station 1→Out (job completed). The processing times at each
station are exponentially distributed with means 1

µR
, 1

µ1
, 1

µ2
,

and 1
µ3

, respectively. Moreover, jobs waiting for service in
buffers 1 and 3 are served at rates µ1 and µ3, respectively.

For this system, control decisions deal with both job re-
leasing and sequencing into and inside the benchmark RML,
respectively. In the former task a new job is released into the
RML when uR = 1, then an order is taken from the pool and
it is converted into an effective job that is sent to the RML. If
uR = 0, then no orders are executed and no jobs are released.
In addition, we assume that there is an infinite amount of
raw material to cope with the corresponding demand. In the
latter task, jobs waiting in buffers 1 and 3 are chosen to
be served in Station 1 by selecting us = 1 and us = 0,
respectively. Therefore, the control of the system is defined
as a vector u := [uR us] with u ∈ U, U := UR(s) × Us(s),
uR ∈ UR(s) ⊆ UR, and us ∈ Us(s) ⊆ Us, where UR :=
{0, 1}, Us := {0, 1}, and UR(s), Us(s) are constraints for
the control actions uR and us, respectively, given s ∈ S.
In particular, UR(w, i, j, l) := {0} if w = 0 or i = Li;
i.e., the control uR is constrained by the capacity in buffer
1 as well as the availability of new orders in buffer 0. In
addition, we consider a non-idling policy as a constraint in
the job sequencing control. That is, given (w, i, j, l) ∈ S, then
Us(w, i, j, l) = {1} ∀ (w ≥ 0, i > 0, j ≥ 0, l = 0), and
Us(w, i, j, l) = {0} ∀ (w ≥ 0, i = 0, j ≥ 0, l ≥ 0).

B. Dynamic programming formulation

The optimization model considers the minimization of an
infinite horizon discounted cost which is defined as follows:

Definition 1: Given a discount factor β > 0, with β ∈ R,
then

Jπ
β (s0) := lim

N→∞
Eπ

�� tN

0

e−βtg (s(t), u(t)) dt

���� s(0) = s0

�
,

(1)
is the β-discounted cost under policy π ∈ Πad, where Πad

is the set of admissible policies, tN is the time for the N -th
state transition, g(s(t), u(t)) is the continuous-time one-stage
cost function, and s0 is the initial state, s(t) ∈ S, u(t) ∈ U. In
addition, the optimal β-discounted cost is defined as J∗

β(s0) :=
minπ J

π
β (s0). Moreover, if Jπ∗

β (s0) = J∗
β(s0), then π∗ ∈ Πad

is said to be an optimal policy.

Because the RML can be represented by a continuous-time
Markov chain with exponentially distributed processing times,
then a uniformization [14], [31] procedure is performed to
obtain a discrete-time and statistically equivalent model. The
corresponding discrete-time model is defined as follows [14]:

Definition 2: Given a uniform version of a SMDP under

the discounted cost criteria (1), then

Jπ
α (s) := lim

N→∞
Eπ

{
N∑

k=0

αkg̃(sk, uk)

∣∣∣∣∣ s0 = s

}
(2)

is the α-discounted cost under policy π ∈ Πad, where α :=
ν

β+ν , and

g̃ (s, u) :=
g (s, u)
β + ν

+ ĝ(s, u), (3)

are, namely, the discount factor and the one-stage cost function
for the discrete-time model. In (3), the cost function ĝ(s, u)
is utilized to model situations where a cost (or profit), which
is independent of the length of the state transition interval, is
imposed at the moment of applying control u at state s [14].
In addition, sk ∈ S and uk ∈ U are the state and control
at the k-th state transition, ν is the uniform transition rate,
with ν ≥ νs(u) for all s ∈ S, u ∈ U, and νs(u) is the rate
of transition [14] associated to state s and control u. For the
RML system described in section III, ν is defined as follows:

ν := λ+ µR + µ1 + µ2 + µ3. (4)

The optimal α-discounted cost J∗
α(s), with s ∈ S, is defined

as J∗
α(s) := minπ J

π
α (s), and from Definition 1 and the

uniformization procedure, we have that J∗
α(s) = J∗

β(s).
Figure 2 depicts the state transitions diagram for the uni-

formized version of the continuous-time Markov chain of the
benchmark RML with job releasing and sequencing control,
and where R,A,B1, B2 and B3 are mappings from S to S
[32], as follows:

• Rs = (w − 1, i+ 1, j, l),
• As = (min{w + 1, Lw}, i, j, l),
• B1s = (w, (i − 11j)+,min{j + 11i>0, Lj}, l),
• B2s = (w, i, (j − 11l)+,min{l+ 11j>0, Ll}), and
• B3s = (w, i, j, (l − 1)+),

where (·)+ := max(·, 0), 11ξ := 11(ξ < Lξ), 11ξ>0 := 11(ξ > 0),
and 11(·) is the indicator function.
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η 

Fig. 2. State transitions diagram for uniformized version of the continuous-
time Markov chain associated to the benchmark RML with job releasing and
sequencing control [17].

