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Abstract— There are fundamental difficulties when only using 

a supervised learning philosophy to predict financial stock short-
term movements. We present a reinforcement-oriented 
forecasting framework in which the solution is converted from a 
typical error-based learning approach to a goal-directed match-
based learning method. The real market timing ability in 
forecasting is addressed as well as traditional goodness-of-fit-
based criteria. We develop two applicable hybrid prediction 
systems by adopting actor-only and actor-critic reinforcement 
learning, respectively, and compare them to both a supervised-
only model and a classical random walk benchmark in 
forecasting three daily-based stock indices series within a 21-year 
learning and testing period. The performance of actor-critic-
based systems was demonstrated to be superior to that of other 
alternatives, while the proposed actor-only systems also showed 
efficacy.   
 

I.  INTRODUCTION 
 
A series-based stock price is a typical nonstationary 

stochastic process having no constant mean level over time for 
it to remain in equilibrium. The idea of using a mathematical 
model to describe the dynamics of such a process and then 
forecast future prices from current and past values is well 
established by substantial research in nonlinear time series 
analysis [1]. Although many academics and practitioners have 
tended to regard this application with a high degree of 
skepticism, there has been reliable evidence [2] that markets 
may not be fully efficient and the random walk hypothesis 
could be rejected. Proponents of technical analysis have thus 
made serious attempts in the past decades to apply various 
statistical models, and more recently, artificial intelligent (AI) 
methods to test the predictability of stock markets.  

Notably, most publicized methods in the literature employ a 
supervised learning philosophy in the context of regression, 
i.e. the problem is usually formalized as inferring a forecast 
function based upon available training sets, and then 
evaluating the obtained function by how well it generalizes. 
These efforts, however, have their inherent limitations due to 
the underlying assumption that price series often exhibit 
homogeneous nonstationary. In reality, stock markets 
experience speculative bubbles and crashes which can not be 
explained by the patterns generalized from history [3]. 
Forecasting the real market trend of a stock other than its 

"expectations" in the future by supervised approaches alone, is 
fundamentally difficult.  

Reinforcement Learning (RL), or Approximate Dynamic 
Programming (ADP) in a broader RL sense, has so far 
received only limited attention in computational finance 
community. Applications to date have concentrated on optimal 
management of asset and portfolios [4], as well as derivative 
pricing and trading systems [5], given the fact that they can be 
directly treated as a class of learning decision and control 
problems in terms of optimizing relative performance 
measures over time under constraints. Such research continues 
earlier efforts [6] in which similar problems are formulated 
from the standpoint of dynamic programming and stochastic 
control. Financial time series forecasting, on the other hand, 
appears hard to be abstracted as a straightforward problem of 
goal-directed learning from interaction. However, this task 
involves specific long-term goals of market profitability and 
measurable short-term performance (reward) of the adopted 
prediction model. And, it is generally agreed that the path that 
a stock's prices follow is a certain Markov stochastic process 
(e.g. Geometric Brownian Motion). Such features reveal the 
possibility for integrating RL techniques to further explore the 
dynamics of sequential price series movements without 
explicit training data. Few studies have been made in this area. 

In this paper, we present reinforcement-oriented schemes 
for forecasting short-term stock price movements by using 
actor-only and actor-critic RL methods, respectively. A 
comparison study is then implemented to examine the 
performance of a variety of strategies for predicting three 
daily-based stock indices series within a 21-year learning and 
testing period from 1984 to year 2004. Furthermore, the 
nonparametric Henriksson-Merton test is used to analyze the 
short-term market timing abilities of two reinforcement 
schemes at the 5% level. 

 
II. FUNDAMENTAL ISSUES FOR SYSTEM DEVELOPMENT 

 
Development begins with using observations at time t  from 

a stock price series tZ  to forecast its value at some future time 
t l+ , where 1, 2, .l = …  It is a typical example of noisy time 
series prediction. Here the observations are supposed to be 
available at discrete intervals of time. This problem can be 
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naturally regarded as to infer a prediction function 

( ) ( )tZtz l f
∧

= , based on a training set tD  generated from 

training sample { }1 2t t t t t kZ z z z z− − −= . The 
obtained function is evaluated by how accurately it performs 
on new data which are assumed to have the same distribution 
as the training data. Such supervised learning philosophy 
results in the predominance of statistical models (including 
closely related artificial neural network systems and kernel-
based learning methods) in this application field (see, e.g., [7]-
[9] and references therein). At any given time, the function 

( )tf Z  has fixed structure and depends upon a set of 
parameters β . The prediction function then becomes 

