
 

 

 

  

Abstract—The aim of this study is to assist a military 

decision maker during his decision-making process when 

applying tactics on the battlefield. For that, we have decided to 

model the conflict by a game, on which we will seek to find 

strategies guaranteeing to achieve given goals simultaneously 

defined in terms of attrition and tracking. The model relies 

multi-valued graphs, and leads us to solve a stochastic shortest 

path problem. The employed techniques refer to Temporal 

Differences methods  but also use a heuristic qualification of 

system states to face algorithmic complexity issues. 

 

Key words: decision aid, game theory, graph theory, 
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I. CONTEXT: ASSISTANCE TO THE MILITARY DECISION 

MAKER 

 

N the military field, an important part of the decision-

making process consists in re-expressing and translating 

one mission assignments into orders and tactics towards 

subordinate armies. While trying to determine tactics that 

ensure the reaching of operational goal, the utmost difficulty 

of this task is related to the great uncertainty that is attached 

to the enemy moves or strategies. Nowadays, a still classical 

but most often used approach consists in opposing only two 

or three hostile scenarios to the same amount of friend 

hypothetical tactics. With the increase use of new 

technologies in battlefield management emerged the idea 

and need to go further in tactical situations analysis and to 

propose new kinds of decision-making support tools to 

commanders. This paper presents a contribution to this 

research direction. 

 

We propose to model the conflict by a “game” – in the 

sense of differential game theory introduced by Isaacs [7] – 

where two sides are conflicting. Using this game, we will try 

to find a strategy which ensures us the completing of 

mission, no matter what the adversary does. 

 
 

 

In the differential game theory, games of tracking and 

attrition constitute some traditional ones and have been 

commonly studied but most often in a separate way. One of 

the originalities in our work is that the nature of our game 

which is at the same time a tracking game and an attrition 

game, while describing a case that has been stated as 

relevant by operational experts. The employed technique we 

implement in order to solve our decisional problem, is the 

temporal difference method defined by Sutton in [10], 

studied by Bertsekas and Tsitsiklis in [5] and used for the 

resolution of games like backgammon (Tesauro [13]). 

However, the use of this method for a game of our nature 

constitutes another originality of our work. In classical 

games - chess or backgammon for instance - one has to face 

the problem of opponent strategies but the opponent goals 

are known (or predictible) and often symmetrical for both 

sides. In our case, we are not able to know exactly the 

enemy’s goals and we are generally not in a zero-sum game. 

II. MODELING 

A. Conventions and definition of the game 
It is supposed that two sides (noted as A for friend and E 

for enemy) are involved in a conflict situation, and that they 

have at their disposal a number of armies (which we note 

respectively NA and NE). In the following, all notations 

relating to a side (e.g. A) are valid for the other (e.g. E). 

 

We define the mission by an “effect” to produce on the 

ground and an effect to realize on the enemy, both of them 

to be effectuated in a limited amount of time. More 

precisely, the mission will be represented by a location to be 

reached Zobj before the end of given time T, while preserving 

at any moment a minimum strength ratio Robj between 

friendly and enemy armies. We consider Zobj, T and Robj like 

initially given data attached to the mission. 
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The battlefield is represented here by a multi-valued 

oriented graph (see [4] and [6]), where each vertex Zi 

symbolizes a part of the ground, and where arcs express the 

actions which the armies are likely to carry out. The 

valuations express different costs or effectiveness from these 

actions. For example, we note as Shoot(Zi, Zj) the 

effectiveness (between 0 and 1) of fire that an army would 

deliver from the Zi vertex towards the Zj area. 

 

 

Figure 1 – An example of multi-valued graph 

  

The armies are represented by two variables: 

 

• ZA
i (k) : location of ith army of A side at time k 

 

• EFFE
i (k): manpower of the ith army of E side at 

time k. 

 

where i belongs to [1, NA]and k to [0,T] 

 

To facilitate the reading, we will note wit Ai(k) the global 

state of ith army at time k, that is to say the couple 

(ZA
i(k);EFFA

i (k)). 

 

For each unit of time, we can order each army  to carry 

out: 

• a movement towards the successor vertices of 

the current position in the multivalued graph. 

