

Abstract—The aim of this study is to assist a military

decision maker during his decision-making process when

applying tactics on the battlefield. For that, we have decided to

model the conflict by a game, on which we will seek to find

strategies guaranteeing to achieve given goals simultaneously

defined in terms of attrition and tracking. The model relies

multi-valued graphs, and leads us to solve a stochastic shortest

path problem. The employed techniques refer to Temporal

Differences methods but also use a heuristic qualification of

system states to face algorithmic complexity issues.

Key words: decision aid, game theory, graph theory,

viability theory, Temporal Differences methods,

approximate dynamic programming.

I. CONTEXT: ASSISTANCE TO THE MILITARY DECISION

MAKER

N the military field, an important part of the decision-

making process consists in re-expressing and translating

one mission assignments into orders and tactics towards

subordinate armies. While trying to determine tactics that

ensure the reaching of operational goal, the utmost difficulty

of this task is related to the great uncertainty that is attached

to the enemy moves or strategies. Nowadays, a still classical

but most often used approach consists in opposing only two

or three hostile scenarios to the same amount of friend

hypothetical tactics. With the increase use of new

technologies in battlefield management emerged the idea

and need to go further in tactical situations analysis and to

propose new kinds of decision-making support tools to

commanders. This paper presents a contribution to this

research direction.

We propose to model the conflict by a “game” – in the

sense of differential game theory introduced by Isaacs [7] –

where two sides are conflicting. Using this game, we will try

to find a strategy which ensures us the completing of

mission, no matter what the adversary does.

In the differential game theory, games of tracking and

attrition constitute some traditional ones and have been

commonly studied but most often in a separate way. One of

the originalities in our work is that the nature of our game

which is at the same time a tracking game and an attrition

game, while describing a case that has been stated as

relevant by operational experts. The employed technique we

implement in order to solve our decisional problem, is the

temporal difference method defined by Sutton in [10],

studied by Bertsekas and Tsitsiklis in [5] and used for the

resolution of games like backgammon (Tesauro [13]).

However, the use of this method for a game of our nature

constitutes another originality of our work. In classical

games - chess or backgammon for instance - one has to face

the problem of opponent strategies but the opponent goals

are known (or predictible) and often symmetrical for both

sides. In our case, we are not able to know exactly the

enemy’s goals and we are generally not in a zero-sum game.

II. MODELING

A. Conventions and definition of the game
It is supposed that two sides (noted as A for friend and E

for enemy) are involved in a conflict situation, and that they

have at their disposal a number of armies (which we note

respectively NA and NE). In the following, all notations

relating to a side (e.g. A) are valid for the other (e.g. E).

We define the mission by an “effect” to produce on the

ground and an effect to realize on the enemy, both of them

to be effectuated in a limited amount of time. More

precisely, the mission will be represented by a location to be

reached Zobj before the end of given time T, while preserving

at any moment a minimum strength ratio Robj between

friendly and enemy armies. We consider Zobj, T and Robj like

initially given data attached to the mission.

Dynamic optimization of the strength ratio during

a terrestrial conflict

Alexandre Sztykgold, GET/ENST-Bretagne, LUSSI department, CNRS TAMCIC UMR 2872

alexandre.sztykgold@enst.fr

Gilles Coppin, GET/ENST-Bretagne, LUSSI department, CNRS TAMCIC UMR 2872,

gilles.coppin@enst-bretagne.fr

Olivier Hudry, GET/ENST, Computer Science department, CNRS LTCI UMR 5141

olivier.hudry@enst.fr

I

241

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

The battlefield is represented here by a multi-valued

oriented graph (see [4] and [6]), where each vertex Zi

symbolizes a part of the ground, and where arcs express the

actions which the armies are likely to carry out. The

valuations express different costs or effectiveness from these

actions. For example, we note as Shoot(Zi, Zj) the

effectiveness (between 0 and 1) of fire that an army would

deliver from the Zi vertex towards the Zj area.

Figure 1 – An example of multi-valued graph

The armies are represented by two variables:

• ZA
i (k) : location of ith army of A side at time k

• EFFE
i (k): manpower of the ith army of E side at

time k.

where i belongs to [1, NA]and k to [0,T]

To facilitate the reading, we will note wit Ai(k) the global

state of ith army at time k, that is to say the couple

(ZA
i(k);EFFA

i (k)).

For each unit of time, we can order each army to carry

out:

• a movement towards the successor vertices of

the current position in the multivalued graph.