( ),tf Z β  and its result relies on the estimation of β . 
These methods, though, face inherent difficulties. First, 

control of the complexity of the learned function is the key for 
a model to achieve good generalization. Modelling based on 
large training sets tend to follow irrelevant properties 
embedded in nonstationary data (overfitting), while small 
training sets might create an overly simple mapping which is 
not enough to capture the true series dynamics (underfitting). 
Second, time series prediction requires a model to address the 
temporal relationship of the inputs. With highly noisy data, the 
typical approaches that are adopted, such as recurrent neural 
networks (RNNs), are likely to only take into account short-
term dependencies and neglect long-term dependencies. 
Finally, supervised learning used for forecasting essentially is 
about inferring an underlying probability distribution solely 
from a finite set of samples and is well known as a 
fundamentally ill-posed problem. The obtained model lacks 
the exploration ability to capture out-of sample dynamics. 

In the financial area, the simple yet profound idea revealed 
by the capital asset pricing model (CAPM) holds: the 
expectation of reward / price is regulated by inherent market 
rules and can be estimated. The aforementioned supervised 
learning forecasting efforts have focused on exploiting the 
underlying market inertia so that a more accurate prediction 
for the target's expectation value in the future can be 
generated. The output of such models can be viewed as the 
"rational" portion of the actual realized price. On the other 
hand, what investors really care about is the actual realized 
stock return (or loosely speaking, realized trend). Although 
ample research [10] has been done in value investing theory 
and technical analysis to support the non-random walk theory, 
the existing explanations for realized price behaviours tend to 
be the after-the-fact story. Like their statistics counterparts, 
most AI forecasting models are concentrating on generalizing 
the price behaviours from huge available history data. 
Supervised learning is extremely useful to catch and adapt to 
the market inertia which is repeatable within a certain time 
window. Much of the present effort has stopped here and 
regarded all differences between actual prices and the 
corresponding expectations as unpredictable noise. This is 
probably not true. 

In reality, markets are neither perfectly efficient nor 
completely inefficient. All markets are efficient to a certain 

extent, some more so than others [11]. Rather than being an 
issue of black or white, a more appropriate financial time 
series predictive model need to consider both sides. Stock 
markets often act in some “strange” motions that change the 
short-term price trajectory other than just making it follow the 
rule of market inertia. Individual investors make all kinds of 
decision directed by all kinds of investment philosophy at 
every possible time step. The “irrational” part of them can be 
synthesized daily as a collective behaviour that actually drives 
day-to-day price fluctuations, and it behaves in predictable 
ways to some degree [3]. For instance, directed by the long-
term goal of profitability, investors tend to expect rising 
prices, miss price jumps, and learn from experience [12]. In 
essence, the market movement in next time step is closely 
related to its current state. Modern RL design is attempting to 
solve this class of learning decision and control problems that 
no supervised learning approaches can handle.  

 
III.  REINFORCEMENT-ORIENTED FORECASTING 

FRAMEWORK 
 

The proposed reinforcement-oriented stock forecasting 
framework is depicted in Fig. 1. At any given time t , the 

prediction of future prices ( )z t l
∧

+  is determined by outputs 
from both supervised and reinforcement models as following:  

( ) ( ) ( )SL RLz t l z t l z t l
∧ ∧ ∧

+ = + + +                   (1) 
where 1, 2,l = …  . 

Specifically, ( )SLz t l
∧

+  is obtained from the continuous 
nonlinear function inferred from a training set tD : 

( ) ( )( ), ,SL t SLz t l f Z t tβ
∧

+ =                      (2) 
They can be viewed as the unobserved underlying price 

expectations which strictly follow market inertia.   
Meanwhile, the reinforcement model receives the current 

input state ts ∈S , where S  is the set of all possible input 
states in the stock market environment, and generates 

( )RLz t l
∧

+  which can be viewed as the "extra" value imposed 

by the synthesized investors' “abnormal” decision. ( )RLz t l
∧

+  
are determined by a reinforcement policy π  which is a 
mapping from a ts  to its correspond action. 
 
 
 
 
 
 
 
 

 
Fig.1. The proposed reinforcement-oriented forecasting framework 
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π  is represented through the structure ( RLβ ) and is 
dependent or independent of the value function based on 
adopted RL / ADP techniques.  

This architecture is adapted using mixed learning 
algorithms, i.e. supervised learning and reinforcement 
learning, respectively. At t l+ , the supervised learning 
method is adopted in the first learning phase. The differences 

between ( )SLz t l
∧

+  and the actual available prices ( )z t l+  are 
used to generate required derivatives such that values of free 
parameters in the block SLβ  can be trained. In the second 
learning phase, the training in the supervised learning part is 
frozen and the reinforcement learning method is applied to 
further trace the portion of the actual stock return that results 
from “irrational” investment behaviours (i.e. 

