
Using ADP to Understand and Replicate
Brain Intelligence: the Next Level Design

Paul J. Werbos1

Room 675, National Science Foundation
Arlington, VA 22203, US

pwerbos@nsf.gov

Abstract-Since the 1960’s I proposed that we
could understand and replicate the highest level of
intelligence seen in the brain, by building ever
more capable and general systems for adaptive
dynamic programming (ADP) – like “reinforce-
ment learning” but based on approximating the
Bellman equation and allowing the controller to
know its utility function. Growing empirical
evidence on the brain supports this approach.
Adaptive critic systems now meet tough
engineering challenges and provide a kind of first-
generation model of the brain. Lewis, Prokhorov
and myself have early second-generation work.
Mammal brains possess three core capabilities –
creativity/imagination and ways to manage spatial
and temporal complexity - even beyond the second
generation. This paper reviews previous progress,
and describes new tools and approaches to
overcome the spatial complexity gap.

I. INTRODUCTION

 No one on earth today can write down a
complete set of equations, or software system,
capable of learning to perform the complex range
of tasks that the mammal brain can learn to
perform. From an engineering viewpoint, this
paper will provide an updated roadmap for how
to reach that point. But actually, this paper is a
revision or update of my earlier first and
generation theories of how the brain actually
works, as an engineering device. The
implications for neuroscience, psychology and
power grids are discussed further in an extended
version of the paper, posted at http://arxiv.org ,
which is searchable by author.
 Here I will not address the human mind as
such. In nature, we see a series of levels of
intelligence or consciousness [1]. Within the
vertebrates, M. E. Bitterman [2] has shown that
there are major qualitative jumps from the fish to
the amphibian, from the amphibian to the reptile,
and from the reptile to even the simplest
mammal. 99% of the higher parts of the human
brain consist of structures, like the 6-layer

neocortex, which also exist in the mouse, and
show similar general-purpose-learning abilities
there. If we fully understand how learning and
intelligence work in the mouse brain, this will
help us understand the human mind, but the
human mind is much more than that.
 Section II discusses optimization and ADP in
general. It gives a few highlights from the long
literature on why these offer a central organizing
principle both for understanding the brain and for
improving what we can do in engineering.
Section III reviews 1st and 2nd generation ADP
designs, and their relevance to brain-style
intelligence. Section IV will discuss how to
move from second-generation designs to the
level of intelligence we see in the brain of the
smallest mouse – with a special emphasis on
how to handle spatial complexity, by learning
symmetry groups, and to incorporate that into an
ADP design or larger brain.

II. WHY OPTIMALITY AND WHY ADP?

A. Optimality As An Organizing Principle for
Understanding Brain Intelligence

 For centuries, people have debated whether the
idea of optimization can help us understand the
human mind. Long ago, Aristotle proposed that
all human efforts and thought are ultimately
based on the pursuit of (maximizing) happiness –
a kind of inborn “telos” or ultimate value.
Utilitarians like John Stuart Mill and Jeremy
Bentham carried this further. A more updated
version of this debate can be found in [3]; here I
will only review a few basic concepts.
 To begin with [4], animal behavior is
ultimately about choices as depicted here:.

