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Abstract-Since the 1960’s I proposed that we 
could understand and replicate the highest level of 
intelligence seen in the brain, by building ever 
more capable and general systems for adaptive 
dynamic programming (ADP) – like “reinforce-
ment learning” but based on approximating the 
Bellman equation and allowing the controller to 
know its utility function. Growing empirical 
evidence on the brain supports this approach. 
Adaptive critic systems now meet tough 
engineering challenges and provide a kind of first-
generation model of the brain. Lewis, Prokhorov 
and myself have early second-generation work.  
Mammal brains possess three core capabilities – 
creativity/imagination and ways to manage spatial 
and temporal complexity - even beyond the second 
generation.  This paper reviews previous progress, 
and describes new tools and approaches to 
overcome the spatial complexity gap.  

I.  INTRODUCTION 

   No one on earth today can write down a 
complete set of equations, or software system, 
capable of learning to perform the complex range 
of tasks that the mammal brain can learn to 
perform. From an engineering viewpoint, this 
paper will provide an updated roadmap for how 
to reach that point. But actually, this paper is a 
revision or update of my earlier first and 
generation theories of how the brain actually 
works, as an engineering device. The 
implications for neuroscience, psychology and 
power grids are discussed further in an extended 
version of the paper, posted at http://arxiv.org , 
which is searchable by author. 
   Here I will not address the human mind as 
such. In nature, we see a series of levels of 
intelligence or consciousness [1]. Within the 
vertebrates, M. E. Bitterman [2] has shown that 
there are major qualitative jumps from the fish to 
the amphibian, from the amphibian to the reptile, 
and from the reptile to even the simplest 
mammal. 99% of the higher parts of the human 
brain consist of structures, like the 6-layer 

neocortex, which also exist in the mouse, and 
show similar general-purpose-learning abilities 
there. If we fully understand how learning and 
intelligence work in the mouse brain, this will 
help us understand the human mind, but the 
human mind is much more than that. 
   Section II discusses optimization and ADP in 
general. It gives a few highlights from the long 
literature on why these offer a central organizing 
principle both for understanding the brain and for 
improving what we can do in engineering. 
Section III reviews 1st and 2nd generation ADP 
designs, and their relevance to brain-style 
intelligence. Section IV will discuss how to 
move from second-generation designs to the 
level of intelligence we see in the brain of the 
smallest mouse – with a special emphasis on 
how to handle spatial complexity, by learning 
symmetry groups, and to incorporate that into an 
ADP design or larger brain.  

II. WHY OPTIMALITY AND WHY ADP? 

A.  Optimality As An Organizing Principle for 
Understanding Brain Intelligence 

   For centuries, people have debated whether the 
idea of optimization can help us understand the 
human mind. Long ago, Aristotle proposed that 
all human efforts and thought are ultimately 
based on the pursuit of (maximizing) happiness – 
a kind of inborn “telos” or ultimate value. 
Utilitarians like John Stuart Mill and Jeremy 
Bentham carried this further. A more updated 
version of this debate can be found in [3]; here I 
will only review a few basic concepts. 
   To begin with [4], animal behavior is 
ultimately about choices as depicted here:. 

______________________________________________________________________________________ 
1The views herein represent no one’s official views, but the paper was written on US government time.  