( ) ( )SLz t l z t l
∧

+ − + ). A short-term reinforcement signal 

( )r t l+  is needed and established by transforming the error 

term among ( )z t , ( )z t l
∧

+  and ( )z t l+ . Properly designed 

( )r t l+  will show the quality of ( )RLz t l
∧

+  toward the 
emphasis of prediction. In this learning phase, the parameters 

RLβ  will keep evolving online and performance of the RL 
model should be improved gradually as the learning proceeds. 
The solid lines in Fig. 1 represent signal flow, while the 
dashed lines are the paths for parameter tuning.  

Supervised learning has the advantages of fast convergence 
in structure and parameter learning so that it can be employed 
first to exploit the best interpolation for market inertia. 
Reinforcement learning techniques are then applied in the 
significant reduced search space to explore and imitate 
synthesized sequential "irrational" investment decision series 
without an explicit training sample. This way, the essential 
disadvantages of supervised learning are alleviated by the 
fine-tuning process of reinforcement learning. Furthermore, 
since the search domain of the reinforcement learning is 
greatly reduced in advance, learning can be accelerated and 
premature convergence may also be potentially avoided. In 
brief, such integration should help to make the forecasting 
problem less ill-posed. 

 
IV.  SUPERVISED LEARNING MODEL 

 
A numbers of different supervised learning methods have 

been applied to generalize the temporal relationship of the 
financial time series with varying degree of success. Among 
them, multi-layer perceptrons (MLPs) and recurrent neural 
networks (RNNs) are two of the most common choices to 
infer an underlying probability distribution from a small set of 
training data. In practice, RNNs often perform better than 
MLPs to address temporal issues since the learning of RNNs 
is biased towards patterns that occur in temporal order instead 
of random correlations. Therefore, RNNs are considered as a 
supervised learning approach in proposed mixed learning 
algorithms.  

The Elman recurrent network [13] is chosen because it is a 
simplified realization of general RNNs. The architecture is 
similar to the standard feed-forward form except it also 
includes one or more context (recurrent) units which store the 
previous activations of the hidden units and then provides 
feedback to the hidden units in a fully connected way.  

A raw price series is pre-processed and the modelling is 
based on the first order differences. 

( ) ( )( ), ,t SLt l f t tδ β
∧

+ = δ                            (3) 

( ) ( )SL tz t l z t lδ
∧ ∧

+ = + +                              (4) 

where { }1, , ,t t t t nδ δ δ− −=δ , 1t t tz zδ −− . 
The training of the Elman network is implemented in batch 

mode, updating the model using historical data within a 
selected supervised training window. This is an intuitive 
method since typically one fixed market inertia would not last 
for longer amounts of time. After training, a network is used to 
predict the next l  prices. The entire training window will then 
move forward l  time steps (i.e. the length of supervised 
testing window) and the training process will be repeated. 
During any given training period, the goal is to minimize the 
squared error between all the network outputs and 
corresponding actual first order price differences by adjusting 
the weights in the network, as defined by (5). 

( )
2

1minimize 
2SL t l

t l

E t lβ δ δ
∧

+
 

= − +    
 

∑∑           (5) 

 
V.  SCHEMES OF REINFORCEMENT LEARNING MODEL 

 
While the deterministic part of a price can be detected and 

assessed by supervised learning approaches, the more irregular 
portion of price evolution is also to a certain degree 
predictable by means of current RL / ADP tools. The ultimate 
objective of a reinforcement learning model is to fine-tune 
predictions so that the goal of short-term market timing can be 
reached better. Assessed by the sum of the discounted 
immediate rewards, the system's total expected long-term 
reward from time t  is as following: 

( ) ( )∑
∞

=

− +=
1

1

k

k ktrtR α                              (6) 

where α  is a discount factor in the infinite continual 
forecasting problem ( )10 << α . Like many financial 
applications, there is no inherent delay in the financial 
forecasting task in measuring the system's short-term 
performance. Such performance is illustrated by a properly 
designed immediate reinforcement signal r . Note that 
traditional goodness-of-fit performance criteria in time series 
analysis are not necessarily suitable in the financial sense. 
Investors are more concerned about the forecastability in 
terms of profitability. r  should be designed according to this 
concern.  

As following, the reinforcement learning model will be 
constructed by two ADP techniques, respectively.   
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A. Actor-only RL Model 
A measurable immediate short-term performance of the 

forecasting system enables the use of an actor-only RL to 
optimize the parameterized policy structure directly. Direct 
policy search without learning a value function is appealing in 
terms of the strengths in problem representation and 
computation efficiency. The recurrent reinforcement learning 
(RRL) algorithm in [14] is utilized here to maximize gradually 
accrued immediate rewards of prediction. 