• a fire towards one of the the neighbor vertices

that are occupied by an army of the opposite

side.

We use the following functions:

• FireX (i, z, k) the function with Boolean values

which is equal to 1 if ith army of X side do fire on

vertex z at the time k and equal to 0 if not.

• Length (z1, z2) the length between two vertices of

the multi-valued graph.

• SPA (z, k) the length of the shortest path between

the vertices occupied at time k by the armies of A

and one targeted position z:

The goal of the game for A is of course to complete his

mission whose constraints of the mission may be expressed

as:

The first constraint expresses that at least 1 friendly army

must occupy the target vertex at the final time T. It

characterizes our game like a tracking one according to the

differential game theory (see [7]).

The second constraint constantly forces to have a strength

ratio greater than Robj, which expresses the attritional nature

of our game.

B. The game seen as system control
At any time k, the information characterizing a situation

may be expressed along a vector state:

This approach is inspired by the vision that Berge had of

chess game in [3], where he did not treat the player actions

by a simple position change on the chess-board, but like a

state evolution in a dynamical system.

An action is defined for each army by its type and its

related targeted position, i.e. the couple (action type, ground

targets) that symbolizes the order that will be carried out by

an army during a time unit. We notice uA
i(k) the action done

by the ith army of A at time k. For example, action (FIRE, Zj
E

(k)) is a fire on the vertex occupied by the jth enemy’s army,

and the control (MOVE, Zj) represents the ordering of a

movement towards the vertex Zj. To make the reading easier,

the type of the action uA
i(k) is noticed uA

i(k).type (resp.

uA
i(k).target for its target).

A control (noticed uA(k) or uE(k)) is the set of all actions

affected to the armies of a side for one turn. We note UA(k)

(resp. UE(k)) the set of effectible controls that A (resp. E) can

use at the time k.

At last, we call F the system function which associates at

the current state S(k) and controls selected uA(k) or uE(k), the

successor state S(k+1) :

with :

242

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

and so on for the E side.

C. States qualifications
Initial data of our problem are S(0), T, Zobj, Robj and the

multi-valued graph. With these data, we can in principle

enumerate all accessible states. In fact, in the initial state we

know about the armies initial locations, and we can thus

easily determinate the controls sets UA(0) and UE(0).

For each combination of controls, using the system function

F, we can determinate all successors of S(0), and we have

thus a simple iterative mechanism to enumerate all possible

plays of our game.

But one can simply show that our game complexity

increases exponentially with T·(NA+NE) (see [12] for more

details). Looking for a winning strategy (i.e. a sequence of

controls such that visited states respect the mission

constraints), we cannot reasonably enumerate all solutions.

Therefore we propose to use a different way of using and

qualifying states.

Aiming at finding the optimal set of controls (i.e. that

which minimize the probability of a mission failure) we

suggest to qualify states according to the four categories

victorious, winning, loosing and viable. These categories

are defined as follows:

• Victorious : A state is said to be victorious if the

state is final (current time is T) and all

characteristic constraints of the mission are

satisfied. We note Vict the set of victorious states:

• Winning : A state is said to be winning if there is

a set of friendly controls which guarantees to

complete the mission (i.e. that it reaches a

victorious state) no matter what the enemy does.

We notice Win the set of winning states, which is

built recursively starting from victorious states:

• Loosing : A state is losing if there is no strategy

carrying out in a victorious state (what means

that at least one of the characteristic constraints

will not have been satisfied). We notice Loose the

set of loosing states :

Figure 2 - States qualifications

Our goal is to know if S(0) � Win and, in case it would

be, to extract the strategy which leads to Vict. But because of

the problem complexity, it is seldom possible to know if

S(0) is winning and even less to extract optimal strategy. We

proposes therefore to introduce another state qualification,

more flexible than Win but which takes us along towards Vict.

This qualification is named viable (being inspired from

viability theory - J.P. Aubin in [1]).

• Viable: A state is described as viable if there

exists at least one control which makes possible

to reach a viable state at next time occurrence k

and a victorious one if next time is T. We build

the set of viable states recursively starting from

Vict :

The advantage of this set is that it is very easy to test if a

state belongs to or not, and especially it evolves - by

definition - towards Vict with time, in respecting mission

constraints. We must thus find a strategy which always

keeps the current state in Viab. Moreover, we can evaluate

each control uA
i(k) with the viable states number which

succeed to him.