__
1The views herein represent no one’s official views, but the paper was written on US government time.

209

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

Functionality of the brain is about making
choices which yield better results. Intelligence is
about learning how to make better choices. The
simplest types of animals may be born with fixed
rules about what actions to take, as a function of
the state of their environment as they see it.
More advanced animals, instead, have an ability
to select actions based on the results that the
actions might have.
 To put all this into mathematics, we must have
a way to evaluate which results are “better” than
which other results. Von Neumann’s concept of
Cardinal Utility function [5] provides that
measure; it is the foundation of decision theory
[6], risk analysis, modern investment analysis,
and dynamic programming, among others.
Usually, when we talk about discrete “goals” or
“intentions,” we are not talking about the long-
term values of the organism. Rather, we are
talking about subgoals or tactical values, which
are intended to yield better results or outcomes.
The utility function which defines what is
“better” is the foundation of the system as a
whole.
 Next consider the analogy to physics.
 In 1971-1972, when I proposed a first
generation model of intelligence, based on ADP,
to a famous neuroscientist, he objected: “The
problem with this kind of model is that it creates
an anthropomorphic view of how the brain
works. I have spent my entire life teaching
people how to overcome a bachtriomorphic view
of the frog. Thinking about people by using
empathy could be a disaster for science. Besides,
even in physics, we know that the universe is
maximizing a kind of utility function, and we
don’t think of the universe in anthropomorphic
terms.”
 From a strictly objective viewpoint, his
argument actually supports the idea of trying to
use optimization as a central organizing principle
in neuroscience. After all, if it works in physics,
in a highly rigorous and concrete way, why not
here? If we can unify our functional
understanding of the brain not only with
engineering, but with subjective experience and
empathy, isn’t this a source of strength, so long
as we keep track of which is which?
 But does it really work that way in physics?
Partly so. According to classical physics, the
universe really does solve the optimization
problem depicted here:
____________________________ (x, t+)

(x, t) t+ > t > t-

____________________________ (x, t-)

The universe has a kind of “utility function,”
L (x, t). It “chooses” the states of all particles
and fields at all times t by choosing states which
maximize the total sum of L across all of space
time, between time t- and time t+, subject to the
requirement that they provide a continuous path
from the fixed state at some initial time t- and
some final time t+. This elegant formalism, due
to Lagrange, provides a very simple
parsimonious description of the laws of physics;
instead of specifying n dynamic laws for n types
of particle or field, we can specify the
“Lagrangian function L,” and derive all the
predictions of physics from there. In order to
perform that calculation, we can use an equation
from classical physics, the Hamilton-Jacobi
equation, which tells us how to solve
deterministic optimization problems across time
or space-time.
 But that is not the whole story. Hamilton and
Lagrange had many debates about whether the
universe really maximizes L – or does it
minimize it or find a minmax solution? Does the
physical universe find something that looks like
the outcome of a two-person zerosum game? By
the time of Einstein, it appeared so. Modern
quantum theory gets rid of the deterministic
assumption, but adds random disturbance in a
very odd way. It actually turns out that we can
recover something like Lagrange’s original idea,
which fits the tested predictions of modern
quantum theory, by introducing a stochastic term
whose statistics are symmetric both in space and
in time; however, the details are beyond the
scope of this paper. (See www.werbos.com/
reality.htm.)
 To describe the brain, it is not enough to use
the old optimization rule of Hamilton and Jacobi.
We need to consider the stochastic case, because
animals, like us, cannot predict our environment
in a deterministic way. The foundation for
optimization over time in the stochastic case is
the Bellman equation, a great breakthrough
developed by Bellman in 1953, made possible by
Von Neumann’s concept of Cardinal Utility
function.
 The principles of optimality are important to
fundamental physics – but also to thermo-
dynamics, and to the physics of emergent
phenomena in general. Those details are beyond
the scope of this paper.
 Finally, let me address two of the most
common questions which people tend to ask
when I talk about the brain as an “optimization
machine.”

210

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

 First: If brains are so optimal, why do humans
do so many stupid things? Answers: Brains are
designed to learn approximate optimal policy, as
effectively as possible with bounded
computational resources (networks of neurons),
starting from a less optimal start. They never
learn to play a perfect game of chess (nor will
our computers, nor will any other algorithm that
can be implemented on a realistic computer)
because of constraints on computational
resources. We just do the best we can.
 Also, when one human (a researcher) criticizes
another, we are seeing a comparison between
two highly intelligent systems. Some brains learn
faster than others. In my view, humans
themselves are an intermediate state towards an
even higher/faster intelligence – beyond the
scope of this paper.
 Second question: if this optimization theory of
the brain is correct, wouldn’t brains get stuck in
local minima, just like artificial optimization
programs when confronted with a complex,
nonlinear environment? Answers: they do
indeed. Every person on earth is caught in a
“local minimum,” or rut, to some degree. In
other words, we could all do a bit better if we
had more creativity. But look at those hairy guys
(chimpanzees) in the jungle, and the rut they are
in!
 The optimization theory of the brain implies
that our brains combine an incremental learning
ability with an ability to learn to be more creative
– to do better and better “stochastic search” of
the options available to us. There are a few
researchers in evolutionary computing or
stochastic search who tell us that their algorithms
are guaranteed to find the global optimum,
eventually; however, those kinds of guarantees
are not very realistic because, for a system of
realistic complexity, they require astronomical
time to actually get to the optimum.