209

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE



Functionality of the brain is about making 
choices which yield better results. Intelligence is 
about learning how to make better choices. The 
simplest types of animals may be born with fixed 
rules about what actions to take, as a function of 
the state of their environment as they see it. 
More advanced animals, instead, have an ability 
to select actions based on the results that the 
actions might have.  
    To put all this into mathematics, we must have 
a way to evaluate which results are “better” than 
which other results. Von Neumann’s concept of 
Cardinal Utility function [5] provides that 
measure; it is the foundation of decision theory 
[6], risk analysis, modern investment analysis, 
and dynamic programming, among others. 
Usually, when we talk about discrete “goals” or 
“intentions,” we are not talking about the long-
term values of the organism. Rather, we are 
talking about subgoals or tactical values, which 
are intended to yield better results or outcomes. 
The utility function which defines what is 
“better” is the foundation of the system as a 
whole. 
     Next consider the analogy to physics. 
     In 1971-1972, when I proposed a first 
generation model of intelligence, based on ADP,  
to a famous neuroscientist, he objected: “The 
problem with this kind of model is that it creates 
an anthropomorphic view of how the brain 
works. I have spent my entire life teaching 
people how to overcome a bachtriomorphic view 
of the frog. Thinking about people by using 
empathy could be a disaster for science. Besides, 
even in physics, we know that the universe is 
maximizing a kind of utility function, and we 
don’t think of the universe in anthropomorphic 
terms.”  
    From a strictly objective viewpoint, his 
argument actually supports the idea of trying to 
use optimization as a central organizing principle 
in neuroscience. After all, if it works in physics, 
in a highly rigorous and concrete way, why not 
here? If we can unify our functional 
understanding of the brain not only with 
engineering, but with subjective experience and 
empathy, isn’t this a source of strength, so long 
as we keep track of which is which?    
   But does it really work that way in physics?  
Partly so. According to classical physics, the 
universe really does solve the optimization 
problem depicted here: 
____________________________ (x, t+)

(x, t)    t+ > t > t-

____________________________ (x, t-)

The universe has a kind of “utility function,” 
L (x, t). It “chooses” the states  of all particles 
and fields at all times t by choosing states which 
maximize the total sum of L  across all of space 
time, between time t- and time t+, subject to the 
requirement that they provide a continuous path 
from the fixed state at some initial time t- and 
some final time t+. This elegant formalism, due 
to Lagrange, provides a very simple 
parsimonious description of the laws of physics; 
instead of specifying n dynamic laws for n types 
of particle or field, we can specify the 
“Lagrangian function L,” and derive all the 
predictions of physics from there. In order to 
perform that calculation, we can use an equation 
from classical physics, the Hamilton-Jacobi 
equation, which tells us how to solve 
deterministic optimization problems across time 
or space-time. 
  But that is not the whole story. Hamilton and 
Lagrange had many debates about whether the 
universe really maximizes L – or does it 
minimize it or find a minmax solution? Does the 
physical universe find something that looks like 
the outcome of a two-person zerosum game? By 
the time of Einstein, it appeared so. Modern 
quantum theory gets rid of the deterministic 
assumption, but adds random disturbance in a 
very odd way. It actually turns out that we can 
recover something like Lagrange’s original idea, 
which fits the tested predictions of modern 
quantum theory, by introducing a stochastic term 
whose statistics are symmetric both in space and 
in time; however, the details are beyond the 
scope of this paper. (See www.werbos.com/ 
reality.htm.)
    To describe the brain, it is not enough to use 
the old optimization rule of Hamilton and Jacobi. 
We need to consider the stochastic case, because 
animals, like us, cannot predict our environment 
in a deterministic way. The foundation for 
optimization over time in the stochastic case is 
the Bellman equation, a great breakthrough 
developed by Bellman in 1953, made possible by 
Von Neumann’s concept of Cardinal Utility 
function.  
  The principles of optimality are important to 
fundamental physics – but also to thermo-
dynamics, and to the physics of emergent 
phenomena in general. Those details are beyond 
the scope of this paper. 
   Finally, let me address two of the most 
common questions which people tend to ask 
when I talk about the brain as an “optimization 
machine.”
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  First: If brains are so optimal, why do humans 
do so many stupid things? Answers: Brains are 
designed to learn approximate optimal policy, as 
effectively as possible with bounded 
computational resources (networks of neurons), 
starting from a less optimal start. They never 
learn to play a perfect game of chess (nor will 
our computers, nor will any other algorithm that 
can be implemented on a realistic computer) 
because of constraints on computational 
resources. We just do the best we can.
   Also, when one human (a researcher) criticizes 
another, we are seeing a comparison between 
two highly intelligent systems. Some brains learn 
faster than others. In my view, humans 
themselves are an intermediate state towards an 
even higher/faster intelligence – beyond the 
scope of this paper. 
  Second question: if this optimization theory of 
the brain is correct, wouldn’t brains get stuck in 
local minima, just like artificial optimization 
programs when confronted with a complex, 
nonlinear environment? Answers: they do 
indeed. Every person on earth is caught in a 
“local minimum,” or rut, to some degree. In 
other words, we could all do a bit better if we 
had more creativity. But look at those hairy guys 
(chimpanzees) in the jungle, and the rut they are 
in! 
   The optimization theory of the brain implies 
that our brains combine an incremental learning 
ability with an ability to learn to be more creative 
– to do better and better “stochastic search” of 
the options available to us. There are a few 
researchers in evolutionary computing or 
stochastic search who tell us that their algorithms 
are guaranteed to find the global optimum, 
eventually; however, those kinds of guarantees 
are not very realistic because, for a system of 
realistic complexity, they require astronomical 
time to actually get to the optimum.  