Considering 1l = , the actor-only RL model that takes into 
account the historical price series has the following stochastic 
decision function: 

( ) ( ) ( )1 ; , ;RL RLt RL t tz t F t z t Iβ ε
∧ ∧ + =  

 
              (7) 

where ( ) ( ){ }1, , ; , 1 ,SL SLt t tI z z z t z t
∧ ∧

−= −  is the 

relevant available information set at time t , ( )RL tβ  denotes 
the adjustable model parameters at time t , and tε  is a random 
variable. A simple model can take the autoregressive form of: 

( ) ( ) ( ) ( )11 1RL RL SL SLt tz t u z t v z z t w z z t x
∧ ∧ ∧ ∧

−
   + = + − + − − +   
   

 (8) 

Model parameters RLβ  thus become adjustable coefficients 
vector { }, , ,u v w x . Immediate reward r  is proposed in 
order to reflect the forecasting system's trade-off between 
traditional in-sample goodness-of-fit and more important 
profit-earning market timing ability: 

( ) ( ) ( )

( ) ( )

2 2exp
1 exp
3 exp exp

RL
RL

RL RL

t
t

t t

z t zz t z
r t

z t z z t zσ

∧
∧

∧ ∧

    ∆   −∆     = − +          ∆ + − ∆              

   (9) 

where ( )SLt tz z z t
∧

∆ = − . This reinforcement signal at time t  

consider the ability of ( )RLz t
∧

 (i.e. output of RL model 1tF − ) 
to both minimize magnitude error (the first single Gaussian 
function term in (9) denoted as ( )A t ) and catch the market 

trend (the latter term in (9) denoted as ( )B t ). In (9), the 
reward is weighted twice as much towards market timing. σ  
controls the sensitivity of system toward in-sample goodness-
of-fit. 

For a decision function ( )( )RLF tβ , the aim of RLβ  

adaptation is to maximize the accrued performance utility tU , 
as defined following: 

( )
1

t
k t

t
k

U r kγ −

=
=∑                             (10) 

where 1γ >  indicates that a short-term reward received k  
time steps in the past is worth only kγ −  times what it would 
be worth if it was received immediately. The gradient of tU  
with respect to RLβ  after a sequence of t  prediction is: 

( )
( )

( ) ( ) 1

1 1

t
t RL t k k

kRL k RL k RL

dU dr k dr kdU dF dF
d dr k dF d dF d

β
β β β

−

= −

  = + 
  

∑    (11) 

Due to temporal dependencies in decision function F , 
1

1

k k k k

RL RL k RL

dF F F dF
d F dβ β β

−

−

∂ ∂
= +

∂ ∂
                       (12) 

Closely related to recurrent supervised learning, the adopted 
RRL algorithm is a simple online stochastic optimization 
which only considers the term in (9) that depends on the most 
recent reward. That is, 

( )
( ) ( )

( )
( )

( )
( )

1

1 1
t RL t t t

RL t RL t RL

dU dr t dr tdU dF dF
d t dr t dF d t dF d t

β
β β β

−

−

  ≈ + −  
 (13) 

Learning successively using the most immediate reward 
tends to be most effective. See also the discussions in [15]. 
Follow our definition of ( )tr , a more simple form is obtained: 

( )
( ) ( )

( )
( )

( )
( )

1 1

1 11 1
t RL t t t

RL t RL t RL

dU dr t dr tdU dF dF
d t dr t dF d t dF d t

β
β β β

− −

− −

≈ =
− −

 (14) 

( ) ( ) ( )
1 1 1 2

21 1 2
t t t t

RL RL t RL

dF F F dF
d t t F d tβ β β

− − − −

−

∂ ∂
≈ +

− ∂ − ∂ −
       (15) 

RLβ  is then updated online using: 

( ) ( )( )
( )

t RL
RL

RL

dU t
t

d t
β

β ρ
β

∆ =                       (16) 

Equations (8), (9) and (14)-(16) constitute a proposed actor-
only RL model and its online adaptation. 
 
B. Actor-Critic RL Model 

For gradient-based actor-critic RL methods, the “critic” 
served as a nonlinear function approximator of the external 
environment to critique the action generated by the “actor”. 
The critic network will iteratively adapt its weights to learn a 
value function which satisfies the modified Bellman equation. 
The “new” critic is then used to update the policy parameters 
of the “actor”. Under a more generic problem environment, 
such methods may have better convergence properties than 
both actor-only and critic-only methods in terms of 
convergence speed and constraints.  