B. Optimality and ADP In Technology
 The benefits of adaptive dynamic
programming (ADP) to technology have been
discussed by many other authors in the past[7]
and at this conference, with specific examples.
Again, I will review only a few highlights.
 Many control engineers ask: “Why try to find
the optimal controller out of all possible
controllers? It is hard enough just to keep things
from blowing up – to stabilize them at a fixed
point.” In fact – the most truly stable controllers
now known are nonlinear feedback controllers,
based on “solving” the “Hamilton-Jacobi-
Bellman” equation. But in order to implement

that kind of control, we need mechanisms to
“numerically solve” (approximate) the Bellman
equation as accurately as possible. ADP is the
machinery to do that.
 Furthermore – there are times when it is
impossible to give a truly honest absolute
guarantee of stability, under accurate
assumptions. Certainly, a mouse running
through the field has no way to guarantee its
survival – nor does the human species as a
whole, in the face of the challenges now
confronting us. (See www.werbos.com.) In that
kind of real-world situation, the challenge is to
maximize the probability of survival; that, in
turn, is a stochastic optimization problem,
suitable for ADP, and not for deterministic
methods. (Recent work by Gosavi has explored
that family of ADP applications.) Verification
and validation for real complex systems in the
real world is heavily based on empirical tests and
statistics already.
 Finally, in order to address nonlinear
optimization problems in the general case, we
absolutely must use universal nonlinear function
approximators. Those could be Taylor series –
but Barron showed years ago that the simplest
form of neural networks offer more accurate
nonlinear approximation that Taylor series or
other linear basis function approximators, in the
general case, when there is a large number of
state variables. Use of more powerful and
accurate approximators (compatible with
distributed hardware, like emerging multicore
chips) is essential to more accurate
approximations and better results.

III. FIRST AND SECOND GENERATION
ADP MODELS OF BRAIN INTELLIGENCE

A. Origins and Basics of the First Generation
Model

Where Did ANNs Come From?Where Did ANNs Come From?

Specific
Problem
Solvers

General Problem Solvers McCulloch
Pitts Neuron

Logical
Reasoning
Systems

Reinforcement
Learning

Widrow LMS
&Perceptrons

Expert Systems

Minsky

Backprop ‘74

Psychologists, PDP Books
Computational
Neuro, Hebb
Learning Folks

IEEE ICNN 1987: Birth of a “Unified” Discipline

211

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Backpropagation and the first true ADP design
both originated in my work in the 1970’s. The
flow chart above gives a simplified view of the
flow of ideas.
 In essence, the founders of artificial
intelligence (AI) – Newell, Shaw and Simon, and
Minsky [8] – proposed that we could build brain-
like intelligent systems by building powerful
reinforcement learning systems. However, after a
great deal of experimentation and intuition and
heuristic thinking, they could not design systems
which could optimize more than a few variables.
Knowing that the brain can handled many
thousands of variables, they simply gave up –
just as they gave up on training simplified neural
models (multilayer perceptrons). Amari, at about
the same time, wrote that perhaps derivatives
might be used somehow to train multilayer
perceptrons – but suggested that it would be
unlikely to work, and did not provide any
algorithm for actually calculating the required
derivatives in a distributed, local manner.
 . In 1964, I – like many others – was deeply
inspired by Hebb’s classic book on intelligence
[9]. Inspired by the empirical work on mass
action and learning in the brain (by Lashley,
Freeman, Pribram and others), he proposed that
we would not really need a highly complex
model in order to explain or reproduce brain-like
intelligence. Perhaps we could generate
intelligence as the emergent result of learning;
we could simply construct billions of model
neurons, each following a kind of universal
neuron learning rule, and then intelligence could
emerge strictly as a result of learning. I tried very
hard to make that work in the 1960’s, and failed.
The key problem was that Hebb’s approach to a
universal learning rule is essentially calculating
correlation coefficients; those are good enough
to construct useful associative memories, as
Grossberg showed, but not to make good
statistical predictions or optimal control. They
are simply not enough by themselves to allow
construction of an effective general-purpose
reinforcement learning machine.
 By 1971-1972, I realized that Hebb’s vision
could be achieved, if we relax it only very
slightly. It is possible to design a general purpose
reinforcement learning machine, if we allow just
three types of neuron and three general neuron
learning rules, instead of just one.
 Actually, the key insight here came in 1967.
In 1967 (in a paper published in 1968 [4]), I
proposed that we could overcome the problems
with reinforcement learning by going back to
basic mathematical principles – by building