 

• a fire towards one of the the neighbor vertices 

that are occupied by an army of the opposite 

side. 

 

We use the following functions: 

 

• FireX (i, z, k) the function with Boolean values 

which is equal to 1 if ith army of X side do fire on 

vertex z at the time k and equal to 0 if not. 

 

• Length (z1, z2) the length between two vertices of 

the multi-valued graph. 

 

• SPA (z, k) the length of the shortest path between 

the vertices occupied at time k by the armies of A 

and one targeted position z: 

 

 
 

The goal of the game for A is of course to complete his 

mission whose constraints of the mission may be expressed 

as: 

 

 
 

The first constraint expresses that at least 1 friendly army 

must occupy the target vertex at the final time T. It 

characterizes our game like a tracking one according to the 

differential game theory (see [7]). 

 

The second constraint constantly forces to have a strength 

ratio greater than Robj, which expresses the attritional nature 

of our game. 

B. The game seen as system control  
At any time k, the information characterizing a situation 

may be expressed along a vector state: 

 

 
 

This approach is inspired by the vision that Berge had of 

chess game in [3], where he did not treat the player actions 

by a simple position change on the chess-board, but like a 

state evolution in a dynamical system.  

 

An action is defined for each army by its type and its 

related targeted position, i.e. the couple (action type, ground 

targets) that symbolizes the order that will be carried out by 

an army during a time unit. We notice uA
i(k) the action done 

by the ith army of A at time k. For example, action (FIRE, Zj
E 

(k)) is a fire on the vertex occupied by the jth enemy’s army, 

and the control (MOVE, Zj) represents the ordering of a 

movement towards the vertex Zj. To make the reading easier, 

the type of the action uA
i(k) is noticed uA

i(k).type (resp. 

uA
i(k).target for its  target). 

 

A control (noticed uA(k) or uE(k)) is the set of all actions 

affected to the armies of a side for one turn. We note UA(k) 

(resp. UE(k)) the set of effectible controls that A (resp. E) can 

use at the time k. 

 

At last, we call F the system function which associates at 

the current state S(k) and controls selected uA(k) or uE(k), the 

successor state S(k+1) : 

 

 
with : 
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and so on for the E side. 

C. States qualifications 
Initial data of our problem are S(0), T, Zobj, Robj and the 

multi-valued graph. With these data, we can in principle 

enumerate all  accessible states. In fact, in the initial state we 

know about the armies initial locations, and we can thus 

easily determinate the controls sets UA(0) and UE(0). 

For each combination of controls, using the system function 

F, we can determinate all successors of S(0), and we have 

thus a simple iterative mechanism to enumerate all possible 

plays of our game. 

 

But one can simply show that our game complexity 

increases exponentially with T·(NA+NE) (see [12] for more 

details). Looking for a winning strategy (i.e. a sequence of 

controls such that visited states respect the mission 

constraints), we cannot reasonably enumerate all solutions. 

Therefore we propose to use a different way of  using and 

qualifying states. 

 

Aiming at finding the optimal set of controls (i.e. that 

which minimize the probability of  a mission failure) we 

suggest to qualify states according to the four categories 

victorious, winning,  loosing and viable. These categories  

are defined as follows: 

 

• Victorious : A state is said to be victorious if the 

state is final (current time is T) and all 

characteristic constraints of the mission are 

satisfied. We note Vict the set of victorious states: 

 

 
 

• Winning : A state is said to be winning if there is 

a set of friendly controls which guarantees to 

complete the mission (i.e. that it reaches a 

victorious state) no matter what the enemy does. 

We notice Win the set of winning states, which is 

built recursively starting from victorious states: 

 

 
 

• Loosing : A state is losing if there is no strategy 

carrying out in a victorious state (what means 

that at least one of the characteristic constraints 

will not have been satisfied). We notice Loose the 

set of loosing states : 

 

 
 

 

Figure 2 - States qualifications 

 

Our goal is to know if S(0) � Win and, in case it would 

be, to extract the strategy which leads to Vict. But because of 

the problem complexity, it is seldom possible to know if 

S(0) is winning and even less to extract optimal strategy. We 

proposes therefore to introduce another state qualification, 

more flexible than Win but which takes us along towards Vict. 

