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Abstract— Opposition-Based Learning (OBL) is a new
scheme in machine intelligence. In this paper, an OBL
version Q-learning which exploits opposite quantities to
accelerate the learning is used for management of single
reservoir operations. In this method, an agent takes an
action, receives reward, and updates its knowledge in
terms of action-value functions. Furthermore, the transition
function which is the balance equation in the optimization
model determines the next state and updates the action-
value function pertinent to opposite action. Two type of
opposite actions will be defined. It will be demonstrated
that using OBL can significantly improve the efficiency
of the operating policy within limited iterations. It is also
shown that this technique is more robust than Q-Learning.

Index Terms— water reservoirs, Q-learning, opposite
action, reinforcement learning.

I. INTRODUCTION

F INDING efficient operating policies in multi-
reservoir applications has been a challenging re-

search area in the past decades. Many attempts using
traditional methods including linear and non-linear op-
timization techniques have been performed to overcome
the curse of dimensionality in real-world applications.
However, most of these efforts have included different
varieties of simplifications and approximations, which
usually make the operating policies inefficient in prac-
tice. Using optimization techniques along with simula-
tion, such as Reinforcement Learning (RL) techniques,
could be a suitable alternatives for this purpose. RL
is a powerful and well-known technique in machine
learning research to cope well with many optimization
and simulation problems. It is also called Simulation-
Based Dynamic Programming [1] in which a decision
maker (agent) optimizes an objective function through
interacting with deterministic or stochastic environments.
These interactions might cause some instant reward or
punishment which are accumulated during the training
process and called action-value functions. These values
are the basis for the agent to take proper actions in
different situations (states). Based on what has been
proven by Watkins [2], these values converge to steady

states if each action state pair is visited for infinite
number of times - practically multiple times; however,
this may take too much time in real-world applications.
Therefore, the question may come up how to achieve
an optimal solution with fewer interactions. Opposition-
Based Learning (OBL) scheme, which is firstly intro-
duced by Tizhoosh [3], could be a suitable answer to
the mentioned question. Tizhoosh has shown that using
this scheme in some soft computing methods such as
Genetic Algorithms (GA), Neural Networks (NN), and
Reinforcement Learning (RL) can generally speed up the
training process. However, this is completely problem
dependent. He also used this scheme with Reinforce-
ment Learning (RL) in finding a path to a fixed goal
in discrete grid worlds of different sizes [3]. In this
specific example, an agent takes an action in the current
state and updates the respective action-value function
in addition to those functions, which are related to
opposite actions or states. The criterion for granting
reward or punishment to an agent is the distance to a
fixed goal inside the grid. Moreover, the environment
under the study in this case study is totally deterministic.
In this paper, we investigate the effect of opposition-
Based Learning (OBL) scheme using Q-learning method
for the reservoir management. To show that this scheme
is efficient, it is applied on a single reservoir problem
which is completely stochastic in terms of inflow to
reservoir. Therefore, we can easily find the optimal
or near-optimal policies and performances by regular
Q-Learning and simulation in a reasonable time. The
corresponding results would consequently be extended
for multi-reservoir applications in the future research.
The paper is organized as follows: In the next section,
a simple model of a single reservoir will be explained.
Section 3 will provide a general review of Stochastic
Dynamic Programming (SDP). In section 4, Q-Learning
will be briefly reviewed. Some basic concepts of OBL
and a version of opposition-based algorithm using Q-
Learning in the reservoir management will be described
in section 5 and 6. Finally, in sections 7 and 8, some
experimental results and conclusions will be provided.
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II. SINGLE RESERVOIR MODEL

Generally, the goal in the reservoir management is to
find a policy mapping defined states to optimal water
releases such that the maximum benefit or the minimum
cost is achieved in long or short periods of time of
reservoir operations. For a single reservoir, this model
can be illustrated as described in following subsections
[4], [5].

objective function - The objective function can be
considered as follows:

Z = max

T∑

t=1

f t(st, at, dt), (1)

Generally in a single reservoir application, one of the
following objective functions is used:

Z1 = max

T∑

t=1

(at × Ct), (2)

Z2 = min

T∑

t=1

((at − dt)2), (3)

where T is the number of periods, st is the storage
volume in period t, at is the amount of release in period
t, dt is the given demand in period t, and Ct is the unit
price of water released in period t.