systems which learn to approximate the Bellman
equation. Use of the Bellman equation is still the
only exact and efficient method to compute an
optimal strategy or policy of action, for a general
nonlinear decision problem over time, subject to
noise. The equation is:
J(x(t))=Max <U(x(t), u(t)) + J(x(t+1))>/(1+r),
 u(t)
where x(t) is the state of the environment at time
t, u(t) is the choice of actions, U is the cardinal
utility function,. R is the interest or discount rate
(exactly as defined by economics and by Von
Neumann), where the angle brackets denote
expectation value, and where J is the function we
must solve for in order to derive the optimal
strategy of action. In any state x, the optimal u
is the one which solves the optimization problem
in this equation. A learning system can learn to
approximate this policy by using a neural
network (or other universal approximator) to
approximate the J function and other key parts of
the Bellman equation, as shown in the next
figure, from my 1971-1972 thesis proposal to
Harvard:

19711971--2: Emergent Intelligence Is Possible2: Emergent Intelligence Is Possible
If We Allow Three Types of Neuron If We Allow Three Types of Neuron

(Thesis,Roots)(Thesis,Roots)

Critic

Model

Action

J(t+1)

R(t+1)

u(t)

X(t)

R(t)
Red Arrows:
Derivatives
Calculated By
Generalized
Backpropagation

In that design, I needed a generalized form of
backpropagation as a tool to calculate the
essential derivatives or sensitivity coefficients
needed to allow correct incremental learning of
all three parts. I formulated and proved a new
chain rule for “ordered derivatives” which makes
it possible to compute the required derivatives
exactly through any kind of large nonlinear
system, not just neural networks.
 For my PhD thesis (reprinted in entirety in
[10]), I included the proof, and many
applications of backpropagation to systems other
than neural networks. In [11,12], I described how
generalized backpropagation can be used in a
wide variety of applications, including ADP with
components that could be neural networks or any
other nonlinear differentiable system.
 The method which I proposed to adapt the
Critic network in 1971-1972 I called “Heuristic

212

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Dynamic Programming” (HDP). It is essentially
the same as what was later called “the Temporal
Difference Method.” But I learned very early
that the method does not scale very well, when
applied to systems of even moderate complexity.
It learns too slowly. To solve this problem, I
developed the core ideas of two new methods –
dual heuristic programming (DHP) and
Globalized DHP (GDHP) – published in a series
of papers from 1977 to 1981 [13-15]. To prove
convergence, in [12], I made small but important
changes in DHP; thus [12] is the definitive
source for DHP proper. For more robust
extensions, see the final sections of [16].
 See [7], [12] and many papers in this
conference for reviews of practical applications
of HDP, DHP, GDHP and related adaptive critic
systems.

