
 

Abstract— In this paper, a novel reinforcement learning neural 
network (NN)-based controller, referred to adaptive critic 
controller, is proposed for affine nonlinear discrete-time systems 
with applications to nanomanipulation.  In the online NN 
reinforcement learning method, one NN is designated as the critic 
NN, which approximates the long-term cost function by assuming 
that the states of the nonlinear systems is available for 
measurement. An action NN is employed to derive an optimal 
control signal to track a desired system trajectory while 
minimizing the cost function. Online updating weight tuning 
schemes for these two NNs are also derived. By using the 
Lyapunov approach, the uniformly ultimate boundedness (UUB) 
of the tracking error and weight estimates is shown.  
Nanomanipulation implies manipulating objects with nanometer 
size. It takes several hours to perform a simple task in the 
nanoscale world.  To accomplish the task automatically the 
proposed online learning control design is evaluated for the task 
of nanomanipulation and verified in the simulation environment.  

Index Terms — Neural network, reinforcement learning, 
on-line learning, dynamic programming, Lyapunov method, 
nanomanipulation. 

I. INTRODUCTION 
Dynamic programming (DP) has been extensively applied 

[1] for the optimal control of nonlinear dynamic systems, 
However, one of the drawbacks of DP is the computation cost 
with the dimension of the nonlinear system, which is referred to 
as the “curse of dimensionality”. Therefore, adaptive or 
approximation methods for DP (e.g. see [2]) have been 
developed recently although most of them [3] are implemented 
either by offline using iterative schemes or require the 
dynamics of the nonlinear systems to be known a priori.
Unfortunately, these requirements are often not practical for 
real-world systems, since the exact model of the nonlinear 
system is usually not available. Additionally, stability of the 
closed-loop system using adaptive DP-based methods are not 
discussed which limited its applicability for control 
applications until now.  

On the other hand, reinforcement learning is originated from 
animal behavior research and its interactions with the 
environment. Differing from the traditional supervised learning 
in neural network (NN), there is no desired behavior or training 
examples employed within reinforcement learning schemes. 
Nevertheless, it is common to apply reinforcement learning for 
optimal controller design, since the cost function can be 
directly seen as a form of reinforcement signal. Of the available 
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reinforcement learning schemes, the temporal difference (TD) 
learning method [4]-[5] has found many applications in the 
engineering area. The advantage of reinforcement learning in 
general is that it does not require the knowledge of the system 
dynamics even though an iterative approach is typically 
utilized. To obtain a satisfactory reinforcement signal for each 
action, the approach must visit each system state and apply each 
action often enough [7], and requires the system to be 
time-invariant, or stationary in the case of stochastic system. 

To overcome the iterative offline methodology for real-time 
applications, several appealing online neural controller designs 
methods were introduced in [3], [8]-[9]. They are also referred 
to as forward dynamic programming (FDP) or adaptive critic 
designs (ACD). The central theme of this approach is that the 
optimal control law and cost function are approximated by 
parametric structures, such as neural networks (NNs), which 
are trained over time along with the feedback information. In 
other words, in ACD methods, instead of finding the exact 
minimum, the ACDs try to approximate the Bellman equation: 

( )( )
( )

( )( ) ( ) ( )( ){ }min 1 , 1
u k

J x k J x k U x k x k= + + + , where ( )x k  is 

the state and ( ) ( ( ))u k u x k=  is a specific control law at time 
step k, the strategic utility function ( ( ), ) ( ( ))J x k u J x k=
represents the cost or performance measure associated with 
going from k to final step N, ( ) ( )( )1, +kxkxU  is the utility 
function denoting the cost incurred in going from ( )x k  to 

( 1)x k +  using control ( )u k , and ( 1)J k +  is the cost or 
performance measure associated in going from state k+1 to the 
final step N.  In the ACD literature, NNs are widely used for 
approximation.   