Using this states categorization, we have finally re-

expressed our problem as a classical dynamic programming

one [2], but still have to fix and define properly the way we

face the classical “curse of dimensionality” thanks to the use

of viable subsets of states. The use we do of these special

class of states and our related heuristic is presented in the

following paragraphs.

243

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

III. RESOLUTION WITH TEMPORAL DIFFERENCES METHOD

A. Modeling the enemy
We look for a control policy which guarantees to fulfill

the mission against unknown enemy’s intentions. We

propose to use a stochastic model for the enemy and

consequently to attach probabilities to his behavior. This

supposes that we must be able to estimate in any state the

occurrence probability of each enemy control that we note

P[S(k+1) | (S(k), uA
i(k))]. For sake of simplicity, it is

supposed here that these probabilities depend only of current

state, so our problem is a Markovian process (more

information on this subject in [12]).

To determine these probabilities, we modeled the enemy

by a set of predicates that label future states and could

make sense for him when considering local and short-term

reaction to the current situation. The predicates express

situational or ground local features (“being in a high

position”, which has a direct impact upon fire efficiency, for

instance). The use of predicates as some kind of simplified

utility functions allows us to compute an average value for

each potential future state (i.e. each potential enemy control)

and therefore to order enemy’s preferences on his controls.

We note Pref(S(k)) the function which returns the sum of

validated predicates weights S(k), and for a given friendly

control uA
i(k), we determine the probabilities of choice of the

enemy control by :

B. The reward function to be optimized
From expertise extraction from military commanders, we

have chosen to reward the greatest margin of freedom,

which means we always try to be as close as possible to Zobj

and to keep a strength ratio as high as possible. These two

concepts are expressed by both following evaluation

functions:

• Geographical margin of freedom:

• Effectiveness margin of freedom:

It can be seen that if one of these functions is negative

then the current state is in Loose because one of the mission

constraints is not satisfied. This also means that these

functions define the viable states mentioned previously

especially while denote the depth into the viability set of the

current state (there is one function for each constraint

dimension of this space).

 Since we do not want to visit loosing states, we put a big

penalty on them. Reciprocally, we allow a great reward to

victorious states. Thus, we use a constant G that is very big

in accordance to the evaluation function values, and the

reward function is used as following:

C. Optimality equations
Extending the evaluation function from states to controls,

we note:

The Bellman equations (defined in [2]) corresponding to

our problem can therefore be defined as follows, in which

Vk
* denotes the optimal Bellman evaluation of the decisional

states (see Figure 2):

To compute the solutions of these equations, dynamic

programming (DP) or Monte-Carlo methods (MC) are

commonly applied (see [9]). These two algorithms share the

same basic principles: exploring the tree of the possible

executions and using backward evaluation of final leaves.

The difference consists in the depth with which explorations

are performed, while dynamic programming explores with a

depth of 1, whereas Monte-Carlo methods, in each state,

explore the full depth of the tree. We have chosen to use the

intermediary solution offered by the temporal-difference

method TD(λ) ([2]) (that allows to cover the previous two

ones in setting respectively λ to 0 and to 1).

Let us denote dk the temporal difference for a fixed

friend control:

The update rule of estimate value in state S(k) with TD(λ)

is:

244

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

The principle of the temporal differences method is to

estimate Bellman values in each state with a specific control

policy. Then while reiterating, we are able to determine the

best policy, that gives in any state the best control. It is

shown that the convergence of this kind of method is very

fast ([5]), which ensures that in few iterations we quickly

approach the expected values.

We have chosen to use TD(λ) because it simulates a fixed

number of trajectories, updating dynamically the current

value, in an adjustable time window (leading to an slightly

abusive call “forward checking method” terminology, as

proposed by Bertsekas and Tsitsiklis [5]) . We consider that

simulating trajectories in forward checking could be close to

the simulation of course of actions, that are proposed in

many cognitive models of decision-making experts (see [8]

or [11] for instance).

IV. APPLICATION TO AN EXAMPLE

A. About results
To seek solutions of a stochastic problem raises generic

difficulties in understanding and presenting results. Indeed,

it is extremely rare that a static strategy is victorious

regardless enemy controls. That is why we have to solve the

optimality equations in any state that has a non-zero

probability to be visited.

Thus, our technique allows us to know in any state which

control gives us the greatest probability to lead us to the

victorious states set, but cannot elicit a fixed strategy to

apply from the initial state onward the complete duration of

the mission.