B. A Second Generation Model/Design for
Brain-Style Intelligence
 By 1987, I realized that the brain has certain
capabilities beyond what any of these first-
generation design offer. Thus I proposed [17] a
second generation design, illustrated here:

Lower Level
Adaptive Critic System
Inf. Olive + Cerebellum

Upper Level Critic Network

Upper Level Model Network

U(t) for
Lower System

J(t+1)-J(t) from Upper System

Additional Local Utility

Components

2nd Generation “Two Brains in One Model”

4-8 hertz

100-200 hertz

The key point is that truly powerful foresight, in
an ADP system, requires the use of Critic
Networks and Model Networks which are far
more powerful than feedforward neural networks
(or Hebbian networks or Taylor series or linear
basis function networks). It requires the use of
recurrent networks, including networks which
“settle down” over many cycles of an inner loop
calculation before emitting a calculation. That, in
turn, requires a relatively low sampling rate for
calculation; about 4-8 calculations per second is
the rate observed for the higher centers of the
mammal brain. However, smooth muscle control
requires a much higher bandwidth of control; to
achieve that, I proposed that the brain is actually
a kind of master-slave system. I published some
papers joint with Pellionisz on the details, and

how to look for them in neuroscience data.
(Some are posted on my web page.) In chapter
13 of [12], I provided equations for an “Error
Critic for motor control” which provide one
possible design for a fast model-free “slave”
neural network, matching this model.
 Danil Prokhorov, in various IJCNN papers,
showed how that kind of fast design (and some
variations he developed) works well, by certain
measures, in computational tests. Recent formal
work in Frank Lewis’s group at the University of
Texas (ARRI) has shown strong stability results
for continuous-time model free ADP designs
which require an external value input, exactly
like what this master-slave arrangement would
provide.
 Intuitively… the “master” is like the coach
within you, and the “slave” is like the inner
football player. The football player has very fast
reflexes, and is essential to the game, but he
needs to strive to go where the more far-seeing
coach sends him. The coach can learn more
complex stuff faster than the football player, and
responds to a more complex strategic picture.
Lower-level stability is mainly provided by the
football player.
 In 1987, Richard Sutton read [17], and
arranged for us to discuss it at great length in
Massachusetts. This was the event which
injected the idea of ADP into the reinforcement
learning school of AI. The paper is cited in
Sutton’s chapter in [18], which includes an
implementation of the idea of “dreaming as
simulation” discussed in [17].

C. Engineering Roadmap and Neuroscience
Evidence for Second Generation Theory/Design
 In 1992, I believed that we could probably
replicate the level of intelligence we see in the
basic mammal brain, simply by refining and
filling in these first and second generation
theories of how the brain works. In fact, the first
and second generation design already offer
potential new general-purpose adaptive
capabilities far beyond what we now have in
engineering. It is still essential that we continue
the program of refining and understanding and
improving these classes of designs as far as we
can go – both for the sake of engineering, and as
a prerequisite to set the stage for even more
powerful designs.
 I have suggested that half of the funding
aimed at reverse engineering the brain should
still go towards the first and second generation
program – half towards the ADP aspects, and
half towards the critical subsystems for

213

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

prediction, memory and so on. (See
www.eas.asu.edu/~nsfadp .) Because those are
complicated issues, and I have written about
them elsewhere, I will not elaborate here.
 More and more evidence has accumulated
suggesting that optimization (with a predictive or
“Model” component) is the right way to
understand the brain. For example, Nicolelis and
Chapin, in Science, reported that certain cells in
the thalamus act as advance predictors of other
cells. More important, when they cut the existing
connections, the thalamo-cortical system would
adapt in exactly the right way to relearn how to
predict. This is clear evidence that the thalamo-
cortical system – the biggest part of the brain – is
in great part an adaptive “Model” network, a
general-purpose system for doing adaptive
“system identification” (as we say in control
theory). Barry Richmond has observed windows
of forwards and backwards waves of information
in this circuit, fully consistent with our TLRN
model of how such a Model network can be
constructed and adapted.
 Papez and James Olds senior showed decades
ago how cells in the “limbic system” convey
“secondary reinforcement signals,” exactly as we
would predict for an adaptive Critic component
of the brain. More recent work on the dopamine
system in the basal ganglia suggests even more
detailed relations between reinforcement
learning and actual learning in neural circuits.
 A key prediction of the engineering approach
has always been the existence of subcircuits to
compute the derivatives – the generalized
backpropagation – required here. When we first
predicted backwards synapses, to make this
possible, many ridiculed the engineering
approach. But later, in Science, Bliss et al
reported a “myserious” but strong reverse
NMDA synapse flow. Spruston and collaborators
have reported backpropagation flows (totally
consistent with the mathematics of generalized
backpropagation) in cell membranes. The
synchronized clock signals implied in these
designs are also well-known at present to “wet,”
empirical neuroscientists.
 More details – and the empirical implications
which cry out for follow-on work – are discussed
in some of the papers on my web page, such as
papers for books edited by Pribram.
 One interesting recent thought. From
engineering work, we have learned that the
complexity of the learning system needed to
train a simple input-output system or learned
policy is far greater than the complexity of the
input-output system itself. A simple example