In [6], a new NN learning algorithm based on gradient 
descent rule is introduced and the approach is evaluated on 
three examples. However, no proof of the convergence or 
stability of the system was presented. By contrast, Lyapunov 
analysis was derived in [10] and [11].  The approach presented 
in [11] is specific to robotic systems whose dynamics are 
introduced in continuous-time. On the other hand, [6] and [10] 
employ simplified binary reward or cost function which is a 
variant of the standard Bellman equation. To the best of our 
knowledge, there is no published work considering the 
convergence proof of the closed-loop system with standard 
Bellman equation. 

In this paper, we are considering NNs for the control of 
nonlinear discrete systems with quadratic-performance index as 
the cost function. The whole system consists of two NNs:  an 
action NN to derive the optimal (or near optimal) control signal 
to track not only the desired system output but also to minimize 
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the long-term cost function; an adaptive critic NN to 
approximate the long-term cost function ( )( )J x k  and to tune the 

action NN weights. Closed-loop stability is shown. 
Nanomanipulation [12] aims at manipulating and handling 

nanometer size objects and structures with nanometer 
precision. It is also the first and critical step for any complex 
functional nano devices. Typically, assembly of small nano 
structures built by nanomanipulation today consists of ten to 
twenty particles, and may take an experienced user a whole day 
to construct.  

A significant amount of work on modeling interactive forces 
during manipulation was introduced in [13]-[14]. Based on that 
model, real-time controllers can be designed to automate 
nanomanipulation. On the other hand, due to extremely 
complex environmental conditions during nanomanipulation 
tasks, any iteration based optimal controllers will fail to obtain 
satisfactory result. In other words, for every single 
manipulation attempt, the environmental conditions or the 
system dynamics is different from the other, which means the 
learning process obtained in current attempt/iteration can not be 
used directly during the next iteration. Thus, in this paper, the 
online learning controller design is implemented and evaluated 
on the task of nanomanipulation and simulation results show its 
effectiveness. 

II. BACKGROUND

A. Optimal Control 
In this paper, we consider the following stabilizable 

nonlinear affine system, given in the form 

               ( )
( )( ) ( )( ) ( ) ( )

01 ( ( ), ( ))x k f x k u k

f x k g x k u k d k

+ =

= + +
 (1) 

with the state ( ) ( ) ( ) ( )1 2, , ,
T n

nx k x k x k x k R= ⋅⋅⋅ ∈  at time instant 

k. ( ( )) nf x k R∈  is a unknown nonlinear function vector, and 

( )( ) n ng x k R ×∈  is a matrix of unknown nonlinear functions, 

( ) nu k R∈  is the control input vector and ( ) nd k R∈  is the 

unknown but bounded disturbance vector, whose bound is 
assumed to be a known constant, ( ) md k d≤ . Here  stands 

for the Frobenius norm [17], which will be used through out 
this paper. It is also assumed that the state vector ( )x k  is 
available at the kth step. 

Assumption 1: Let the diagonal matrix ( )( ) n ng x k R ×∈  be a 

positive definite matrix for each ( ) nx k R∈ , with ming R+∈
and maxg R+∈  representing the minimum and maximum 
eigenvalues of the matrix ( ( ))g x k  respectively, such that 

min max0 g g< ≤ .
The long-term cost function is defined as 

0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

       (2) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, u  is a given 
control policy, R is a positive definite matrix and (0 1)γ γ≤ ≤
is the discount factor for the infinite-horizon problem. As 
observed from (2), the long-term cost function is the discounted 
sum of the immediate cost function or Lagrangian expressed as 

( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

T

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

= +
= − − +

(3)

where Q is a positive definite matrix. In this paper, we are using 
a widely applied standard quadratic cost function defined based 
on the tracking error ( )e k , which will be defined later in 
contrast with [6] and [10]. The immediate cost function ( )r k
can be viewed as the system performance index for the current 
step. 