A group of ADP approaches named as adaptive critic 
designs (ACDs) fall into this RL category. ACDs [17] consist 
of three basic designs and their variations, i.e. Heuristic 
dynamic programming (HDP), Dual heuristic dynamic 
programming (DHP), Globalized dual heuristic dynamic 
programming (GDHP), along with their corresponding action 
dependent (AD) forms, respectively. While in HDP the critic 
only estimates the Bellman value function, it estimates the 
gradient of the value function in DHP and for GDHP, critic 
functions as the summation of its functionality in HDP and 
DHP.  

In this paper, a modified ADHDP proposed in [16] is 
adopted to construct the actor-critic RL model in our 
forecasting system. Without sacrificing learning accuracy, this 
method is likely to produce more consistent and robust online 
learning under a large scale environment.  
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Fig.2. An actor-critic RL model in proposed stock forecasting system 
 
The application is based on the block diagram as depicted in 

Fig. 2. 
Both actor (action network) and critic (critic network) are 

similar MLPs in which one hidden layer is used for each 
network.  

Given an input state ts  defined as:  

( ) ( )0.5 , 0.5 ( ),
T

ts A t B t C t=                      (17) 

where ( ) [ ] [ ]1 1 2
, , , , , ,t t t n t t t nC t δ δ δ δ δ δ− − − −= … … ,   

the action network output ( )F t  acts as a signal which 
implicitly demonstrates the influence of synthesized 
"irrational" investment decision for the actual price at time 

1t + .  
( )F t  also served as part of the input vector ( );ts F t    to 

the critic network.  
The output of critic is an approximation (denoted as 

function J ) for function V ,  

( ) ( )( )
1 0

0
t t

t
s s t

t
V s E s s sπ α π

+

∞

=

 = ℜ = 
 
∑              (18) 

The weights of critic CW  are adapted to approximate the 
maximum of J  to satisfy the modified Bellman equation:  

( )
( )

( ) ( )( ){ }11 0max
t tt t s sF t

J s J s F t U
+

∗ ∗
+= + ℜ −        (19) 

where ( )( )1t ts s F t
+

ℜ (or, ( )1r t +  if without the model of 

target MDP) is the next step reward incurred by ( )F t  and 0U  
is a heuristic term used to balance.  

To update weights online, an adopted ADHDP utilizes the 
temporal difference of J  to resolve the dilemma, i.e. the 
prediction error of the critic network is defined as 

( ) ( ) ( ) ( )1Ce t J t J t r tα= − − +  instead of using the typical 

form ( ) ( ) ( ) ( )1Ce t J t J t r tα= − + − .  
Consequently, the critic network tries to minimize the 

following objective function:  

( ) ( )21
2C CE t e t=                            (20) 

The expression for its gradient-based weight's update thus 
becomes: 

( ) ( ) ( ) ( ) ( ) ( )
( )

1C C
C

J t
W t t J t J t r t

W t
η α

∂
 ∆ = − − − +  ∂

    (21) 

The objective of the action network is to maximize the J  in 
the immediate future, thereby optimizing the overall reward 
expressed as (6) over the horizon of the problem.  

r  is defined as (23) to highlight the proper reinforcement 
direction. 

( ) ( ) ( )10 (success),  if & 1 0;
1

1 (failure), otherwise.

t t tz z z t z
r t

∧

+
  − + − >  + =   
−

   (22) 

 The desired value of the ultimate goal CU  is set to "0" 
along the timeline.  

The action network tries to minimize the following 
objective function: 

( ) ( )21
2A AE t e t=                                 (23) 

( ) ( ) ( ) ( )A Ce t J t U t J t= − =                       (24) 
The expression for the corresponding gradient-based 

weight's update thus becomes: 

( ) ( ) ( )
( )

( )
( )A A

A

J t F t
W t t

F t W t
η

∂ ∂
∆ = −

∂ ∂
                  (25) 

( ) 0C tη >  and ( ) 0A tη >  are the corresponding learning 
rate of two networks at time t .  

The mapping from ( )F t  to ( )1RLz t
∧

+  is defined through a 
simple heuristics as follows: 

 ( )

( ) ( )

( )

( )

,    if ;

1   0,                 if ;  

,    otherwise.

SL

RL

SL

t

t

z z t F t T

z t F t T

z z t

∧

∧

∧


− >


+ = ≤

− −


             (26) 

where T  is defined as small positive tolerance value. 
 
C. Learning Procedure of the Proposed System 
 

The sequential learning strategies in Table I summarize the 
whole hybrid training ideas for forecasting series-based stock 
price under two different reinforcement schemes.  

Each strategy consists of both supervised learning and 
reinforcement learning cycles. At time t , it is necessary to 
always start with supervised-modelling first, alternating it with 
reinforcement-modelling. 

For a forecasting system with actor-critic reinforcement 
learning, the adaptation of its CW  and AW  (Step 5.0) is 
carried out using incremental optimization. That is, for each 
iteration, unless the internal error thresholds have been met, 
(21) should be repeated at most CN  times to update CW .  