comes from Kalman filtering, where the
“scaffolding” matrices (P, etc.) needed for
consistent filtering are n times as large as the
actual state estimates themselves; n is the
number of state variables. Could it be that “junk
DNA” includes a large system whose purpose is
to tune the adaptation of the “coding DNA,”
which are after all only a small portion of our
genetic system? Could it be that individual
neurons do contain very complex molecular
memories after all – memories invisible to our
conscious mind, but essential to more efficient
learning (such as the matrices for DEKF
learning)? These are important empirical issues
to explore.

IV. BRIDGING THE GAP TO THE
MAMMAL-BRAIN LEVEL

 AI researchers like Albus [19] have long
assumed that brains must have very complex,
explicit, hard-wired hierarchies of systems to
handle a high degree of complexity in space and
in time. By 1997, I became convinced that they
are partly right, because I was able to formulate
modified Bellman equations which allow much
faster learning in cases where a state space can
be sensibly partitioned in a (learnable)
hierarchical way[20,21]. Nature would not
neglect such an opportunity – and it fit well with
emerging new knowledge about the basal
ganglia, and ideas from Pribram.
 Recent biological data does not support the
older hierarchy ideas form AI, but it clearly call
out for some kind of specific mechanisms in
three core areas: (1) a “creativity/imagination”
mechanism, to address the nonconvex nature of
complicated optimization problems; (2) a
mechanism to exploit modified Bellman
equations, in effect; and (3) a mechanism to
handle spatial complexity.

CEREBRAL CORTEX

Layers I to III
Layer IV: Receives Inputs

Layer V: Output Decisions/Options

Layer VI: Prediction/State Output

BASAL
GANGLIA

(Engage Decision)

THALAMUS

BRAIN STEM AND CEREBELLUM

MUSCLES
See E.L. White,
Cortical Circuits...

3rd Generation View of Creativity/Imagination: Layer V = “Option Networks”

•Challenge: www.werbos.com/WerbosCEC99.htm.
•Important work by Serpen, Pelikan, Wunsch, Thaler, Fu – but still wide open.
Widrow testbed.

The flow chart above summarizes a strawman

214

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

model of the creativity mechanism which I
proposed in 1997 [20]. I hoped to stimulate
broad research into “brain-like stochastic
search.” (See my web page for a CEC plenary
talk on that challenge). Wunsch, Serpen, Thaler,
Pelikan and Fu’s group at Maryland have all
done important early work relevant to this task,
but it hasn’t really come together. Likewise,
work in the last few years on temporal com-
plexity has not done full justice to the modified
Bellman equations, and has not shown as much
progress as hoped for; part of the problem is that
temporal complexity is usually associated with
spatial complexity as well. Also, there is new
evidence from neuroscience which has not yet
been assimilated on the technology side.
 The most exciting opportunity before us now is
to follow up on more substantial progress and
new ideas related to spatial complexity.
 An important early clue towards spatial
complexity came from the work of Guyon,
LeCun, and others at AT&T, illustrated below:

Moving Window Net: Clue Re ComplexityMoving Window Net: Clue Re Complexity

Best ZIP Code Digit Recognizer Used “Moving Window” or
“conformal” MLP! (Guyon, LeCun, AT&T story, earlier…)
Exploiting symmetry of Euclidean translation crucial to reducing
number of weights, making large input array learnable, outcomes.

Hidden node
Value at I,j

9 to 1 MLP

Large pixel array input for Zip Code Digit

Same MLP with
same weights “moved”
over input array to yield
hidden node array

Hidden
node
array

MLP

Which
digit?