B. Optimality and ADP In Technology 
   The benefits of adaptive dynamic 
programming (ADP) to technology have been 
discussed by many other authors in the past[7] 
and at this conference, with specific examples. 
Again, I will review only a few highlights. 
   Many control engineers ask: “Why try to find 
the optimal controller out of all possible 
controllers? It is hard enough just to keep things 
from blowing up – to stabilize them at a fixed 
point.” In fact – the most truly stable controllers 
now known are nonlinear feedback controllers, 
based on “solving” the “Hamilton-Jacobi-
Bellman” equation. But in order to implement 

that kind of control, we need mechanisms to 
“numerically solve” (approximate) the Bellman 
equation as accurately as possible. ADP is the 
machinery to do that.
   Furthermore – there are times when it is 
impossible to give a truly honest absolute 
guarantee of stability, under accurate 
assumptions.  Certainly, a mouse running 
through the field has no way to guarantee its 
survival – nor does the human species as a 
whole, in the face of the challenges now 
confronting us. (See www.werbos.com.) In that 
kind of real-world situation, the challenge is to 
maximize the probability of survival; that, in 
turn, is a stochastic optimization problem, 
suitable for ADP, and not for deterministic 
methods. (Recent work by Gosavi has explored 
that family of ADP applications.) Verification 
and validation for real complex systems in the 
real world is heavily based on empirical tests and 
statistics already. 
    Finally, in order to address nonlinear 
optimization problems in the general case, we 
absolutely must use universal nonlinear function 
approximators. Those could be Taylor series – 
but Barron showed years ago that the simplest 
form of neural networks offer more accurate 
nonlinear approximation that Taylor series or 
other linear basis function approximators, in the 
general case, when there is a large number of 
state variables. Use of more powerful and 
accurate approximators (compatible with 
distributed hardware, like emerging multicore 
chips) is essential to more accurate 
approximations and better results.  

III. FIRST AND SECOND GENERATION 
ADP MODELS OF BRAIN INTELLIGENCE 

A.  Origins and Basics of the First Generation 
Model

Where Did ANNs Come From?Where Did ANNs Come From?