The basic idea in the adaptive critic or reinforcement 
learning design is to approximate the long-term cost function J 
(or its derivative, or both), and generate the control signal 
minimizing the cost.  By using learning through an algorithm, 
the online approximator will converge to the optimal cost 
function and the controller will converge to the optimal 
controller correspondingly. As a matter of fact, for an optimal 
control law, which can be expressed as *( ) *( ( ))u k u x k= ,
the optimal long-term cost function can be written alternatively 
as *( ) *( ( ), *( ( ))) *( ( ))J k J x k u x k J x k= = , which is just 
a function of the current state [16]. Next, one can state the 
following assumption. 

Assumption 2: The optimal cost function *( )J k  is finite 
and bounded over the compact set nS R⊂  by mJ .

Next it will be shown that nanomanipulation will be 
expressed as a nonlinear discrete-time system (1). 

B. Nanomanipulation 

ß

d
Aps
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Ftp

ftp

fps

Fz
c

y

z

Fig. 1. Geometry and the interacting forces between AFM tip, nano particle and 
stage during pushing process. 

Nowadays, assemblies of small nano structures built by 
nanomanipulation are typically realized by using an Atomic 
Force Microscope (AFM) as the manipulator. Initially used as 
the imaging tool, the tip of AFM is also utilized as manipulation 
end effector.  

The simplified geometrical relationship between AFM tip, 
nano sphere and substrate (stage) is shown in Fig. 1. Briefly 
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speaking, the objective of nanomanipulation is to drive the tip 
of AFM to push nano particles along a desired track. An 
alternative way is to drive the stage instead of the tip to 
accomplish the push task. In our experiment, the latter approach 
is selected. 

The model development and analysis involves the adhesion 
forces between AFM tip, substrate and nano particle to be 
pushed. In the nano world, gravitational forces are relatively 
very small and, therefore, are neglected. The main components 
of the adhesion forces are van der Waals, capillary, and 
electrostatic forces [14].  

After taking all those adhesion and friction forces into 
consideration, a satisfactory model is built in [13] and [14], 
which is adopted in this paper. Since we are driving the stage to 
accomplish the task, the equation governing the system is 

2

2

2

1 1 cos ( , )

1 1 sin ( , )

1 1 ( , )

s s s ps s sub x
x x x

s s s ps s sub y
y y y

s s s ps s sub z ps
z z z

x x x f z z
w w Q

y y y f z z
w w Q

z z z F z z A
w w Q

θ τ

θ τ

τ

+ + + =

+ + + =

+ + + = +

            (4) 

where ( ,  ,  )s s sx y z  is the position of the stage on x, y, and z axis 
respectively. ( ,  ,  )x y zw w w  is the resonant frequency and 

( ,  ,  )x y zQ Q Q  is the amplification factor for the stage. 

( ,  ,  )x y zτ τ τ  is the stage driving force which is seen as the 

control input signal. The term θ  is the angle between y axis 
and the pushing direction, and subz  is the substrate surface 
height displacement, which is simulated to be a sinusoid 
function in this paper for simplification. Now

psf  is the friction 

force and 
psF  is the attractive/repulsive interaction force 

between particle and substrate, which is a complex function of 
the pushing environment. For more details, please refer to [13] 
and [14]. Equation (4) represents the manipulation system 
which can be viewed as a nonlinear system of second order.  

To fulfill Assumption 1, we define the tracking error as 

                                     
s d

s s d

s d

x x
e y y

z z
= −  (5) 

where ( ,  ,  )d d dx y z  is the desired movement of the stage. Based 
on that, filtered tracking error can be defined as s ss e e= + Λ ,
with Λ  a positive definite design parameter matrix. Common 
usage is to select Λ  diagonal with large positive entries. 
Therefore, the system dynamics can be rewritten in term of the 
filtered tracking error as follows 