This qualification is named viable (being inspired from 

viability theory - J.P. Aubin in [1]).  

 

• Viable: A state is described as viable if there 

exists at least one control which makes possible 

to reach a viable state at next time occurrence k 

and a victorious one if next time is T. We build 

the set of viable states recursively starting from 

Vict : 

 

 
 

The advantage of this set is that it is very easy to test if a 

state belongs to or not, and especially it evolves - by 

definition - towards Vict with time, in respecting mission 

constraints. We must thus find a strategy which always 

keeps the current state in Viab. Moreover, we can evaluate 

each control uA
i(k) with the viable states number which 

succeed to him. 

 

Using this states categorization, we have finally re-

expressed our problem as a classical dynamic programming 

one [2],  but still have to fix and define properly the way we 

face the classical “curse of dimensionality” thanks to the use 

of viable subsets of states. The use we do of these special 

class of states and our related heuristic is presented in the 

following paragraphs. 
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III. RESOLUTION WITH TEMPORAL DIFFERENCES METHOD 

A. Modeling the enemy 
We look for a control policy which guarantees to fulfill 

the mission against unknown enemy’s intentions. We 

propose to use a stochastic model for the enemy and 

consequently to attach probabilities to his behavior. This 

supposes that we must be able to estimate in any state the 

occurrence probability of each enemy control that we note 

P[S(k+1) | (S(k), uA
i(k))]. For sake of simplicity, it is 

supposed here that these probabilities depend only of current 

state, so our problem is a Markovian process (more 

information on this subject in [12]). 

 

To determine these probabilities, we modeled the enemy 

by a set  of predicates that label future states  and could 

make sense for him when considering local and short-term 

reaction to the current situation. The predicates express 

situational or ground local features (“being in a high 

position”, which has a direct impact upon fire efficiency, for 

instance). The use of predicates as some kind of simplified 

utility functions allows us to compute an average value for 

each potential future state (i.e. each potential enemy control) 

and therefore to order enemy’s preferences on his controls. 

 

We note Pref(S(k)) the function which returns the sum of 

validated predicates weights S(k), and for a given friendly 

control uA
i(k), we determine the probabilities of choice of the 

enemy control by : 

 

 

B. The reward function to be optimized 
From expertise extraction from military commanders, we 

have chosen to reward the greatest margin of freedom, 

which means we always try to be as close as possible to Zobj 

and to keep a strength ratio as high as possible. These two 

concepts are expressed by both following evaluation 

functions: 

 

• Geographical margin of freedom: 

 

 
 

• Effectiveness margin of freedom: 

 

 
 

It can be seen that if one of these functions is negative 

then the current state is in Loose because one of the mission 

constraints is not satisfied. This also means that these 

functions define the viable states mentioned previously 

especially while denote the depth into the viability set of the 

current state (there is one function for each constraint 

dimension of this space). 

 

 Since we do not want to visit loosing states, we put a big 

penalty on them. Reciprocally, we  allow a great reward to 

victorious states. Thus, we use a constant G that is very big 

in accordance to the evaluation function values, and the 

reward function is used as following: 

 

 

C. Optimality equations 
Extending the evaluation function from states to controls, 

we note:  

 

 
 

The Bellman equations (defined in [2]) corresponding to 

our problem can therefore be defined as follows, in which 

Vk
* denotes the optimal Bellman evaluation of the decisional 

states (see Figure 2): 

 

 
 

To compute the solutions of these equations, dynamic 

programming (DP) or Monte-Carlo methods (MC) are 

commonly applied (see [9]). These two algorithms share the 

same basic principles: exploring the tree of the possible 

executions and using backward evaluation of final leaves. 

The difference consists in the depth with which explorations 

are performed, while dynamic programming explores with a 

depth of 1, whereas  Monte-Carlo methods, in each state, 

explore the full depth of the tree. We have chosen to use the 

intermediary solution offered by the temporal-difference 

method TD(λ) ([2]) (that allows to cover the previous two 

ones in setting respectively λ to 0 and to 1). 