Specific
Problem
Solvers

General Problem Solvers McCulloch
Pitts Neuron

Logical
Reasoning
Systems

Reinforcement
Learning

Widrow LMS
&Perceptrons

Expert Systems

Minsky

Backprop ‘74

Psychologists, PDP Books
Computational
Neuro, Hebb
Learning Folks

IEEE ICNN 1987: Birth of a “Unified” Discipline
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Backpropagation and the first true ADP design 
both originated in my work in the 1970’s. The 
flow chart above gives a simplified view of the 
flow of ideas.  
   In essence, the founders of artificial 
intelligence (AI) – Newell, Shaw and Simon, and 
Minsky [8] – proposed that we could build brain-
like intelligent systems by building powerful 
reinforcement learning systems. However, after a 
great deal of experimentation and intuition and 
heuristic thinking, they could not design systems 
which could optimize more than a few variables. 
Knowing that the brain can handled many 
thousands of variables, they simply gave up – 
just as they gave up on training simplified neural 
models (multilayer perceptrons). Amari, at about 
the same time, wrote that perhaps derivatives 
might be used somehow to train multilayer 
perceptrons – but suggested that it would be 
unlikely to work, and did not provide any 
algorithm for actually calculating the required 
derivatives in a distributed, local manner.  
 . In 1964, I – like many others – was deeply 
inspired by Hebb’s classic book on intelligence 
[9]. Inspired by the empirical work on mass 
action and learning in the brain (by Lashley, 
Freeman, Pribram and others), he proposed that 
we would not really need a highly complex 
model in order to explain or reproduce brain-like 
intelligence. Perhaps we could generate 
intelligence as the emergent result of learning; 
we could simply construct billions of model 
neurons, each following a kind of universal 
neuron learning rule, and then intelligence could 
emerge strictly as a result of learning. I tried very 
hard to make that work in the 1960’s, and failed. 
The key problem was that Hebb’s approach to a 
universal learning rule is essentially calculating 
correlation coefficients; those are good enough 
to construct useful associative memories, as 
Grossberg showed, but not to make good 
statistical predictions or optimal control. They 
are simply not enough by themselves to allow 
construction of an effective general-purpose 
reinforcement learning machine.  
  By 1971-1972, I realized that Hebb’s vision 
could be achieved, if we relax it only very 
slightly. It is possible to design a general purpose 
reinforcement learning machine, if we allow just 
three types of neuron and three general neuron 
learning rules, instead of just one.  
  Actually, the key insight here came in 1967. 
In 1967 (in a paper published in 1968 [4]), I 
proposed that we could overcome the problems 
with reinforcement learning by going back to 
basic mathematical principles – by building 

systems which learn to approximate the Bellman 
equation. Use of the Bellman equation is still the 
only exact and efficient method to compute an 
optimal strategy or policy of action, for a general 
nonlinear decision problem over time, subject to 
noise. The equation is: 
J(x(t))=Max <U(x(t), u(t)) + J(x(t+1))>/(1+r), 
              u(t)
where x(t) is the state of the environment at time 
t, u(t) is the choice of actions, U is the cardinal 
utility function,. R is the interest or discount rate 
(exactly as defined by economics and by Von 
Neumann), where the angle brackets denote 
expectation value, and where J is the function we 
must solve for in order to derive the optimal 
strategy of action. In any state x, the optimal u
is the one which solves the optimization problem 
in this equation. A learning system can learn to 
approximate this policy by using a neural 
network (or other universal approximator) to 
approximate the J function and other key parts of 
the Bellman equation, as shown in the next 
figure, from my 1971-1972 thesis proposal to 
Harvard: 

19711971--2: Emergent Intelligence Is Possible2: Emergent Intelligence Is Possible
If We Allow Three Types of Neuron If We Allow Three Types of Neuron 

(Thesis,Roots)(Thesis,Roots)

Critic

Model

Action

J(t+1)

R(t+1)

u(t)

X(t)