Action network’s incremental training cycle is implemented 
while keeping CW  fixed. (25) should be repeated at most AN  
times to update AW .  
 

 

 

Action Network 
(MLP         AW )      

Critic Network 
(MLP           CW )     

1Z −  

( )F t  

ts  

Stock Market 
Environment      

α  
 

+ 

( ) 0CU t =  

( )tJ  
( )tr

( )1−− tJ

Transform 
Block 

( )tr  

( )1RLz t
∧

+  

- 
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TABLE I:  ITERATIVE LEARN-TO-FORECAST STRATEGIES 
 Actor-only RL (RRL) Actor-Critic RL 

(Modified ADHDP) 
1.0 Initialize RLβ , i.e. coefficients 

{ }u v w x  in form (8). 
Initialize RLβ , i.e. 
weights of both critic 
and action network 

CW , AW . 
2.0 Initialize ElmanW , the length of supervised training 

window T , and the length of supervised testing window 
1l = . Let t T= . 

3.0 Set up a supervised training set from available tδ  and 
train Elman network according to (5). Generate 

prediction ( )1tδ
∧

+  as (3) and corresponding ( )1SLz t
∧

+  
for the testing window. 

4.0 Compute immediate RL signal 

( )r t  from (9), and ( )1RLz t
∧

+  
using form (8).  

Compute the input 
state ts  from (9) and 
(17), the output of 
action network ( )F t  

based on ( )AW t , and  

( )1RLz t
∧

+  from (26). 
Calculate immediate 
RL signal ( )r t  from 
(22). 

5.0 Update RLβ  by (14)-(16). Update CW  from (21), 
and update AW  from 
(25).  

6.0 
Compute final prediction ( )1z t

∧
+  from (1). Let 1t t= + . 

Continue from 3.0. 
 

VI.  EMPIRICAL RESULTS 
 

The results reported below were obtained by applying the 
systems described above to predict three daily-based stock 
series (i.e. closing price series adjusted for dividends and 
splits), namely S&P 500, NASDAQ Composite, and IBM 
within a 21-year learning and testing period from Jan.-03-1984 
to Jun.-30-2004 (The exception is for NASDAQ which started 
from Oct.-11-1984).  

The moving supervised training window (counted by 50 
trading-days) for each index is fixed and followed by a one-
day prediction (testing) window. The prediction is available 
every morning before the market opens. 

For supervised learning, the size of adopted Elman network 
is controlled by both the numbers of input layer nodes and the 
number of hidden neurons.  

During any given supervised training window, various 
lengths of input layers, ranging from 2 to 7 with an increment 
of 1, and hidden neuron numbers ranging from 4 to 20, with 
an incremental of 2, are experimented for each security. The 
choice of an optimal combination was made using the cross-
validation approach, in which the data were further divided 

into a training sub-window (first 48 trading-days data) and a 
validation sub-window (final 2 trading-days data). All 54 
candidate networks were trained using training sub-window 
data, and the one that generated the smallest root mean 
squared error for the validation sub-window was selected to 
perform the prediction in the following testing window. The 
best network structure is thus changeable along the timeline. 
Again, the raw daily series inputs are pre-processed by the 
first order differences method. Inputs were then normalized to 
zero mean and unit variance. The learning rate for all networks 
will be linearly reduced over the training period from an initial 
value of 0.75.  

For the proposed actor-only and actor-critic reinforcement-
oriented forecasting systems, the very first 50 series data will 
be pre-collected to initialize the hybrid learning strategies. 
Corresponding reinforcement learning model will function 
from the beginning of first supervised testing window, i.e. 
synthesized prediction and adaptation of RL model are started 
from the 51 trading-day. Corresponding free parameters 

( )RL RRLβ  and ( )RL ADHDPβ  are initialized randomly. For 
the subsequent days, the previously learned values of 
parameters are used to start the training. The learning rate of 
the RRL algorithm (i.e. ρ  in (16)) has been set to a fixed 
value of 0.09. Configurations of modified ADHDP require 
more tweaking work - in our experiments the learning rate 

( )0Cη  and ( )0Aη  has always been tested from 0.5 while the 
start position of discount rate α  is set to 0.9. Also, values for 

CN  and AN  were tried from 150 and 400, respectively.   
Quantitative performance measures are used to evaluate the 

effectiveness of two reinforcement learning schemes in 
comparison to a supervised learning (i.e. Elman network-only) 
model, as well as a classic random walk benchmark which is 
the simplest, yet probably the toughest contender.  

As mentioned earlier, the ultimate goal of stock series 
forecasting is profit earning. Traditional goodness-of-fit 
performance criteria are not capable of revealing the model’s 
ability in market timing.  