Balance Equation - This equality constraint indicates
the conservation of mass with respect to in- and output
of the reservoir:

st+1 = st + It − at ∀ t = 1 · · · T, (4)

where It is the amount of inflow to the reservoir in
period t. We can also consider evaporation or seepage
in the balance equation.

Minimum and maximum storage - The following
constraint provides a flood control while considering
some aspect of recreation or maintaining a minimum
level for powerplant operations:

st
MIN ≤ st ≤ st

MAX ∀ t = 1 · · · T, (5)

where st
MAX and st

MIN are the maximum and minimum
storage levels in period t, respectively.

Minimum and maximum releases - The purpose of
the following constraint is to provide a suitable water
quality for existence of wildlife and fish, and preventing
flood in downstream:

at
MIN ≤ at ≤ at

MAX ∀ t = 1 · · · T, (6)

where at
MAX and at

MIN are the maximum and minimum
release in period t, respectively.

III. STOCHASTIC DYNAMIC PROGRAMMING

In Dynamic Programming (DP) with stochastic situa-
tion called SDP, two different ways have been developed

for finding the optimal policy and value functions: policy
iteration and value iteration [1]. In the first one, using
an arbitrary policy, a set of equations is established
and solved for finding value functions corresponding to
this policy in steady state. This step is called policy
evaluation. Using these value functions, the second step
called policy improvement is performed to create a new
policy. It has been proved that if these steps are repeated
frequently enough, the policy and corresponding value
functions will converge to the optimal and steady state
points. The value iteration version of the SDP starts from
arbitrary value functions for all possible states in the last
period and continues by updating these values with a
recursive function iteratively. Every new value function
is basically the best expected value of the objective or the
recursive function with one or more actions as the best
actions among all admissible actions from current period
to the end of period. In other words, in every iteration
of this method, both policy improvement and policy
evaluation are performed. This has been also proved to
converge to steady state points. There are two ways to
specify the admissible actions for performing each of
mentioned methods of SDP in reservoir management:
pessimistic and optimistic. Assumed that inflow is the
only stochastic parameter in the reservoir model, admis-
sible actions for every state (storage level in each period)
based on these two schemes are determined according to
steps explained in Table I.
It is obvious that in pessimistic version of SDP, which

TABLE I

FINDING ADMISSIBLE ACTIONS

1) find all possible actions with respect to maximum
and minimum release, {Rt

min = at
1, at

2, . . . at
K = Rt

max}
2) discretize inflow to reservoir to N values, {It

1, It
2, . . . It

N }
with probability {P (It

1), P (It
2), . . . P (It

N )}
3) discretize storage level of reservoir to N values with respect to

maximum and minimum storage level in each period
{st

min = st
1, st

2, . . . st
M }

4) find the admissible actions as follows:
for all actions k = 1 : K, for all states i = 1 : M ,
and for all discrete inflows n = 1 : N
∗ Pessimistic:

At
i = {(at

k), ∀ n |st
i + It

n − at
k ≤ st+1

min n = 1, . . . N}
∗ Optimistic:

At
i = {(at

k, ∃ n |st
i + It

n − at
k ≤ st+1

min n = 1, . . . N }

is the conventional SDP in literature, an action will
be admissible if the next storage level computed from
balance equation (4) meets the minimum storage level
for all discrete values of inflow. Of course, actions which
cause a violation of minimum storage level for some
inflows can be significantly penalized. Therefore, these
actions will be most likely discarded from the optimal
policy at the end of the optimization process. In the
optimistic scheme, if there exists only one discrete value
of inflow in which the next storage computed from the
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TABLE II