R(t)
Red Arrows:
Derivatives
Calculated By
Generalized
Backpropagation

In that design, I needed a generalized form of 
backpropagation as a tool to calculate the 
essential derivatives or sensitivity coefficients 
needed to allow correct incremental learning of 
all three parts. I formulated and proved a new 
chain rule for “ordered derivatives” which makes 
it possible to compute the required derivatives 
exactly through any kind of large nonlinear 
system, not just neural networks.  
   For my PhD thesis (reprinted in entirety in 
[10]), I included the proof, and many 
applications of backpropagation to systems other 
than neural networks. In [11,12], I described how 
generalized backpropagation can be used in a 
wide variety of applications, including ADP with 
components that could be neural networks or any 
other nonlinear differentiable system.  
   The method which I proposed to adapt the 
Critic network in 1971-1972 I called “Heuristic 
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Dynamic Programming” (HDP). It is essentially 
the same as what was later called “the Temporal 
Difference Method.” But I learned very early 
that the method does not scale very well, when 
applied to systems of even moderate complexity. 
It learns too slowly. To solve this problem, I 
developed the core ideas of two new methods – 
dual heuristic programming (DHP) and 
Globalized DHP (GDHP) – published in a series 
of papers from 1977 to 1981 [13-15]. To prove 
convergence, in [12], I made small but important 
changes in DHP; thus [12] is the definitive 
source for DHP proper. For more robust 
extensions, see the final sections of [16]. 
   See [7], [12] and many papers in this 
conference for reviews of practical applications 
of HDP, DHP, GDHP and related adaptive critic 
systems. 

B. A Second Generation Model/Design for  
Brain-Style Intelligence 
    By 1987, I realized that the brain has certain 
capabilities beyond what any of these first-
generation design offer. Thus I proposed [17] a 
second generation design, illustrated here: 

Lower Level 
Adaptive Critic System
Inf. Olive + Cerebellum

Upper Level Critic Network

Upper Level Model Network

U(t) for
Lower System

J(t+1)-J(t) from Upper System

Additional Local Utility 

Components

2nd Generation “Two Brains in One Model”

4-8 hertz

100-200 hertz

The key point is that truly powerful foresight, in 
an ADP system, requires the use of Critic 
Networks and Model Networks which are far 
more powerful than feedforward neural networks 
(or Hebbian networks or Taylor series or linear 
basis function networks). It requires the use of 
recurrent networks, including networks which 
“settle down” over many cycles of an inner loop 
calculation before emitting a calculation. That, in 
turn, requires a relatively low sampling rate for 
calculation; about 4-8 calculations per second is 
the rate observed for the higher centers of the 
mammal brain. However, smooth muscle control 
requires a much higher bandwidth of control; to 
achieve that, I proposed that the brain is actually 
a kind of master-slave system. I published some 
papers joint with Pellionisz on the details, and 

how to look for them in neuroscience data. 
(Some are posted on my web page.) In chapter 
13 of [12], I provided equations for an “Error 
Critic for motor control” which provide one 
possible design for a fast model-free “slave” 
neural network, matching this model. 
    Danil Prokhorov, in various IJCNN papers, 
showed how that kind of fast design (and some 
variations he developed) works well, by certain 
measures, in computational tests. Recent formal 
work in Frank Lewis’s group at the University of 
Texas (ARRI) has shown strong stability results 
for continuous-time model free ADP designs 
which require an external value input, exactly 
like what this master-slave arrangement would 
provide.  
  Intuitively… the “master” is like the coach 
within you, and the “slave” is like the inner 
football player. The football player has very fast 
reflexes, and is essential to the game, but he 
needs to strive to go where the more far-seeing 
coach sends him. The coach can learn more 
complex stuff faster than the football player, and 
responds to a more complex strategic picture. 
Lower-level stability is mainly provided by the 
football player.  
   In 1987, Richard Sutton read [17], and 
arranged for us to discuss it at great length in 
Massachusetts. This was the event which 
injected the idea of ADP into the reinforcement 
learning school of AI. The paper is cited in 
Sutton’s chapter in [18], which includes an 
implementation of the idea of “dreaming as 
simulation” discussed in [17].  