For these reasons, we will only give, in this section, the

found control at the initial state (which is the only one that

we are sure to apply) of the example which we study.

B. Example presentation
The battlefield that we use (see Figure 3) is represented

by a multi-valued graph containing 16 vertices, and 2 armies

in each side (NA = NE = 2). The mission consists in being at

vertex 7 at time 4 and in preserving the strength-ratio above

a 2/1 limit (NA≥2 NE).

Figure 3 – Battlefield

The efficiency of fire between vertices can be calculated

with the following rules:

That means it is better to be located in smallest indexed

vertices.

At initial state S(0), friend armies are located on vertices

12 and 15 and correspond respectively to 20 and 40 troops.

Enemy armies are located in 0 and 3, and have respectively

10 and 20 troops. So have we the initial state:

This situation is particularly interesting because there is

no obvious victorious tactics: this comes from the fact that

enemy armies are better located (from the “firing” point of

view) whereas the friend armies are superior in manpower.

The limited size of our example has allowed us to apply

an enumeration method and to identify two controls as

maximizing the probability to finish in Vict. That comes from

the fact the best way to win cross the states where friend

armies are both on vertex 10 at time 2.

The result provided by such an enumeration – that could

not usually be elicited for real-sized instances because of the

complexity of our problem – will allow us here to

benchmark our heuristic. First results of this benchmark are

245

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

presented below.

C. Initial control policy
We present here our first results with the control policy

πr(S(k)) = uA(k), which associates a randomly chosen control

among the set of available controls UA(k) with any state S(k).

For each iteration of the method, one trajectory is

simulated, updating values in visited states. We note N the

number of iterations. Obviously the greater N is, the more

the state values Vk
π
r

approximate Bellman values Vk
*.

D. Results
We implemented temporal differences with N = 10000,

which led to very short CPU time of computation (the

algorithm spends less than 10 seconds to run) and checked

that this performance did not depend on the value of λ.

We can observe that more than 84% of trials return the

optimal control, and the value of λ does not change this ratio

whereas the little number of simulations we did.

V. CONCLUSION AND PERSPECTIVES

On a simplified military example, only a few number of

trials is enough for Temporal Differences methods to give a

policy that is close to optimal. The extension of the

presented model and resolution technique to a concrete real

problem is therefore an interesting study. Thus, we could

obtain a helping tool that could advice military decider in all

possible situations. But this kind of application will certainly

need to provide a way of evaluating the approximation in

order to be properly integrated in the decision system. The

next challenge we have is to give a good measurement of

solutions according to number of trials.

REFERENCES

[1] J.-P. Aubin. Viability, control and games: Regulation of complex

evolutionary systems under uncertainty and viability constraints.

Springer-Verlag, 2005.

[2] R. Bellman. Dynamic programming. Princeton University Press, 1957.

[3] C. Berge. Théorie des graphes et ses applications. Dunod, 1963.

[4] C. Berge. Graphes. Gauthier Villard, 1983.

[5] D. Bertsekas, J. Tsitsiklis. Neuro Dynamic Programming. Athena

Scientific,1996.

[6] M. Gondran, M. Minoux. Graphes et algorithmes. Eyrolles, 1995.

[7] R. Isaacs. Jeux différentiels. Théorie des jeux appliqués aux

dommaines de la guerre, des poursuites, du contrôle et de

l’optimisation. Dunod, 1968.

[8] Calderwood, Klein, Orasanu and Zsambock. Decision making in

action : models and methods. Ablex publishing corporation, 1993.

[9] J. Pearl. Heuristics: intelligent search strategies for computer problem

solving. Addison-Wesley, 1984.

[10] Sutton. Learning to predicted by the method of temporal differences.

Machine learning. Technical report, 1988.

[11] A. Sztykgold. Synthèse de l’exercice Destrier du 22/11/2004.

Technical report, Centre de Recherche Operationnelle et de Simulation

de l’Armée de Terre, 2004.

[12] A. Sztykgold. Compte rendu de recherche 2005-2006 : Optimisation

dynamique du rapport de force lors d’un engagement terrestre de haute

intensité. Rapport, Division de Simulation et de Recherche

Operationnelle, Avril 2006.

[13] G. Tesauro. Practical issues in temporal difference learning. In John

E.Moody, Steve J. Hanson, and Richard P. Lippmann, editors,

Advances in Neural Information Processing Systems, volume 4, pages

259–266. Morgan Kaufmann Publishers, Inc.

246

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