FINDING VALUE FUNCTIONS V
t

i
FOR ALL ADMISSIBLE ACTIONS IN

OPTIMISTIC SCHEME FOR SDP FOR EACH STATE

for all admissible actions at
k in state i and time t, k=1,. . . Kt

i

∗∗ initialize immediate and accumulated reward IR=0, AR=0
for all discrete values of inflow in time t, It

n ,
with probability P (It

n) n = 1, . . . N with probabilities
∗ Find the next storage based on balance equation:

st+1 = st
i + It

n − at
k

∗ Find the actual storage:
s(actual) = max(st+1

min, st+1)
∗ Find the actual release from reservoir:

a(actual) = st
i + It

n − s(actual)

∗ Calculate the immediate reward:
IR = IR + f(a(actual)) × P(It

n)

∗ Calculate the accumulated reward
AR = AR + V t

j × P(It
n)

j= the closest discrete value of storage to s(actual)

∗∗ Qt

(i,at
k
)

= IR + AR

∗∗ take another action
calculate the value function pertinent to state i and period t

V t
i = max

k
Q(i,ak)

balance equation (4) satisfies the minimum storage, the
corresponding action will be admissible. Therefore, some
modifications are needed for finding the value functions
because one action in this scheme might lead to violation
of the minimum storage level for some discrete values
of inflow in the balance equation. As illustrated in Table
II, for each action, the actual release and related reward
should be computed and multiplied with the probability
of the respective inflow used in balance equation. The
summation of all these values makes the immediate
reward for corresponding action. Moreover, the next
storage should be set to the minimum storage level if an
action violates the minimum storage. In this situation,
the transition probability from current storage to min-
imum storage is the summation of all probabilities of
inflows which cause a violation of the minimum storage
level in the balance equation. SDP can be applied in a
stochastic optimization problem subject to existing the
transition probabilities.In absence of these probabilities,
Q-Learning as a model-free technique would be an
option to tackle the problem.

IV. Q-LEARNING

Q-Learning has been derived from the formulation of
the Stochastic Dynamic programming (SDP) [1], [6].
This method uses the Robbins-Monro algorithm to take
an average of action-value function based on the real
observations in simulation [7]. In other words, after each
observation, the corresponding action-value function is
updated:

Qt
(k+1)(i, a) = Qt

(k)(i, a) + 1
NOV (i,a) × [R +

γ max
b∈A(j,t́)

Qt́
k(j, b) − Qt

(k)(i, a)], (7)

where R is total immediate reward, NOV (i, a) is the
number of visits for action a in state i. The term

1
NOV (i,a) can be substituted with α and called learning
rate. This parameter is a very important component
in the learning process by which the convergence of
all action-value functions to the steady state points is
controlled. Two types of learning rates are actually used
in the learning process: constant and variable. In the first
one, which is suitable for dynamic systems, the learning
rate is constant through the whole process of learning;
however, this might cause some instability or significant
oscillation in action-value functions during the learning
process. In many applications, this value is considered
very small; therefore, much more time for leaning is
needed. In the second type, the learning rate changes
with time. After each experience, this value is updated
for corresponding action-value function; however, it may
depends on the initial events and consider very small
weights for others which are in distance to these obser-
vations. To decrease the effect of this drawback, some
researchers considered A

NOV (i,a) in stead of 1
NOV (i,a)

in which A can be a small value [1]. Another important
issue in Q-Learning method is the policy of taking action
in each iteration. This policy could be a combination
of exploration and exploitation. An agent usually would
like to explore the environment in initial experience and
proceed with more exploitation as the learning process
is continued. There are four common policies in taking
actions: greedy, ǫ -greedy, Softmax, and random policy
[8]. Taking action in greedy policy is only exploitation of
achieved knowledge. In ǫ-greedy policy, an agent prefers
takes greedy actions most of the time (exploitation), and
it takes a random action in a certain amount of time
(exploration for ǫ% of the time). In the Softmax policy,
which has been derived from Gibbs distribution, an agent
chooses action a with the probability [8]:

P (a) =
eQt(i,a)/τ

∑
b∈|A(i)|

eQt(i,b)/τ
. (8)

τ is a positive number called temperature. For high
temperatures, the probability for choosing all actions
are the same; however, small temperatures cause higher
probability for actions with high action-value estimation.
Admissible actions in Q-Learning are analogously deter-
mined based on what was explained for SDP in Table I.
An interval in which all inflows to reservoir are placed
on can be considered. This interval would be extracted
from a specific distribution or existing historical data.
The minimum and maximum of the interval are used in
balance equation to find admissible actions for each state
in pessimistic or optimistic strategy, respectively [9].
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V. OPPOSITION-BASED LEARNING (OBL)

Opposition-Based Learning (OBL) scheme has been
used in different ways in machine learning algorithms.
For example, to apply this scheme to Neural Net-
works(NN) [3], [10], two different networks are con-
structed: one with random weights and another with their
opposites. Given these two networks, the training pro-
cesses are performed simultaneously with training data
for one complete epoch, and total error pertinent to each
of these networks are computed. The best one in terms
of error function is selected for the next epoch. Tizhoosh
proposed two different versions to find opposite weights
in Neural Networks [3]. Ventresca and Tizhoosh [10]
also used opposite transfer function to improve the time
of learning for the backpropagation algorithm in feed-
forward multi-layer perceptron networks. OBL has also
been tested for Genetic Algorithms (GA) in which anti-
chromosomes are determined for some chromosomes
with the lowest fitness values in the population by total
change of all bits of the chromosomes from zero to
one or vice versa. In the Reinforcement Learning (RL)
method, an opposite action or state can be defined with
two different types: type I, which is based on boundaries
of action and state, and type II in which the opposite
action or state are calculated based on respective action-
value functions [3]. Let s be the current state and a

the action taken by the agent. Assuming that minimum
and maximum state and action can be numerically de-
termined as smin, smax, amin, and amax, respectively.
Based on the type I definition, the opposite action, ă and
the opposite states s̆ are determined as follows [3]:

ă = amax + amin − a, (9)

s̆ = smax + smin − s. (10)

In the reservoir management, an opposite action/state
in each iteration will be determined with respect to the
boundary conditions of storage levels as follows:

ă = Rt
max + Rt

min − a, (11)

s̆ = st
max + st

min − s. (12)

In type II, action-value functions have an important
role to specify opposite actions and states. To compute
opposite action, the following formula may be used:

ă ∈ {â | Qt
(i,â) ≈ max

(b∈Ai)
Qt

(si,b)
+ min

(b∈Ai)
Qt

(si,b)
−Qt

(si,a)}.

(13)
Tizhoosh [11] has suggested a similarity matrix, ηi,j ,
which can be considered for finding opposite states:

η(i,j) = 1 −

∑
(b∈Ai)

|Qt
(si,b)

− Qt
(sj ,b)|

∑
(b∈Ai)

max((Qt
(si,b)

), (Qt
(sj ,)))

, (14)

where Q(si,a) is the action value for state i and action
a, η(i,j) is a value showing the similarity between state
i and state j, Ai is the set of all admissible actions
in state i. To perform the training process after each
interaction, reinforcement agent, whether using type I
or type II opposition, could update at least four action-
value functions corresponding to each action and state
pair. If the agent knows the transition functions, it can
use the stochastic parameters to calculate the next state
for each pair [9]. Otherwise, the agent has to use the
knowledge, which is acquired from previously taken
actions, to establish an intuition about the reward and
the next state for opposite action and opposite state [11].