Therefore, besides three commonly used measures (i.e. 
Root Mean Squared Error RMSE , Mean Absolute Error 
MAE , and Mean Absolute Percentage Error MAPE ), two 
direction accuracy indicators are introduced: 

( ) ( )1 1
2

1DA1
T

t t t
t

I z z z t z
T

∧

− −
=

  = − −    
∑              (27) 

( ) ( ) ( )1
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I z z z t z t
T

∧ ∧

−
=

  = − − −    
∑          (28) 

where ( ) 1I x =  if 0x >  and ( ) 0I x =  if 0x ≤ . DA2 
exhibits the coincidence between actual series trend and the 
synthesized prediction trend.  

Precise comparison results are given in Table II in which 
above five performance measures are calculated for all three 
markets under the same testing period, that is, closing price 
series covering 3,775 trading days from Jul.-13-1989 to Jun.-
30-2004. 
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TABLE II:  COMPARISON OF DIFFERENT FORECASTING SYSTEMS IN THREE 
MARKETS/SECURITIES 

 S&P 
500 

NASDAQ IBM 

Random Walk 106.16 1395.12 2.45 
Elman Network 124.93 1800.90 3.15 
Actor-only 172.19 4536.78 9.45 

RMSE 

Actor-Critic 149.57 2016.11 4.18 
Random Walk 6.48 19.34 1.01 
Elman Network 6.69 24.75 1.14 
Actor-only 7.47 71.10 2.19 

MAE 

Actor-Critic 7.48 27.50 1.20 
Random Walk 0.74% 1.06% 2.92% 
Elman Network 1.01% 1.45% 3.83% 
Actor-only  0.86% 8.73% 10.49% 

MAPE 

Actor-Critic  0.87% 1.44% 2.80% 
Random Walk −−− −−− −−− 
Elman Network 50.14% 54.20% 53.99% 
Actor-only 59.37% 61.18% 59.37% 

DA1 

Actor-Critic 68.62% 68.18% 62.31% 
Random Walk −−− −−− −−− 
Elman Network 52.16% 58.81% 47.86% 
Actor-only 55.13% 54.64% 56.24% 

DA2 

Actor-Critic  63.64% 64.47% 58.47% 
 
For each of actor-only and actor-critic RL models, 10 runs 

using the same configuration (note RLβ  is always initialized 
randomly) were implemented to test the robustness of adopted 
RL approaches.  

The best results toward DA1 and DA2 are already reported 
in Table II, and Table III provides the resulting descriptive 
statistics about the timing performances of hybrid forecasting 
systems using RRL algorithm and modified ADHDP, 
respectively. For random walk benchmark, the additional 
noise component at each time step is a zero mean Gaussian 
variable with a specified variance.  

The first observation from Table II is that both random walk 
and supervised learning-only models have generated superb 
forecasts for IBM in terms of goodness-of-fit. The results are 
excellent for the S&P 500 index and still acceptable for the 
NASDAQ Composite for the same metric. 

 
TABLE III: STATISTICS FOR SHORT-TERM TIMING PERFORMANCES OF 

REINFORCEMENT  FORECASTING SCHEMES IN THREE MARKETS/SECURITIES 
S&P 500 NASDAQ IBM    

DA1 
(%) 

DA2 
(%) 

DA1 
(%) 

DA2 
(%) 

DA1 
(%) 

DA2 
(%) 

Ave. 54.31 54.82 58.55 53.19 56.18 54.53 
S.Dev. 1.83 0.72 3.19 1.53 1.12 1.95 
Min. 53.18 52.76 52.21 50.36 55.74 50.44 

Actor-
only 

Max. 59.37 55.13 61.18 54.64 59.37 56.24 
Ave. 62.41 60.90 63.40 62.11 60.29 57.42 
S.Dev. 5.26 2.32 4.23 1.22 1.64 1.10 
Min. 54.16 57.19 57.66 61.04 57.09 55.13 

Actor-
Critic 

Max. 68.62 63.64 68.18 64.47 62.31 58.47 

  This point is reflected by the average values of three 
markets during the testing period (789.9189 for S&P 500, 
1418.9586 for NASDAQ, and 49.5636 for IBM), the small 
relative RMSEs and MAEs, and very small MAPEs. Note that 
in all cases random walk models slightly outperform the 
supervised learning-only counterparts. 

Secondly, the supervised learning-only systems’ forecasts 
appear to have slight short-term market timing ability as 
indicated by the values of DA1 and DA2. The best case is for 
the NASDAQ Composite, i.e., it can predict whether the 
market is going up or down 58.81% of the time based on DA2 
despite the fact that the same system provides the worst 
prediction in the sense of goodness-of-fit. These results 
support the claim that in the context of financial time series 
analysis, the most popular goodness-of-fit-based forecasting 
criterion does not necessarily translate into good 
forecastability in terms of earning profit.  