C. Engineering Roadmap and Neuroscience 
Evidence for Second Generation Theory/Design 
    In 1992, I believed that we could probably 
replicate the level of intelligence we see in the 
basic mammal brain, simply by refining and 
filling in these first and second generation 
theories of how the brain works. In fact, the first 
and second generation design already offer 
potential new general-purpose adaptive 
capabilities far beyond what we now have in 
engineering. It is still essential that we continue 
the program of refining and understanding and 
improving these classes of designs as far as we 
can go – both for the sake of engineering, and as 
a prerequisite to set the stage for even more 
powerful designs.  
    I have suggested that half of the funding 
aimed at reverse engineering the brain should 
still go towards the first and second generation 
program – half towards the ADP aspects, and 
half towards the critical subsystems for 
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prediction, memory and so on. (See 
www.eas.asu.edu/~nsfadp .) Because those are 
complicated issues, and I have written about 
them elsewhere, I will not elaborate here. 
  More and more evidence has accumulated 
suggesting that optimization (with a predictive or 
“Model” component) is the right way to 
understand the brain. For example, Nicolelis and 
Chapin, in Science, reported that certain cells in 
the thalamus act as advance predictors of other 
cells. More important, when they cut the existing 
connections, the thalamo-cortical system would 
adapt in exactly the right way to relearn how to 
predict. This is clear evidence that the thalamo-
cortical system – the biggest part of the brain – is 
in great part an adaptive “Model” network, a 
general-purpose system for doing adaptive 
“system identification” (as we say in control 
theory). Barry Richmond has observed windows 
of forwards and backwards waves of information 
in this circuit, fully consistent with our TLRN 
model of how such a Model network can be 
constructed and adapted.  
  Papez and James Olds senior showed decades 
ago how cells in the “limbic system” convey 
“secondary reinforcement signals,” exactly as we 
would predict for an adaptive Critic component 
of the brain. More recent work on the dopamine 
system in the basal ganglia suggests even more 
detailed relations between reinforcement 
learning and actual learning in neural circuits. 
   A key prediction of the engineering approach 
has always been the existence of subcircuits to 
compute the derivatives – the generalized 
backpropagation – required here. When we first 
predicted backwards synapses, to make this 
possible, many ridiculed the engineering 
approach. But later, in Science, Bliss et al 
reported a “myserious” but strong reverse 
NMDA synapse flow. Spruston and collaborators 
have reported backpropagation flows (totally 
consistent with the mathematics of generalized 
backpropagation) in cell membranes. The 
synchronized clock signals implied in these 
designs are also well-known at present to “wet,” 
empirical neuroscientists. 
  More details – and the empirical implications 
which cry out for follow-on work – are discussed 
in some of the papers on my web page, such as 
papers for books edited by Pribram. 
  One interesting recent thought. From 
engineering work, we have learned that the 
complexity of the learning system needed to 
train a simple input-output system or learned 
policy is far greater than the complexity of the 
input-output system itself. A simple example 

comes from Kalman filtering, where the 
“scaffolding” matrices (P, etc.) needed for 
consistent filtering are n times as large as the 
actual state estimates themselves; n is the 
number of state variables. Could it be that “junk 
DNA” includes a large system whose purpose is 
to tune the adaptation of the “coding DNA,” 
which are after all only a small portion of our 
genetic system? Could it be that individual 
neurons do contain very complex molecular 
memories after all – memories invisible to our 
conscious mind, but essential to more efficient 
learning (such as the matrices for DEKF 
learning)?  These are important empirical issues 
to explore. 

IV. BRIDGING THE GAP TO THE 
MAMMAL-BRAIN LEVEL 

  AI researchers like Albus [19] have long 
assumed that brains must have very complex, 
explicit, hard-wired hierarchies of systems to 
handle a high degree of complexity in space and 
in time. By 1997, I became convinced that they 
are partly right, because I was able to formulate 
modified Bellman equations which allow much 
faster learning in cases where a state space can 
be sensibly partitioned in a (learnable) 
hierarchical way[20,21]. Nature would not 
neglect such an opportunity – and it fit well with 
emerging new knowledge about the basal 
ganglia, and ideas from Pribram. 
   Recent biological data does not support the 
older hierarchy ideas form AI, but it clearly call 
out for some kind of specific mechanisms in 
three core areas: (1) a “creativity/imagination” 
mechanism, to address the nonconvex nature of 
complicated optimization problems; (2) a 
mechanism to exploit modified Bellman 
equations, in effect; and (3) a mechanism to 
handle spatial complexity. 