2 2

2 2

cos

sin

s s

s d s d

s d s d

s d s d

x
s x s d d x ps

x

y
s y s d d y ps

y

z

z

s e e
x x x x
y y y y
z z z z

w x w x x x w f
Q

w
y w y y y w f

Q

w
Q

θ

θ

= + Λ

= − + Λ − Λ

Λ − − − − Λ −

= Λ − − − − Λ −

Λ −

2

2

2

2 2

0 0
0 0
0 0

( )

( )

x x

y y

z z

s z s d d z ps ps

s

w
w

w

z w z z z w F A

f s w

τ
τ
τ

τ

+

− − − Λ − −

= + ⋅
 (6) 
As long as the controller guarantees that the filtered error s  is 
bounded, the tracking error se  is bounded. In order to apply 
our nonlinear discrete-time controller, the system dynamics (6) 
need to be discretized to obtain an affine nonlinear 
discrete-time system [17] which is given by 
             ( )( 1) ( ( ), ( 1),...) ( )ss k T F s k s k w s kτ+ = − + ⋅ +  (7) 

where T is the sampling time and Fs is the corresponding 
nonlinearity in discrete. By rearranging (7), one can get an 
affine nonlinear discrete-time system (1), with the filtered 
tracking error as the system state. 

III. ONLINE REINFORCEMENT LEARNING CONTROLLER DESIGN

For the purpose of this paper, our objective is to design an 
online reinforcement learning NN controller for the system (1) 
such that 1) all the signals in the closed-loop system remain 
UUB; 2) the state ( )x k  follows a desired trajectory 

( ) n
dx k R∈ ; and 3) the long-term cost function (2) is 

minimized so that a near optimal control input can be 
generated. Here, the “online” means the learning of the 
controller takes place “in real-time” by interacting with the 
plant, instead of in an offline manner. 

( )Ĵ k

1z− ( )ˆ 1J k −

Fig. 2. Online neural dynamic programming based controller structure. 

The block diagram of the proposed controller is shown in 
Fig. 2, where the action NN is providing a near optimal control 
signal to the plant while the critic NN approximates the 
long-term cost function. The learning of the two NNs is 
performed online without any offline learning phase. 

In our controller architecture, we consider the action and the 
critic NN having two layers. The output of the NN can be given 
by ( )T TY W V Xφ= , where V  and W  are the hidden layer and 
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output layer weights respectively.  The number of hidden layer 
nodes is denoted as 2N .

A general function 3( ) ( )Nf x C S∈  can be written as 
( ) ( ) ( )T Tf x W V x xφ ε= +                          (8) 

with ( )xε  a NN functional reconstruction error vector. In our 
design, V  is initially selected at random and held fixed during 
entire learning process. It is demonstrated in [15] that if the 
hidden layer weights, V , are chosen initially at random and 
kept constant and if 

2N is sufficiently large, the NN 
approximation error ( )xε  can be made arbitrarily small since 
the activation function vector forms a basis. 

Furthermore, in this paper, a novel tuning algorithm is 
proposed to make the NN weights robust so that PE condition is 
not needed, which will be discussed later. Next we present the 
controller design. Before we proceed, the following mild 
assumption is needed. 

Assumption 3: The desired trajectory of the system states, 
( )dx k , is bounded over the compact subset of nR . For our 

nanomanipulation system, the desired value is zero. 

A. The Action NN Design 
The tracking error at instant k is defined as 

                                ( ) ( ) ( )de k x k x k= −                            (9) 
Then future value of the tracking error using system dynamics 
from (1) can be rewritten as 
     ( 1) ( ( )) ( ( )) ( ) ( ) ( 1)de k f x k g x k u k d k x k+ = + + − +    (10) 
To eliminate the tracking error, a desired control law is given 
by 

1
1( ) ( ( ))( ( ( ) ( 1) ( ))d du k g x k f x k x k l e k−= − + + +        (11) 

where 1
n nl R ×∈  is a design matrix selected such that the 

tracking error, ( )e k , is converging to zero. 