Thus, given s ∈ S and u ∈ U and the state transition
probabilities depicted in Figure 2, the Bellman’s optimality
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equation for the job releasing and sequencing problem of the
benchmark RML is as follows:

J∗
α(s) = 1

β+ν [ g(s) − p · φ(d) + λJ∗
α(As) + µ1 J

∗
α(s)

+µ2 J
∗
α(B2s) + µ3 J

∗
α(B3s) + µR J

∗
α(s)

+ minu∈U
{
µR · uR · ∆R(s) + us · ∆d

s(s)
}
],

∀ s ∈ S, d ∈ {0, 1},
(5)

where,
∆R(s) := J∗

α(Rs) − J∗
α(s), (6)

∆d
s(s) := ∆s(s) + p · φ(d), (7)

and

∆s(s) := µ1[J∗
α(B1s)− J∗

α(s)]−µ3[J∗
α(B3s)− J∗

α(s)], (8)

where p is a profit per job completed, g(s) is a one-stage
inventory cost function and φ(d) is defined as follows:

φ(d) := µ3 d+ (1 − d)(β + ν), d ∈ {0, 1}. (9)

Thus, d = 1 corresponds to the case where profits are
discounted during state transition intervals, and d = 0 corre-
sponds to the situation when profits are not discounted during
such intervals. Notice that φ(0) ≥ φ(1). In addition, g(s) is
assumed to be nonnegative and monotonically nondecreasing
w.r.t componentwise partial order (see [17] for details).

From (5)-(8), the optimality conditions are as follows:
consider s ∈ S s.t. the control constraints on u are not applied,
then it is optimal to release a new job iff ∆R(s) ≤ 0, and it
is optimal to serve a job in buffer l iff ∆s(s) ≥ 0.

IV. ADP APPROACH: PARAMETRIC
APPROXIMATIONS OF OPTIMAL Q-FACTORS

This section presents details of the ADP approach utilized to
approximate the optimal Q-factors as well as the results from
simulation experiments. The objectives of these experiments
were to obtain near optimal policies by using the ADP
algorithm, and to compare the performance (i.e., discounted-
cost) of the approximations against the optimal strategies.
In the experiments we considered either linear or quadratic
inventory cost functions g(s), i.e., g(s) = cww+cii+cjj+cll,
and g(s) = cww

2 + cii
2 + cjj

2 + cll
2, respectively, with

cw, ci, cj , cl ∈ R
+.

A. ADP algorithm: gradient-descent SARSA(λ)

The ADP approach utilized to approximate the optimal Q-
factors and subsequently the optimal policy is that based on
the SARSA(λ) algorithm (State-Action-Reward-State-Action)
[10], [11] with parametric approximations. The SARSA(λ)
algorithm was selected because, among other similar methods
such as Q(λ), Watkin’s Q(λ), and Peng’s Q(λ) [10], it has
the advantage of being computationally least expensive and
of providing faster convergence [10], [33]. For a detailed
comparison of different ADP algorithms utilized to approx-
imate the optimal Q-factors see [33]. Thus, we consider linear

approximation architectures as follows:

Q∗(s, u) ≈ Q̂u(s, ru) :=
M∑

m=1

ψm,u(s) · rm,u, (10)

where Q̂u(s, ru) is the parametric approximation of the op-
timal Q-factor given s ∈ S and u ∈ U, where J∗

α(s) :=
minu∈UQ∗(s, u). Thus, there are as much Q̂u(s, ru) func-
tions as combinations of the control components of u, i.e., us

and uR. In addition, ru := [r1,u, ..., rM,u] is a M -dimensional
vector of parameters, with rm,u ∈ R, and ψm,u(s) is a feature
or basis function [10], [11], [30], [34], [35] s.t. ψm,u : S → R,
and m = 1, ...,M ; with M as the number of features in the
approximation architecture.