VI. OPPOSITION-BASED Q-LEARNING IN

RESERVOIR MANAGEMENT

In the reservoir management, it is assumed that the
reinforcement agent knows the transition function which
is the balance equation, it also knows the reward function
f t

a. Therefore, it can calculate the next state and the
immediate reward for opposite action and opposite state.
Moreover, because the majority of action-value functions
have zero value at the very beginning of learning process
or may have been previously observed multiple times,
opposite action and state determined in type II are
not accurate enough. Therefore, some kind of function
approximation such as a feed-forward multi-layer per-
ceptron networks can be used to increase the accuracy of
choosing opposite action or state in type II with respect
to current knowledge extracted from previous observa-
tions. Furthermore, running a feed-forward multi-layer
perceptron is time-consuming and not reasonable to be
trained frequently during the learning process. Therefore,
the network could be trained only every several episodes.
The distance between two consecutive trainings is con-
sidered as a model parameter and should be specified
at the beginning of the learning. As a result, there are
two action-value functions: one is obtained from the
direct interactions of the agent with the environment, the
second is only used to find the type II opposite actions
and states. A version of Q-Learning using OBL based
on types I and II is illustrated in Table III.

VII. EXPERIMENTAL RESULTS

All information in a single-reservoir case study has
been derived from Fletcher [12]. One cycle in this
problem is one complete year with 12 months. Minimum
and maximum storage and release in different months of
year are given in Table IV.

Inflow to reservoir is normally distributed and its
monthly averages are given in Table IV. The coefficient
of variance ( σIt

µIt
) in each month of a year is a pre-

determined value used to obtain the variance of inflow.
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Moreover, the evaporation from reservoir is neglected.
The objective function in Fletcher’s model is to max-
imize the power generation. The benefit of release
per/unit is approximated in a single value for each month
in Table V. In addition to above objective function, the
total least-squared error is considered as a new objective,
which should be minimized during the learning process.
The demand for power generation in different months
of a year are given in the Table IV. Each state and
decision variable was discretized into 55 and 7 equal
intervals, respectively. Therefore, there are 8 discrete
values for storage in each month, in which the state of the
system in each iteration should belong to one of them.
Total number of actions that can be taken by the agent
is 56. Each episode in Q-learning or opposition-based
Q-Learning is equivalent to 30 years . the number of
repetitions for each episode is considered as a parameter.
Furthermore, the results of opposition-based Q-Learning
in this study focus on opposite actions not opposite
states. A multi-layer perceptron (MLP) with one hidden
layer and twenty nodes as a function approximation is
used to find the type II opposite actions. As mentioned in
Table III, the training of the networks is only performed
after every c episodes during the learning process. This
parameters is determined at the beginning of the learn-
ing. According to the steps described in the table, before
the first training of the network, the Opposite action is
computed based on type I using equation 9 , and it is
then calculated based on type II using equation 13. The
decisions of Q-learning are compared to decisions de-
rived from opposition-based Q-Learning. Moreover, SDP
as a concrete method in a single reservoir application
is used for verifying the performance of both learning
methods. As it is clear, the solution of SDP is much
closer to global solution; therefore, it is expected that
the Q-Learning and opposition-based method achieve the
same results. Furthermore, to show the performance of
each method, mean, variance, and coefficient of variance
(σ

µ ) of the benefit or least-squared error in a year are
computed based on a simulation of the reservoir from
50 to 2000 years using the policy achieved from the
learning step. To compare the results of Q-Learning and
opposition-based Q-Learning, we have run 20 complete
experiments including the learning and simulation steps
and computed the average and variance of annual aver-
age, annual variance, and annual coefficient of variance
for each specific set of parameters.
Performance - In the Tables VI, VII, and VIII, the
average of annual average gain and annual variance
of gain in 20 different experiments with different sets
of parameter for regular Q-Learning, opposition-based
Q-Learning type I, and opposition-based Q-Learning
type II are shown. A code is assigned to each set
of parameters. Moreover, in Table VIII the number of
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Fig. 1. Comparing the average of annual gain in Q-Learning and
opposition-based Q-Learning type I.
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Fig. 2. Comparing the variance of annual gain in Q-Learning and
opposition-based Q-Learning type I.