Since both of ( )( )kxf  and ( )( )kxg  are unknown smooth 
nonlinear functions, the desired feedback control ( )du k  cannot 
be implemented directly. Instead, an action NN is employed to 
generate the control signal. From (11) and considering 
Assumption 1 and 2, the desired control signal can be 
approximated as 

( ) ( )( ) ( ( )) ( ) ( ( )) ( )T T T
d a a a a a a au k w v s k s k w s k s kφ ε φ ε= + = +  (12) 

where ( ) ( ) ( ) 2,
TT T ns k x k e k R= ∈  is the action NN input 

vector. The action NN consists of two layers, and an n
aw R ×∈  and 

2 an n
av R ×∈  denote the desired weights of the output and hidden 

layer respectively with ( ( ))a s kε  is the action NN approximation 
error, and 

an  is the number of neurons in the hidden layer. 

Since av  is fixed, for simplicity purpose, the hidden layer 
activation function vector ( )( ) 2nT

a av s k Rφ ∈  is denoted as 

( )( )a s kφ .
Considering the fact that the desired weights of the action 

NN are unknown, the actual NN weights have to be trained 
online and its actual output can be expressed as 

ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
a a a a au k w k v s k w k s kφ φ= =               (13) 

where ˆ ( ) an n
aw k R ×∈  is the actual weight matrix of the output 

layer at instant k.
Using the action NN output as the control signal, and 

substituting (12) and (13) into (10) yields 

( ) ( )
( ) ( )( )
( ) ( )( ) ( ) ( )

1

1

1

( 1) ( ( )) ( ( )) ( ) ( ) ( 1)
( ( )) ( ) ( ) ( )

( ( )) ( ) ( ( )) ( ) ( )

d

d

T
a a a

a a

e k f x k g x k u k d k x k
l e k g x k u k u k d k

l e k g x k w k s k s k d k

l e k g x k k d k

φ ε

ζ

+ = + + − +
= + − +

= + − +

= + +

(14)

where 
ˆ( ) ( )a a aw k w k w= −                              (15) 

( )( )( ) ( )T
a a ak w k s kζ φ=                          (16) 

( ) ( ( )) ( ( )) ( )a ad k g x k s k d kε= − +              (17) 
Thus, the closed-loop tracking error dynamics is expressed 

as 
( ) ( ) ( )( ) ( ) ( )11 a ae k l e k g x k k d kζ+ = + +    (18) 

Next the critic NN design is introduced. 

B. The Critic NN Design 
As stated above, a near optimal controller should be able to 

stabilize the closed-loop system by minimizing the cost 
function.   In this paper, a critic NN is employed to approximate 
the long-term cost function ( )J k . Since the actual ( )J k  is 
unavailable for us at the kth time instant in an online learning 
framework, the critic NN is tuned online in order to converge to 
the actual ( )J k .

First, the prediction error generated by the critic or the 
Bellman error [6] is defined as  

ˆ ˆ( ) ( ) [ ( 1) ( )]ce k J k J k r kγ= − − −             (19) 
where the subscript “c” stands for the “critic” and  

( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ ˆT T T
c c c c cJ k w k v x k w k x kφ φ= =      (20) 

where ( )Ĵ k R∈  is the critic NN output which is an 

approximation of ( )J k . In our design, the critic NN is also a 

two-layer NN, while ( ) 1ˆ cn
cw k R ×∈  and cn n

cv R ×∈  represent 
its actual weight matrix of the output and hidden layer 
respectively. The term cn  denotes the number of the neurons 
in the hidden layer. Similar to HDP, the system 
states ( ) nx k R∈ are selected as the critic NN input. The 

activation function vector of the hidden layer ( )( ) cnT
c cv x k Rφ ∈

is denoted as ( )( )c x kφ  for simplicity. Provided that enough 

number of the neurons in the hidden layer, the optimal 
long-term cost function ( )*J k  can be approximated by the 

critic NN with arbitrarily small approximation error 
cε (k), 

*( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
c c c c c c cJ k w v x k x k w x k x kφ ε φ ε= + = +