Finally, the weak short-term market timing ability of 
supervised learning-only forecasting systems apparently 
suggest that much of the volatility in an actual price series can 
not be caught by the values of "expectations" generated from 
historical market inertia alone. Extra RL models are integrated 
into the forecasting systems in order to reveal the "irrational" 
investment decision series which drives much of actual day-
to-day price fluctuation of a stock. Relative performances are 
quantitatively illustrated in Table II and Table III. According 
to DA1, in average, the proposed actor-only RL-based systems 
can successfully predict the market’s daily trend by 4.17%, 
4.35%, and 2.19% (in best, the numbers will be 9.23%, 6.98%, 
and 5.38%) higher than the supervised learning counterparts 
for three markets. The average increases are 2.66%, -5.62%, 
6.67% based on DA2, respectively (2.97%, -4.17%, and 
8.38% in best). It is evident that the adopted RRL algorithm 
was able to further adjust the prediction toward the direction 
of the real market trend to some extent. Meanwhile, we find 
that the proposed actor-critic RL-based system consistently 
outperforms the actor-only RL-based prediction scheme. 
Without sacrificing prediction accuracy with regard to the 
goodness-of-fit, the system results in substantial 
improvements in short-term market timing compared with the 
supervised learning-only model. In detail, average DA1-based 
performances increase by 12.27%, 9.2%, and 6.3%, 
respectively (in best, i.e. 18.48%, 13.98%, and 8.32% 
accordingly). Similar average improvements indicated by DA2 
are 8.74%, 3.3%, and 9.56% (11.48%, 5.66%, and 10.61% in 
best), respectively. 

The small standard deviations in Table III clearly 
demonstrate that the two online ADP approaches that were 
adopted can be robust, i.e. the performance is insensitive to 
free parameters such as initial values for weights of action / 
critic networks or coefficients of decision functions.  

In addition, the nonparametric Henriksson-Merton test of 
market timing [18] is adopted to analyze the statistical 
significance of the correlation between forecasts of an RL 
model (the worst RRL and ADHDP models in 10 runs are 
selected to be representatives here) and the actual values of 
error if only the Elman network model is used. 
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TABLE IV: RL MODELS' SHORT-TERM MARKET TIMING STATISTICS FROM THE 
HENRIKSSON-MERTON TEST 

 S&P 500 NASDAQ IBM 
Actor-only 2.9986 

(0.0014) 
2.3308 

(0.0099) 
2.8546 

(0.0022) 
Actor-Critic 5.3833 

(0) 
3.1485 

(0.0008) 
4.3933 

(0) 
 
The results are presented in Table IV. The values in the 

parentheses give the p-values of the null hypothesis of 
independence between two series (i.e. the RL model has no 
short-term timing ability). At 5% level, we reject the null 
hypothesis of no market timing under all scenarios and 
conclude that the short-term market timing abilities of all 
adopted RL models are significant.  

 
VI.  CONCLUSIONS 

 
This paper provides a reinforcement learning-oriented 

architecture for short-term stock series movements' prediction. 
Fundamental difficulties exist when the whole "learn-to-
forecast" process is based on the supervised learning-only 
philosophy. In this task it is vital, yet impossible that the 
training set for a model's learning is well distributed over the 
entire (input, target) space. For the supervised learning 
method, the exploration of the space relies heavily on the 
intrinsic disturbances (noise) embedded in financial series 
itself, and thus lacks direct control. In contrast, active 
exploration of the (input, action) space is an integral part of 
reinforcement learning approaches. The stochastic outputs 
generated by RL/ADP methods are evaluated by the properly 
designed feedback signal from the environment in order to 
guide the search for the best output. Furthermore, RL methods 
directly control the stochastic nature of the outputs to achieve 
stable learning behaviour, i.e. the exploratory variations for 
outputs will be decreased as the learning proceeds and the 
performance of the model improves. Moreover, the statement 
in Section II that stock investors' "abnormal" psychology does 
not seem to take a random walk provides the basis for the 
afterwards development of forecasting schemes. The proposed 
actor-critic RL-based systems consistently exhibit significant 
real short-term market timing ability without losing goodness-
of-fit. This fact is not only consistent with the tenets of 
technical analysis and contradiction of the weak form of 
efficient market hypothesis, but also implies that there is much 
more predictability in three studied markets than just for their 
"expectations". The results seem to support the key insight 
that the "abnormal" part of investor psychology behaves in 
predictable ways to some degree and can be imitated at least 
partially by applying a reinforcement learning philosophy.   
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