times that a neural network is trained is also given. As
it is clear there is a significant difference in average
gain for opposite-based Q-Learning both type I or II
in the number of small episodes. For instance in 50
episodes, the average of average gains for 20 runs is
79.60 in Q-learning compared to 95.04271 and 91.04361
in opposition-based Q-Learning type I and Type II,
respectively. It is worth mentioning that in this situation
the average of variance and coefficient of variance in
opposition versions especially in type I are almost the
same (e.g., for 50 episodes, the variances are 40.0 and
41.11 for Q-learning and opposition-based Q-Learning
type I, respectively). It means that the average of gain
dramatically improves without increasing variance. To
show that opposition-based Q-Learning has better results
than regular Q-Learning at the beginning of the learning,
we compare the performance of these two methods
in terms of average gain, variance and coefficient of
variance in Figures 1-3 for 20 runs with 50 and 300
episodes for opposition-based Q-Learning type I and
regular Q-learning, respectively. As it is clear in these
figures, for most of runs, the opposition-based Q-learning
is more efficient than regular Q-learning. Figures 4
and 5 also compare these two types of Q-learning in 300
episodes and 1000 episodes for opposition and regular Q-
learning, respectively. As shown in Figure 4, the average
gain in opposition version is higher than the average
in Q-Learning for most runs. However, the variance of
opposition version become worse for almost all runs
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TABLE III

THE PROCESS OF Q-LEARNING IN OBL BASED ON TYPE I AND II

1) initialize action-value functions and opposite action-value
functions, Qt

i,a = 0, and Q̆t
i,a = 0

2) initialize the number of episodes between two different
runs of the training of the neural networks, c,

3) descritize storage level and release with respect
to physical conditions

4) find the admissible actions based on optimistic or pessimistic
scheme, At(i), for all discrete values of storage and periods

5) determine the number of years in each episode, noyears,
learning rate, α, the maximum number of episodes noepisode,
the number of hidden layer and nodes, hd and hn, for the networks

6) set the number of training the networks, r = 0 and
the number of episode, h = 1

7) start with hth episode and taking a random value
for the current storage (current state)

8) set year = 1 at the beginning of each episode
9) set the period t
10) take an admissible action based on the selected policy

and receive reward
11) update the corresponding action-value function:

Qt
(k+1)(i, a) = Qt

(k)(i, a) + α × [R+

γ max
b∈A(j,t́)

Qt́
k(j, b) − Qt

(k)(i, a)]

12) checking the following conditions:
∗∗ if h < c

∗ compute opposite action, ă, based on type I using equation 9
∗ update the action-value function:

Qt
(k+1)(i, ă) = Qt

(k)(i, ă) + α × [R+

γ max
b∈A(j,t́)

Qt́
k(j, b) − Qt

(k)(i, ă)]

∗∗ if h = c × r,
∗ r = r + 1
∗ set opposite action-value functions:

Q̆t(i, a) = Qt(i, a) for all i and a
∗ consider action-state pairs which are visited enough

as the training data
∗ run the feed-forward multi-layer perceptron networks
∗ approximate action-value functions for action-state pairs in

the test data using trained networks, Q̆t(i, a)
∗ compute the opposite action using equation 13

with opposition action-value functions Q̆t
(k+1)(i, a)

∗ update action-value functions and their opposites for the
action and the opposite action, Q̆t(i, a),Q̆t(i, ă)
, and Qt(i, ă)

∗∗ if h ≥ c × r
∗ compute the opposite action using equation 13

with opposition action-value functions, Q̆t
(k+1)(i, a)

∗ update opposite action-value functions and their opposites
corresponding to the action and the opposite action, Q̆t(i, a),
Q̆t(i, ă), and Qt(i, ă)

13) go to step 10 if t 6= T ; otherwise, go to the next step
14) set year = year + 1, if year ≤ noyears,

go to 9; otherwise, go to the next step
15) set the number of episodes h = h + 1, if h ≤ noepisode

go to 7; otherwise, go to the next step
16) find the best decisions for all states
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Fig. 3. Comparing the coefficient of variance of annual gain in Q-
Learning and opposition-based Q-Learning type I.