CEREBRAL CORTEX

Layers I to III
Layer IV: Receives Inputs

Layer V: Output Decisions/Options

Layer VI: Prediction/State Output

BASAL
GANGLIA

(Engage Decision)

THALAMUS

BRAIN STEM AND CEREBELLUM

MUSCLES
See E.L. White,
Cortical Circuits...

3rd Generation View of Creativity/Imagination: Layer V = “Option Networks”

•Challenge: www.werbos.com/WerbosCEC99.htm.
•Important work by Serpen, Pelikan, Wunsch, Thaler, Fu – but still wide open. 
Widrow testbed.

The flow chart above summarizes a strawman 
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model of the creativity mechanism which I 
proposed in 1997 [20]. I hoped to stimulate 
broad research into “brain-like stochastic 
search.” (See my web page for a CEC plenary 
talk on that challenge). Wunsch, Serpen, Thaler, 
Pelikan and Fu’s group at Maryland have all 
done important early work relevant to this task, 
but it hasn’t really come together. Likewise, 
work in the last few years on temporal com-
plexity has not done full justice to the modified 
Bellman equations, and has not shown as much 
progress as hoped for; part of the problem is that 
temporal complexity is usually associated with 
spatial complexity as well. Also, there is new 
evidence from neuroscience which has not yet 
been assimilated on the technology side.  
   The most exciting opportunity before us now is 
to follow up on more substantial progress and 
new ideas related to spatial complexity. 
   An important early clue towards spatial 
complexity came from the work of Guyon, 
LeCun, and others at AT&T, illustrated below: 

Moving Window Net: Clue Re ComplexityMoving Window Net: Clue Re Complexity

Best ZIP Code Digit Recognizer Used “Moving Window” or 
“conformal” MLP! (Guyon, LeCun, AT&T story, earlier…)
Exploiting symmetry of Euclidean translation crucial to reducing
number of weights, making large input array learnable, outcomes.

Hidden node
Value at I,j

9 to 1 MLP

Large pixel array input for Zip Code Digit

Same MLP with
same weights “moved”
over input array to yield
hidden node array

Hidden
node 
array

MLP

Which
digit?

The most accurate ZIP code digit recognizer then 
came from a simple MLP network, modified to 
exploit symmetry with respect to spatial trans-
lation. Instead of independently training hidden 
neurons to process pieces of an image, they 
would train a single hidden neuron, and re-use it 
in different locations, by moving it around the 
image. Le Cun later called this a “conformal 
neural network.” He had excellent results train-
ing it by backpropagation in many image 
processing tasks. Nevertheless, these feed-
forward networks could still not learn the more 
complex kinds of mappings, like the connected-
ness mapping described long ago by Minsky[22]; 
it is not surprising that a network which could 
not handle connectedness, or learn to emulate 
Hough relaxation of image data, could not learn 
how to segment an entire ZIP code. 
  In 1994, Pang and I demonstrated a network 
that could solve these problems – a “Cellular 
SRN,” (CSRN), which combines the key 