 (21) 
Similarly, the critic NN weight estimation error can be 
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defined as 
ˆ( ) ( )c c cw k w k w= −                              (22) 

where the approximation error is given by 
( )( )( ) ( )T

c c ck w k x kζ φ=                          (23) 

Thus, we   

       ( ) ( )
ˆ ˆ( ) ( ) ( 1) ( )

( ) * ( 1) * 1
( ) ( ) ( 1)

c

c c

c c

e k J k J k r k
k J k k J k

r k k k

γ
γζ γ ζ

ε ε

= − − +
= + − − − −
+ − + −

 (24) 

Next we discuss the weight tuning algorithms for critic and 
action NNs. 

C. Weight Updating for the Critic NN 
Following the discussion from the last section, the objective 

function to be minimized by the critic NN can be defined as a 
quadratic function of tracking errors as 

( ) ( ) ( ) ( )21 1
2 2

T
c c c cE k e k e k e k= =               (25) 

Using a standard gradient-based adaptation method, the weight 
updating algorithm for the critic NN is given by 

( ) ( ) ( )ˆ ˆ ˆ1c c cw k w k w k+ = + Δ                  (26) 
where 

( ) ( )
( )

ˆ
ˆ

c
c c

c

E k
w k

w k
α

∂
Δ = −

∂
                     (27) 

with c Rα ∈  is the adaptation gain. 
Combining (19), (20), (25) with (27), the critic NN weight 

updating rule can be obtained by using the chain rule as 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )( ) ( )

ˆ
ˆ ˆˆ ˆ

c c c
c c c

c c c

c c c

E k E k e k J k
w k

w k e k w kJ k

x k e k

α α

α γφ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂∂

= −

 (28) 

Thus, the critic NN weight updating algorithm is obtained as 

( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ1 1c c c cw k w k x k J k r k J kα γφ γ+ = − + − −  (29) 

D. Weight Updating for the Action NN 
The basis for adapting the action NN is to track the desired 

trajectory and to lower the cost function. Therefore, the error 
for the action NN can be formed by using the functional 
estimation error ( )a kζ , and the error between the nominal 
desired long-term cost function ( )dJ k R∈  and the critic signal 

( )Ĵ k . Now we define the cost function vector as 
1ˆ ˆ ˆ( ) ( ) ( ) ... ( )

T nJ k J k J k J k R ×= ∈ . Let 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )

( )( ) ( ) ( )( )( ) ( )

1

1

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +

  (30) 

where ( )a kζ  is defined in (16). Given Assumption 1, we define 

( )( ) n ng x k R ×∈  as the principle square root of the diagonal 

positive definite matrix ( )( )g x k , i.e., 

( )( ) ( )( ) ( )( )g x k g x k g x k× = , and ( )( )( ) ( )( )
T

g x k g x k=

[10]. The desired long-term cost function ( )dJ k  is nominally 

defined and is considered to be zero (“0”), which means as low 
as possible. 

Hence, the weights of the action NN ˆ ( )aw k  are tuned to 
minimize the error  

( ) ( ) ( )1
2

T
a a aE k e k e k=                            (31) 

Combining (14), (16), (18), (30), (31) and using the chain 
rule yields 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( )1

ˆ
ˆ ˆ

( ( )) ( )

1

a a a a
a a a

a a a c

T
a a a

T
a a a

E k E k e k k
w k

w k e k k w k

s k g x k k J k

s k e k l e k d k J k

ζ
α α

ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

 (32) 

where a Rα +∈  is the adaptation gain of the action NN.  
However, ( )ad k  is typically unavailable. So as in the ideal 

case, we assume the ( )d k  and the mean value of ( ( ))a s kε  over 

the compact subset of 2nR  to be zero, and obtain the weight 
updating algorithm for the action NN as 