TABLE IV

MAXIMUM AND MINIMUM STORAGES AND RELEASES, AVERAGE

INFLOW, AND DEMAND

Month
Value

m3 1 2 3 4 5 6 7 8 9 10 11 12
Max.

Storage 8 8 8 8 8 8 8 8 8 8 8 8
Min.

Storage 1 1 1 1 1 1 1 1 1 1 1 1
Max.

release 4 4 6 6 7.5 12 8.5 8.5 6 5 4 4
Min.

release 0 0 0 0 0 0 0 0 0 0 0 0
Average
inflow 3.4 3.7 5 5 7 6.5 6 5.5 4.3 4.2 4 3.7
Demand 3 4 5 6 5 7 4 7 5 5 5 5

TABLE V

THE BENEFIT OF RELEASE PER UNIT FOR EACH MONTH OF A YEAR

Month
benefit

($) 1 2 3 4 5 6 7 8 9 10 11 12
Release 1.4 1.1 1.0 1.0 1.2 1.8 2.5 2.2 2.0 1.8 2.2 1.8

TABLE VI

PERFORMANCE OF Q-LEARNING (NE=NUMBER OF EPISODES)

code NE Ave. Gain Var. of Gain Coeff.
of var.

1 50 80.99 40.00 0.079
6 100 86.47 46.70 0.073
12 200 90.1 48.48 0.084
19 300 93.7 46.63 0.081
26 400 96.59 51.18 0.074
31 500 97.12 53.31 0.075
36 700 98.13 55.23 0.075
41 1000 98.98 55.78 0.075
47 2000 99.12 57.29 0.076

TABLE VII

PERFORMANCE OF OPPOSITION-BASED Q-LEARNING TYPE I

code NE Ave. Gain Var. of Gain Coeff.
of var.

2 50 95.04 41.11 0.067
7 100 97.12 44.62 0.069
13 200 98.47 53.88 0.075
20 300 98.94 62.21 0.079
27 400 99.44 62.59 0.079
32 500 99.54 64.78 0.081
37 700 99.68 66.21 0.082
42 1000 99.70 66.59 0.082
48 2000 99.54 65.34 0.081
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TABLE VIII

PERFORMANCE OF OPPOSITION-BASED Q-LEARNING TYPE II

code No. of No. Average Variance Coefficient
episodes of NN of Gain of Gain of variance

3 50 5 91.04 59.12 0.079
4 50 2 93.04 51.62 0.077
5 50 1 94.26 40.52 0.067
8 100 10 96.37 62.09 0.084
9 100 5 96.65 63.87 0.081
10 100 2 97.33 54.33 0.069
11 100 1 96.68 46.23 0.07
14 200 20 99.58 63.18 0.08
15 200 10 99.49 63.39 0.08
16 200 4 99.45 61.44 0.079
17 200 2 99.32 61.09 0.079
18 200 1 98.94 53.87 0.075
21 300 30 100.15 64.9 0.08
22 300 6 99.89 68.68 0.083
23 300 3 99.67 64.44 0.080
24 300 2 99.41 60.36 0.078
25 300 1 99.19 58.95 0.077
28 400 2 99.71 62.33 0.079
29 400 1 99.49 60.61 0.078
33 500 5 99.74 61.26 0.078
34 500 2 99.7 60.60 0.083
35 500 1 99.42 66.20 0.78
38 700 3 99.78 67.54 0.082
39 700 1 99.67 64.42 0.080
43 1000 10 99.78 69.93 0.084
44 1000 5 99.80 67.46 0.082
45 1000 2 99.41 65.77 0.081
46 1000 1 99.12 57.29 0.076
49 2000 1 99.54 65.58 0.081
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Fig. 4. Comparing the average of annual gain in Q-Learning with
opposition-based Q-Learning.