The most accurate ZIP code digit recognizer then
came from a simple MLP network, modified to
exploit symmetry with respect to spatial trans-
lation. Instead of independently training hidden
neurons to process pieces of an image, they
would train a single hidden neuron, and re-use it
in different locations, by moving it around the
image. Le Cun later called this a “conformal
neural network.” He had excellent results train-
ing it by backpropagation in many image
processing tasks. Nevertheless, these feed-
forward networks could still not learn the more
complex kinds of mappings, like the connected-
ness mapping described long ago by Minsky[22];
it is not surprising that a network which could
not handle connectedness, or learn to emulate
Hough relaxation of image data, could not learn
how to segment an entire ZIP code.
 In 1994, Pang and I demonstrated a network
that could solve these problems – a “Cellular
SRN,” (CSRN), which combines the key

capabilities of a Simultaneous Recurrent
Network [12] and a “conformal” network. This
immediately allows prediction and control and
navigation through complex two-dimensional
scenes (and images) far more complex than an
MLP could ever learn. That did not become
immediately popular, in part because the learning
was slow and tools were not available to make it
easy for people to take advantage of the great
brain-like power of such networks. This year,
however, Ilin, Kozma and myself, at IJCNN06,
reported a new learning tool which dramatically
speeds up learning, and is available from Kozma
as a MatLab tool. This by itself opens the door
for neural networks to solve complex problems
they could never really handle in the past. (There
is great room for research to speed it up even
more, but it is ready for practical use already.)
 In 1997 [20] and in subsequent tutorials (and a
patent), I proposed a more general approach to
exploiting symmetry, which I called the
ObjectNet. Instead of mapping a complex input
field into M rectangular cells, all governed by a
common “inner loop” neural network, one may
map it into a network of k types of “Objects,”
with k different types of “inner loop” neural
networks. This has great potential in areas like
electric power and image processing, for
example. A conventional MLP or recurrent
network can learn to manage perhaps a few
dozen variables in a highly nonlinear system –
but how can one design a neural network which
inputs the thousands of variables of an entire
electric power grid and predict the system as a
whole? Object nets provide a way of doing that.
 This year, Venayagamoorthy has published
preliminary results showing how an ADP system
based on a simple, feedforward version of
ObjectNet can handle power systems more
complex than the earlier first-generation brain-
like systems (which already outperformed more
conventional control methods). More astonishing
– David Fogel used a simple ObjectNet as the
Critic in a system adapted to play chess. This
was the world’s first computer system to achieve
master-class performance in chess without using
a supercomputer and without using detailed clues
and advice from a human; it learned how to play
the game at that level.
 But all of this is just a beginning. At
www.face-rec.org, a series of reviews basically
show that two of the three top working systems
today rely on neural network concepts
(vonderMalsburg and Wechsler). The key to face
recognition turns out to be the ability to learn
new “invariants” or transformations, more

215

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

complex than simple two-dimensional
translation. This offers some easy short-term
possibilities: to exploit CSRNs to learn the
relevant mappings, which could never be learned
before. But it also poses a very fundamental
question: how can the brain learn such
transformations?
 Here is a new, more formal way to think about
what is going on here. The first challenge here is
to learn “symmetries of the universe.” More
concretely, the challenge to the brain is to learn a
family of vector maps f such that:
Pr(f (x(t+1)|f (x(t))=Pr(x(t+1)| x(t)) for all and
the same conditional probability distribution Pr.
This new concept may be called stochastic
invariance.
 Once a brain learns these symmetries, it may
exploit them in one or more of three ways:
*“reverberatory generalization”: after observing
or remembering a pair of data {x(t+1), x(t)}, also
train on {f (x(t+1)),f (x(t))};
*“multiple gating”: after inputting x(t), pick so
as to use f to map x(t) into some canonical
form, and learn a universal predictor form
canonical forms. (This is analogous to the
Olshausen model, which is very different in
principle from neuroscience models of
spontaneous or affective gating and attention.)
*“multimodular gating”: like multiple gating,
except that multiple parallel copies of the canon-
ical mapping are used in parallel to process more
than one subimage at a time in a powerful way.
 Human brains seem to rely on the first two, or
the second. Perhaps higher levels of intelligence
could be designed here. But this begs the
question: how could these maps be learned?
How could the brain learn to map complex fields
into a condensed, canonical form for which
prediction is much easier to learn? How can the
“Objects” in an ObjectNet be learned?
 This suggests an immediate and astonishingly
simple extension of the ObjectNet theory. In
1992, I proved basic consistency results for a
new architecture called the “Stochastic Encoder/
Decoder Predictor” (SEDP).[12, chapter 13].
SEDP directly learns condensed mappings. It is
an adaptive nonlinear generalization of Kalman
filtering, explicit enough to allow the learning of
symmetry relations. As with the earlier HDP and
CSRN architectures, it will require many specific
tricks to improve its learning speed. (e.g.,
exploitation of nearest neighbor relation in the
learning, and salience flows?). It provides a
principled way to learn the symmetry groups
which are the foundation for a principled
approach to spatial complexity.