Each parameter vector ru is adjusted through a gradient-
descent approach that seeks to minimize the mean-squared
error between the estimated and the optimal value of the Q-
factors. Moreover, an analogous approach to that of temporal-
differences learning algorithms [10], [11], [36] was utilized
to guide the tunning of the parameters rm,u. Such temporal
differences are defined as follows:

du,t(s, ru) := g̃(st, u, st+1)
+αQ̂u′(st+1, ru′) − Q̂u(st, ru),

(11)

where u′ = arg minu∈U(st+1) Q̂u(st+1, ru), g̃(·) is the one-
stage cost-function, α ∈ (0, 1) is the discount factor, st and
st+1 are the current and next state, respectively; and t is the
index for state-transitions. Thus, each vector of parameters is
updated in the following form:

ru,t+1 := ru,t + γt(u) · du,t(st, ru,t) · zu,t, (12)

where γt(u) is the step size given the control u ∈ U and s.t.∑∞
t=0 γt(u) = ∞ and

∑∞
t=0 γ

2
t (u) < ∞. In addition, zu,t is

the vector of eligibility traces [10], [11] given the control u
which is updated as follows:

zu,t+1 := α · λADP · zu,t + −→
ψ u(st+1), (13)

with
−→
ψ u(s) := [ψ1,u(s) ... ψM,u(s)], and λADP ∈ [0, 1].

For each update of the parameters an ε-greedy policy [10],
[11] approach is utilized. Therefore, exploration on the control
space is allowed by selecting a random control action with a
small probability ε.

B. Approximation architectures

Three different sets of basis functions were utilized in
the simulation experiments. Each set provided a different
approximation architecture, namely A1, A2, A3. Thus, the
vectors of basis functions were defined as follows:

• −→
ψ

A1

u (s) := [1],

• −→
ψ

A2

u (s) := [w i j l 1],

• −→
ψ

A3

u (s) := [w2 i2 j2 l2 w i j l 1],
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and the resulting approximation architectures can be written
in the following form:

A1 : Q̂u(s, ru) = r0,u,
A2 : Q̂u(s, ru) = r0,uw + r1,ui+ r2,uj + r3,ul + r4,u,
A3 : Q̂u(s, ru) = r0,uw2 +r1,ui2 +r2,uj2 +r3,ul2+r4,uw+

r5,ui+ r6,uj + r7,ul + r8,u,

where s = (w, i, j, l) ∈ S, u = [uR us] ∈ U.
If the approximation functions are defined as follows:

Q̂u(s, u) := Q̂uR,us(s, ruR,us), (14)

then we obtain four Q-factors approximation functions, i.e.,
Q̂0,0(s, r0,0), Q̂0,1(s, r0,1), Q̂1,0(s, r1,0), and Q̂1,1(s, r1,1).
Likewise, there are four vectors of parameters that need to
be tunned: r0,0, r0,1, r1,0, and r1,1.

As can be noticed, the list of architectures have an increas-
ing number of degrees of freedom (i.e., number of features
or basis functions) to approximate the optimal Q-factors from
A1 to A3. We selected these architectures because the optimal
cost J∗

α(s) seems to follow closely the structure of the one-
stage cost function g̃(s, u). For instance, Figures 3(a)-(b) and
Figures 4(a)-(b) show examples of the form of the optimal cost
J∗

α(s) (for j ∈ {0, 20} and l = 0), computed through value
iteration for linear and quadratic one-stage cost functions, and
the function g(s) when linear and quadratic (for j ∈ {0, 20}
and l = 0), respectively. As illustrated in the figures, there
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Fig. 3. Examples of the optimal cost J∗
α(w, i, j, l) with j ∈ {0, 20},

l = 0 and computed through value iteration, when: (a) g(s) linear, (b) g(s)
quadratic.
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Fig. 4. Linear and quadratic one-stage cost functions g(w, i, j, l) with j ∈
{0, 20}, l = 0: (a) linear, (b) quadratic.

is an important similarity between the optimal cost J∗
α(s) and

g(s). Thus, we assumed that linear and quadratic architectures
may provide good approximations to the optimal Q-factors for
the given inventory cost functions.

C. Simulation conditions

Two steps were followed for the simulation experiments.
While in the first step simulations were performed to tune
the approximations to the optimal Q-factors and policies, in
the second step such approximations were evaluated through
simulation and compared in performance against the optimal
strategies.