capabilities of a Simultaneous Recurrent 
Network [12] and a “conformal” network. This 
immediately allows prediction and control and 
navigation through complex two-dimensional 
scenes (and images) far more complex than an 
MLP could ever learn. That did not become 
immediately popular, in part because the learning 
was slow and tools were not available to make it 
easy for people to take advantage of the great 
brain-like power of such networks. This year, 
however, Ilin, Kozma and myself, at IJCNN06, 
reported a new learning tool which dramatically 
speeds up learning, and is available from Kozma  
as a MatLab tool. This by itself opens the door 
for neural networks to solve complex problems 
they could never really handle in the past. (There 
is great room for research to speed it up even 
more, but it is ready for practical use already.) 
   In 1997 [20] and in subsequent tutorials (and a 
patent), I proposed a more general approach to 
exploiting symmetry, which I called the 
ObjectNet. Instead of mapping a complex input 
field into M rectangular cells, all governed by a 
common “inner loop” neural network, one may 
map it into a network of k types of “Objects,” 
with k different types of “inner loop” neural 
networks. This has great potential in areas like 
electric power and image processing, for 
example. A conventional MLP or recurrent 
network can learn to manage perhaps a few 
dozen variables in a highly nonlinear system – 
but how can one design a neural network which 
inputs the thousands of variables of an entire 
electric power grid and predict the system as a 
whole? Object nets provide a way of doing that. 
   This year, Venayagamoorthy has published 
preliminary results showing how an ADP system 
based on a simple, feedforward version of 
ObjectNet can handle power systems more 
complex than the earlier first-generation brain-
like systems (which already outperformed more 
conventional control methods). More astonishing 
– David Fogel used a simple ObjectNet as the 
Critic in a system adapted to play chess. This 
was the world’s first computer system to achieve 
master-class performance in chess without using 
a supercomputer and without using detailed clues 
and advice from a human; it learned how to play 
the game at that level.  
   But all of this is just a beginning. At 
www.face-rec.org, a series of reviews basically 
show that two of the three top working systems 
today rely on neural network concepts 
(vonderMalsburg and Wechsler). The key to face 
recognition turns out to be the ability to learn
new “invariants” or transformations, more 
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complex than simple two-dimensional 
translation. This offers some easy short-term 
possibilities: to exploit CSRNs to learn the 
relevant mappings, which could never be learned 
before. But it also poses a very fundamental 
question: how can the brain learn such 
transformations? 
   Here is a new, more formal way to think about 
what is going on here. The first challenge here is 
to learn “symmetries of the universe.” More 
concretely, the challenge to the brain is to learn a 
family of vector maps f  such that: 
Pr(f (x(t+1)|f (x(t))=Pr(x(t+1)| x(t)) for all  and 
the same conditional probability distribution Pr. 
This new concept may be called stochastic 
invariance. 
   Once a brain learns these symmetries, it may 
exploit them in one or more of three ways: 
*“reverberatory generalization”: after observing 
or remembering a pair of data {x(t+1), x(t)}, also 
train on {f (x(t+1)),f (x(t))};
*“multiple gating”: after inputting x(t), pick  so 
as to use f to map x(t) into some canonical 
form, and learn a universal predictor form 
canonical forms. (This is analogous to the 
Olshausen model, which is very different in 
principle from neuroscience models of 
spontaneous or affective gating and attention.) 
*“multimodular gating”: like multiple gating, 
except that multiple parallel copies of the canon-
ical mapping are used in parallel to process more 
than one subimage at a time in a powerful way. 
  Human brains seem to rely on the first two, or 
the second. Perhaps higher levels of intelligence 
could be designed here. But this begs the 
question: how could these maps be learned? 
How could the brain learn to map complex fields 
into a condensed, canonical form for which 
prediction is much easier to learn? How can the 
“Objects” in an ObjectNet be learned? 
   This suggests an immediate and astonishingly 
simple extension of the ObjectNet theory. In 
1992, I proved basic consistency results for a 
new architecture called the “Stochastic Encoder/ 
Decoder Predictor” (SEDP).[12, chapter 13]. 
SEDP directly learns condensed mappings. It is 
an adaptive nonlinear generalization of Kalman 
filtering, explicit enough to allow the learning of 
symmetry relations. As with the earlier HDP and 
CSRN architectures, it will require many specific 
tricks to improve its learning speed. (e.g., 
exploitation of nearest neighbor relation in the 
learning, and salience flows?). It provides a 
principled way to learn the symmetry groups 
which are the foundation for a principled 
approach to spatial complexity. 
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