REFERENCES

[1] P.Werbos, What do neural nets and quantum
theory tell us about mind and reality? In K. Yasue et
al, eds, No Matter, Never Mind : Proc. of Toward a
Science of Consciousness. John Benjamins 2002
[2] M. Bitterman, The evolution of intelligence
Scientific American Jan.1965
[3] D.Levine & Elsberry (eds) Optimality in
Biological and Artificial Networks?, Erlbaum, 1997
[4] P.Werbos, The elements of intelligence.
Cybernetica (Namur), No.3, 1968.
[5] J.Von Neumann and O.Morgenstern, The Theory
of Games and Economic Behavior, Princeton NJ:
Princeton U. Press, 1953.
[6] H.Raiffa, Decision Analysis Addison-Wesley 1968
[7] J. Si et al (eds) Handbook of Learning & Approx-
imate Dynamic Programming Wiley/IEEE 2004.
[8] E.A.Feigenbaum and J.Feldman, Computers and
Thought, McGraw-Hill, 1963.
[9] D.O.Hebb, Organization of Behavior, Wiley 1949
[10] P.Werbos, The Roots of Backpropagation,
Wiley, 1994
[11] P. Werbos, Backwards differentiation in AD and
Neural Nets. M. Bucker et al (eds), Automatic Differ-
entiation: Applications, Theory & Implementations,
Springer (LNCS), New York, 2005.
[12] White & D.Sofge, eds, Handbook of Intelligent
Control, Van Nostrand, 1992.
[13] P.Werbos, Advanced forecasting for global crisis
warning and models of intelligence, General Systems
Yearbook, 1977 issue.
[14]--, Changes in global policy analysis procedures
suggested by new methods of optimization, Policy
Analysis & Info. Systems, Vol.3, No.1, June 1979.
[15]--, Applications of advances in nonlinear
sensitivity analysis, in R.Drenick & Kozin (eds),
System Modeling and Optimization, Springer 1981
[16]see adap-org 9810001 at arXiv.org, 1998
[17] P.Werbos, Building & understanding adaptive
systems: A statistical/numerical approach to factory
automation & brain research, IEEE Trans. SMC,
Jan./Feb. 1987.
[18] Miller et al eds, Neural Networks for Control,
MIT Press 1990
[19] J.Albus, Outline of Intelligence, IEEE Trans.
Systems, Man and Cybernetics, Vol.21, No.2, 1991.
[20] Sutton TD R.S.Sutton, Learning to predict by the
methods of temporal differences, Machine Learning,
Vol. 3, p.9-44, 1988
[21] P.Werbos, Brain-Like Design To Learn Optimal
Decision Strategies in Complex Environments, in
M.Karny et al eds, Dealing with Complexity: A Neural
Networks Approach. Springer, London, 1998.
[22] P.Werbos, Multiple Models for Approximate
Dynamic Programming ... In K. Narendra, ed., Proc.
10th Yale Conf. on Learning and Adaptive Systems.
New Haven: K.Narendra, EE Dept., Yale U., 1998.
[23] M. Minsky & S. Papert, Perceptrons: An
Introduction to Computational Geometry, MIT Press,
1969

216

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