(Figure 5). This means that using opposition version
might be not useful during the entire learning process.

As the number of episodes increases, the average
of average gain converges to steady state points for
three methods with different set of parameters; however,
the efficiency of opposition-based learning decreases in
terms of variance and coefficient of variance (Figure
6 and 7). As illustrated in these figures, the average
of average gain remains unchanged after 500 episodes
for opposition versions of the learning; however, their
variances preserve a constant value which is higher than
the variance of the regular Q-Learning. This means that
for a certain number of episodes, Q-Learning would
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Fig. 5. Comparing the variance of annual gain in Q-Learning and
opposition-based Q-Learning
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Fig. 6. The average of average of annual gain related to 20 runs for
different episodes in learning methods

produce the same results as its opposition version in
terms of average gain with smaller variance.
Robustness - Since the learning process is performed

using simulation, the operating policy at the end of each
experiment might be different. Since the policies in this
application at the end of different simulation runs are,
subject to sufficient iterations, almost the same, we can
assume that there is only one optimal policy in this case
study. Therefore, a learning method with more stable
policies at the end of all experiments represents more ro-
bustness. In order to investigate the quality of Q-learning
and its opposition versions in terms of robustness, the
following criteria called mean and variance of distance,
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Fig. 7. The average of variance of annual gain related to 20 runs for
different episodes in learning methods
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Fig. 8. The mean of distance between two policies in learning methods

L̄ and σ2
L:

L(k,ḱ) =
T∑

t=1

M∑
i=1

(|πt
(i,k) − πt

(i,ḱ)
|),

for k = 1 : K = K1!
2!×(K1−2)! , and ḱ = k + 1 : K,

(15)

L̄ =

K∑

k=1,ḱ=k+1

L(k,ḱ)

K
, (16)

var(L) = σ2
L =

K∑

k=1,ḱ=k+1

(L(k,ḱ) − L̄)2

K − 1
, (17)

where K1 is the number of experiment (k1 = 20) for
each method, M is the number of discrete levels for
the storage or the state (M = 8), πt

(i,k) and πt
(i,ḱ)

are

two different action policies which map the state ith

and the period tth to the optimal action a, and K is a
value showing the total pairwise combinations of these
action policies (K = 190). Therefore, in our case study,
there are 190 different values for L(k,ḱ) introducing the
rate of difference between two different action policies.
These values used to find L̄ or σ2

L as two criteria
showing the robustness of each method. Figures 8 and 9
illustrate the trend of changes in these values, L̄ and σ2

L,
in Q-Learning and its opposition versions for different
episodes. As it is obvious in these figures, opposition Q-
Learning is more robust for small number of episodes.
However, as the number of episodes increases, the mean
and variance of distance in both methods decreases and
converges to the steady state points. If there are multiple
solutions for the problem at hand, we can substitute the
πt

(i,k) with Pπt
(i,k)

as a policy performance in equation
15.

VIII. CONCLUSIONS

It has been shown in this paper that the opposition-
based Q-learning is more robust than regular Q-learning
in terms of the investigated criteria. In other words, this
version shortens the exploration phase and establishes
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Fig. 9. The variance of distance between two policies in learning
methods

a low variance gain more efficiently compared to Q-
Learning. This can be particularly observed at the begin-
ning of the learning. Furthermore, the opposite version in
both types also gives an efficient policy leading to higher
objective function in the simulation. This is a promising
effect that could be employed in large scale applications
when it is not possible to experience all possible action-
state pairs for large number of learning steps. Of course,
it is necessary to investigate and verify the achievements
in this paper for other applications with different kind of
objective functions.
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