( ) ( ) ( )( ) ( ) ( ) ( )( )1ˆ ˆ1 1
T

a a a aw k w k s k e k l e k J kα φ+ = − + − +  (33) 

IV. MAIN THEORETIC RESULT

Assumption 4: Let aw  and cw  be the unknown output layer 
target weights for the action and critic NNs respectively, and 
assume that they are upper bounded such that 

a amw w≤ , and c cmw w≤                     (34) 

where amw R+∈  and cmw R+∈  represent the bounds on the 
unknown target weights. 
Fact 1: The activation functions for the action and critic NNs 
are bounded by known positive values, such that  

( ) ( ),a am c cmk kφ φ φ φ≤ ≤                           (35) 

where ,am cm Rφ φ +∈  is the upper bound for the activation 
functions. 
Assumption 5: The NN approximation errors ( )( )a s kε  and 

( )( )c x kε  are bounded above over the compact set nS R⊂  by 

amε  and cmε  [11]. 
Fact 2: With the Assumption 1, 4, the term ( )ad k  in (17) is 

bounded over the compact set nS R⊂  by 

( ) maxa am am md k d g dε≤ = +             (36) 

Combining Assumption 1, 3, and 4 and Facts 1, and 2, the main 
result of this paper is introduced in the following theorem. 

Theorem 1: Consider the system given by (1).  Let the 
Assumptions 1 through 4 hold with the disturbance bound md
a known constant. Let the control input be provided by the 
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action NN (13), with the critic NN (20). Further, let the weights 
of the action NN and the critic NN be tuned by (29) and (33) 
respectively. Then the tracking error ( )e k , and the NN weight 

estimates of the action and critic NNs, ( )ˆaw k  and ( )ˆ cw k  are 

UUB, with the bounds specifically given by (A.9) through 
(A.11) provided the controller design parameters are selected as 
(a)       ( ) 2 min

2
max

0 a a
gk
g

α φ< <                   (37) 

(b)                             ( )( ) 2
0 1c c x kα φ< <                    (38) 

(c)                                   
max

30
3

l< <                              (39) 

(d)                                            1
2

γ >                         (40) 

where aα  and cα  are NN adaptation gains, and α  is 
employed to define the strategic utility function. 
Proof: See Appendix. 

V. SIMULATION RESULTS

To demonstrate the feasibility of the theoretic results, 
nanomanipulation system using the proposed controller is 
chosen as an example. Some of the parameters used in this 
simulation are set as follows: (note: 3I  is the identity matrix 
with dimension of 3) 

TABLE 1
SUMMARY OF PARAMETERS USED IN SIMULATION OF NANOMANIPULATION

Parameter xw yw zw , ,x y zQ Q Q θ
Value 1570 rad/s 1570 rad/s 117.6 rad/s 20 30

Parameter R F γ Λ 1l
Value 0.1 0.1 0.5 100 30.1 I×

Parameter cn an cα aα
Value 20 20 1×e-8 1×e-8

The simulation is run with time step of 1×e-5. The effect of 
surface roughness in a form of sinusoid function is also 
introduced into the simulation as disturbance. The objective or 
the desired trajectory is to realize the movement of the particle 
along the sample surface with a constant speed. A proper force 
on the nano particle will indicate that the particle is being 
pushed by the tip, which could be observed by the movement of 
the stage along z axis. 

Our online learning controller is first applied, with the results 
shown as in Fig. 4. 
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Fig. 4. Simulation results of the online learning controller on nanomanipulation 
system. Solid line: trajectories of the actual movement of the stage; Dashed 
line: desired movement of the stage. Note: there is no desired trajectory in the z 
axis. 
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Fig. 5. Simulation results of PD controller on nanomanipulation system. Solid 
line: trajectories of the actual movement of the stage; Dashed line: desired 
movement of the stage. 