The conditions for the experiments were as follows:

• Parameters of the RML system: µR = 0.4492, µ1 =
µ3 = 0.3492, µ2 = 0.1587, λ = 0.1430, Lw = Li =
Lj = Ll = 20 jobs ⇒ 160000 states.

• Initial state of the system: s0 = (1, 0, 0, 0).
• Discount factor: β = 0.2 ⇒ α ≈ 0.878.
• Profits per job completed: Two cases, p = 0 and p = 25

with discounted profits between state transition intervals,
i.e., d = 1.

• For each approximation architecture, A1-A3, a total of
100 replications with a length of 2000 time units were
utilized to tune the vectors ru. Through trial and error it
was determined that for β = 0.2 the discounted-cost con-
verges before completing 2000 time units of simulation.
Both the number of replications and simulation length
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were sufficient to obtain appropriate convergence of the
parameters in the approximation structures.

• All vectors of parameters were initialized with all com-
ponents equal to zero, i.e., ru,0 = [0 ... 0] for all u.

• Step-size in the ADP algorithm: γt(u) := pγ

vt(u) , where
vt(u) is the number of visits to the control u at the t-th
state transition, and pγ ∈ R

+ is a small number.
• Different sets of parameters ru were obtained by varying

the parameters of the algorithm as follows:

– λADP ∈ {0.1, 0.4, 0.7, 0.9},
– ε ∈ {0.0001, 0.0010, 0.0100, 0.1000},
– pγ ∈ {0.01, 0.001, 0.0001}.

• Evaluation of the approximated optimal policies were
performed by running between 100 and 250 replications
of 2000 time units each.

• The simulation software ARENA [37], and its application
"Process Analyzer," were utilized for both encoding the
ADP algorithm and performing the experiments. Among
other simulation software, ARENA was selected not only
because of its availability with no cost for research pur-
poses, but because it offers an easy to use interface that
facilitates the construction of the simulation model and
implementation of ADP algorithms through its Visual Ba-
sic module. Moreover, the "Process Analyzer" tool from
ARENA facilitates performing simulations under differ-
ent scenarios (e.g., various sets of parameters) which
is an important part of the experimentation with ADP
algorithms. Nevertheless, any other simulation software
with some kind of low-level programming module should
provide similar results.

D. Simulation results: linear inventory cost function

First, we present the results when the inventory cost function
is linear as follows: g(s) = 2w + i + j + l. From the results
in [17], [24] and numerical solutions by using the modified
policy iteration (MPI) algorithm [14], [25], the optimal policy
is both to release new jobs whenever there is at least one
job available in buffer 0, and to always serve buffer 3 for
either p = 0 or p = 25 with d = 1. Table I shows the
value of the optimal discounted cost computed by performing
multiple simulation replications when the optimal policy was
included in the simulation model of the benchmark RML. The
corresponding 95% confidence intervals are also provided in
Table I.

TABLE I

COMPUTED OPTIMAL DISCOUNTED COST FOR LINEAR INVENTORY

COSTS

(p, d) J̃∗
α(s0)

(0,−) 9.45 ± 0.62
(25, 1) 6.65 ± 0.81

p: profits per job completed, d: selector between
profits discounted during state transitions intervals

(d=1 discounted, d=0 not discounted).

Among all the approximations of the optimal policy through

ADP and according to the simulation conditions, the best
performances obtained for each architecture are indicated in
Table II for the cases when p = 0 and p = 25, d = 1. In Table
II, JπA1

α , JπA2
α , and JπA3

α are the discounted costs obtained by
the approximations to the optimal policy with ADP and for the
architectures A1, A2, and A3, respectively.

TABLE II

PERFORMANCE FOR APPROXIMATIONS TO THE OPTIMAL POLICY

OBTAINED WITH ADP: LINEAR INVENTORY COSTS

(p, d) JπA1
α (s0) JπA2

α (s0) JπA3
α (s0)

(0,−) 10.25±0.62 10.09±0.64 10.15±0.65
(25, 1) 7.08±0.89 6.87±0.86 6.77±0.87

πA1, πA2, πA3: approximations to the optimal policies obtained with

ADP when architectures A1, A2, and A3 were utilized, respectively.