 

Let us denote dk the temporal difference for a fixed 

friend control: 

 

 
 

The update rule of estimate value in state S(k) with TD(λ) 

is: 
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The principle of the temporal differences method is to 

estimate Bellman values in each state with a specific control 

policy. Then while reiterating, we are able to determine the 

best policy, that gives in any state the best control. It is 

shown that the convergence of this kind of method is very 

fast ([5]), which ensures that in few iterations we quickly 

approach the expected values.  

 

We have chosen to use TD(λ) because it simulates a fixed 

number of trajectories, updating dynamically the current 

value, in an adjustable time window (leading to an slightly 

abusive call  “forward checking method” terminology, as 

proposed by Bertsekas and Tsitsiklis [5]) . We consider that 

simulating trajectories in forward checking could be close to 

the simulation of course of actions, that are proposed in 

many  cognitive models of decision-making experts (see [8] 

or [11] for instance). 

IV. APPLICATION TO AN EXAMPLE 

A. About results 
To seek solutions of a stochastic problem raises generic 

difficulties in understanding and presenting results. Indeed, 

it is extremely rare that a static strategy is victorious 

regardless enemy controls. That is why we have to solve the 

optimality equations in any state that has a non-zero 

probability to be visited.  

 

Thus, our technique allows us to know in any state which 

control gives us the greatest probability to lead us to the 

victorious states set, but cannot elicit a fixed strategy to 

apply from the initial state onward the complete duration of 

the mission. 

 

For these reasons, we will only give, in this section, the 

found control at the initial state (which is the only one that 

we are sure to apply) of the example which we study. 

B. Example presentation 
The battlefield that we use (see Figure 3) is represented 

by a multi-valued graph containing 16 vertices, and 2 armies 

in each side (NA = NE = 2). The mission consists in being at 

vertex 7 at time 4 and in preserving the strength-ratio above 

a 2/1 limit (NA≥2 NE). 

 

 

Figure 3 – Battlefield 

The efficiency of fire between vertices can be calculated 

with the following rules: 

 

 
That means it is better to be located in smallest indexed 

vertices. 

 

At initial state S(0), friend armies are located on vertices 

12 and 15 and correspond respectively to 20 and 40 troops. 

Enemy armies are located in 0 and 3, and have respectively 

10 and 20 troops. So have we the initial state: 

 

 
 

This situation is particularly interesting because there is 

no obvious victorious tactics: this comes from the fact that 

enemy armies are better located (from the “firing” point of 

view) whereas the friend armies are superior in manpower. 

 

The limited size of our example has allowed us to apply 

an enumeration method and to identify two controls as 

maximizing the probability to finish in Vict. That comes from 

the fact the best way to win cross the states where friend 

armies are both on vertex 10 at time 2. 

 

 
 

The result provided by such an enumeration –  that could 

not usually be elicited for real-sized instances because of the 

complexity of our problem – will allow us here to 

benchmark our heuristic. First results of this benchmark are 
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presented below. 

C. Initial control policy 
We present here our first results with the control policy 

πr(S(k)) = uA(k), which associates a randomly chosen control 

among the set of available controls UA(k) with any state S(k).  

 

For each iteration of the method, one trajectory is 

simulated, updating values in visited states. We note N the 

number of iterations. Obviously the greater N is, the more 

the state values Vk
π
r

approximate Bellman values Vk
*. 

D. Results 
We implemented temporal differences with N = 10000, 

which led to very short CPU time of computation (the 

algorithm spends less than 10 seconds to run) and checked 

that this performance did not depend on the value of λ.  

 

 
 

We can observe that more than 84% of trials return the 

optimal control, and the value of λ does not change this ratio 

whereas the little number of simulations we did. 

V. CONCLUSION AND PERSPECTIVES 

On a simplified military example, only a few number of 

trials is enough for Temporal Differences methods to give a 

policy that is close to optimal. The extension of the 

presented model and resolution technique to a concrete real 

problem is therefore an interesting study. Thus, we could 

obtain a helping tool that could advice military decider in all 

possible situations. But this kind of application will certainly 

need to provide a way of evaluating the approximation in 

order to be properly integrated in the decision system. The 

next challenge we have is to give a good measurement of 

solutions according to number of trials. 
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