To compare the performance, the system is also simulated with 
a typical PD controller. The results are shown at Fig. 5. From 
the comparison of the results, we can find that the online 
learning controller outperforms the PD controller in stabilizing 
the stage along the z axis, which also implies that an appropriate 
applied force on the particle is applied within a shorter time. 
Meanwhile, the cost of generating the input for the online 
learning controller is calculated to be 397.24, which is much 
better than that of the PD controller (541.44). 

VI. CONCLUSION

A novel reinforcement learning-based online neural 
controller is designed for affine nonlinear systems to deliver a 
desired performance under bounded disturbance. The proposed 
NN controller optimizes the long-term cost function by 
introducing a critic NN. Unlike the many applications where 
the controller is trained offline or trained by multiple iterations, 
the control signal in our scheme is updated in an online fashion. 
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Online learning control designs are especially useful for such 
complex systems whose dynamics are varying along with time 
and whose exact models are unreachable. At the same time, 
nanomanipulation system is a promising application and 
demands that the process is made automatic. However, its 
“fragile” dynamics exclude the implementation of iterative 
based control design, since no two manipulation attempts share 
a same dynamics. The “optimal” control policy being 
approached by a learning entity in one trial does not hold for 
another trial. In this regard, an online learner is more 
applicable. 

To guarantee that a control system must be stable all the time, 
the UUB of the closed-loop tracking errors and NN weight 
estimates is verified by using Lyapunov analysis in the 
presence of bounded disturbances and approximation errors. 
Finally, the feasibility of our method is strengthened through 
the simulation results. 

APPENDIX

Proof of Theorem 1: Define the Lyapunov candidate as 

( ) ( )

4

1

2 31 2

2
4

( )

( ) ( ) ( ) ( ) ( )
3

( 1)

i
i

T T
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a c

c

L k L

e k tr W k W k tr W k W k

k

γγ γ
α α

γ ζ

=

=

= + +

+ −

(A.1) 

where i Rγ +∈ , 1, 2,3,4i =  are design parameters. Hence, the 
first difference of the Lyapunov function is given by 
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Set 2 2 2γ γ γ′ ′′= , where ( )( )
( )( )

2

min
2 2

2
min max

1 1"
2

a a

a a

s k g

g s k g

α φ
γ

α φ

−
≤

−
,

Therefore, 

( ) ( )( )( )

( )
( )( )( )

( )( )
( )

( ) ( )( )( )

( )
( )( )( )

( )( )
( )

( ) ( )

22
2

2 2 min 2 min max

22 2

22
2

min max

22
2

2 min 2 min max

22

2

22
2

min max

2
2

( ( )) ( )
2

( ( ))

*

a a a

a a a
a

a a

a a a

a a

a c

a a

a

L g k g s k g

I s k g x k J k d k
k

g s k g

g k g s k g

I s k g x k
k n k

g s k g

n J k d k

γ ζ γ α φ

α φ
ζ γ

α φ

γ ζ γ α φ

α φ
ζ γ ζ

α φ

γ

Δ ≤ − − −

− +
′× + +

−

≤ − − −

−
′× + +

−

′+ +
 (A.4) 
At the same time, 
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where maxQ  and maxR  are the maximum eigenvalue of matrix 

Q  and R  respectively and 

                    ( )2 2
4 4 ( ) ( 1)c cL k kγ ζ ζΔ = − −  (A.6) 

Combining (A.1) - (A.6) yields 
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where 
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For the standard Lyapunov analysis, equation (A.7) and 

(A.8) implies that 0LΔ ≤  as long as the conditions (37) – (40) 
are satisfied and following holds 
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or 
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or 
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M
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ζ
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≤
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              (A.11) 

According to the standard Lyapunov extension theorem [17], 
the analysis above demonstrates that the tracking error ( )e k
and the weights of the estimation errors are UUB. Further, the 
boundedness of ( )a kζ  and ( )c kζ  implies that the weight 

estimations ˆ ( )aw k  and ˆ ( )cw k  are also bounded. 
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