As can be noted on Tables I and II, the approximations
with ADP obtained a statistical match in performance with the
optimal policy in all the cases. Results show that when p = 0,
the architecture A2 seems to provide the best performance.
Similarly, for the case when p = 25, d = 1 the best
performance is given by the architecture A3. Under both
conditions for p, the best set of parameters rm,u were obtained
when λADP = 0.7. This coincides with the experimental fact
indicated in the literature [10] that such value of λADP yields
in general a better performance in temporal difference learning
algorithms.

In addition, Figures 5 and 6 show the evolution of both the
discounted cost and the parameters for architecture A2 through
simulation replications and state transitions, respectively. Fig-
ure 5 shows how the algorithm starts with higher values for the
discount cost that later become closer to the optimal value as
the parameters are properly tuned to minimize the estimation
error. In Figure 6, the evolution of the parameters indicates
that after 10000 state transitions the parameters reach near
convergence values.

E. Simulation results: quadratic inventory cost function

Now, consider the case where the inventory cost function
is quadratic as follows: g(s) = w2 + i2 + j2 + l2. From the
results given in [17], [24], and numerical solutions through
the MPI algorithm, the optimal input regulation policy in this
case corresponds to releasing a new job if w ≥ i + 1, and
the optimal job sequencing policy can be expressed as serving
buffer 3 if j + l+ 1

2 + 1.6493 · p ≥ i. Thus, Table III lists the
optimal discounted cost computed through multiple simulation
replications, given p and d.

Table IV presents the estimated discounted cost obtained
by the approximations of the optimal policy with ADP and
for architectures A1, A2, and A3. As in the case of linear
inventory costs, a statistical match in performance is obtained
between the optimal policy and the approximations obtained
with ADP. It should be noted, however, that variability of
the estimations is higher compared with the case of linear
costs given that the one-stage cost function is quadratic. Also
notice that the best performance is consistently obtained by
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architecture A3. This suggests that the selection of features
utilized in the approximation structures is closely related
to the structure of the one-stage cost function. A similar
situation can be observed in the case of linear inventory costs,
where the simplest architecture, A1, provided a policy with
a performance close to those associated the more complex
architectures, i.e., A2 and A3. Notice that in the case of linear
inventory costs the optimal policy is static; therefore, it is
expected that the policy obtained with architecture A1 will
provide good performance. In addition, and as in the case of
linear inventory costs, when p = 25, d = 1, the best set of
parameters is obtained for λADP = 0.7.

An important observation of the approximations obtained
with ADP is the reduced computational effort when compared
to numerical solutions obtained with the MPI. While the

TABLE III

COMPUTED OPTIMAL DISCOUNTED COST FOR QUADRATIC INVENTORY

COSTS

(p, d) J̃∗
α(s0)

(0,−) 10.81± 0.77
(25, 1) 7.43 ± 0.91

p: profits per job completed, d: selector between
profits discounted during state transitions intervals

(d=1 discounted, d=0 not discounted).

TABLE IV

PERFORMANCE FOR APPROXIMATIONS TO THE OPTIMAL POLICY

OBTAINED WITH ADP: QUADRATIC INVENTORY COSTS

(p, d) JπA1
α (s0) JπA2

α (s0) JπA3
α (s0)

(0,−) 11.84±1.02 11.53±0.96 11.28±0.84
(25, 1) 8.66±1.80 8.56±1.2 7.99±1.01

πA1, πA2, πA3: approximations to the optimal policies obtained with

ADP when architectures A1, A2, and A3 were utilized, respectively.

solution time with the MPI exponentially increases with the
buffer size (i.e., utilizes a complete enumeration of the state
space), the ADP approach seems to be computationally more
convenient given that it exploits the search for near-optimal
solutions over a subset of the state space, and regardless of
the capacity in the buffers of the system. As a result, the
solution time for near-optimal policies is reduced. Similarly,
approximation architectures with a high number of features
may increase the necessary time to tune the parameters of the
parametric architecture, and thus this may also increase the
time required to achieve near optimal solutions.

V. CONCLUSIONS

This paper presented the application of an ADP algorithm
to the problem of job releasing and sequencing of a bench-
mark RML. The ADP approach is based on the SARSA(λ)
algorithm that utilizes temporal differences learning with a
gradient-descent approach to tune the parameters in the ap-
proximation structures. Different architectures were utilized
to obtain near optimal policies when linear and quadratic one-
stage inventory cost functions were considered. Simulation
results showed that a statistical match in performance is
obtained between optimal strategies and policies obtained with
ADP. Such results also suggest that the applicability of the
ADP algorithm presented in this paper may be a promising
approach for larger RML systems.
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