

Abstract—Approximate Dynamic Programming has been
formulated and applied mainly to discrete-time systems.
Expressing the ADP concept for continuous-time systems raises
difficult issues related to sampling time and system model
knowledge requirements. In this paper is presented a novel
online adaptive critic (AC) scheme, based on approximate
dynamic programming (ADP), to solve the infinite horizon
optimal control problem for continuous-time dynamical systems;
thus bringing together concepts from the fields of computational
intelligence and control theory. Only partial knowledge about the
system model is used, as knowledge about the plant internal
dynamics is not needed. The method is thus useful to determine
the optimal controller for plants with partially unknown
dynamics. It is shown that the proposed iterative ADP algorithm
is in fact a Quasi-Newton method to solve the underlying
Algebraic Riccati Equation (ARE) of the optimal control
problem. An initial gain that determines a stabilizing control
policy is not required. In control theory terms, in this paper is
developed a direct adaptive control algorithm for obtaining the
optimal control solution without knowing the system A matrix.

Index Terms—Approximate Dynamic Programming, Adaptive
Critics, Policy iterations, V-learning.

I. INTRODUCTION

HE research in ADP, having its roots in computational
intelligence, has traditionally been focused mainly to

discrete-time systems. For continuous-time systems there are
difficult issues related to sampling times, and requirements for
knowing the system dynamical equations. It is known, for
instance, that as sampling times become small, traditional
discrete-time ADP does not lead to the optimal control
solution for continuous-time systems [1].

In this paper, bringing together concepts from ADP and
control systems theory, we develop a new ADP technique
which offers solution, obtained in a forward-in-time fashion, to
the continuous-time infinite horizon optimal control problem
for linear systems with partially unknown dynamics (i.e. the
internal dynamics, specified by the system matrix A).

ADP combines reinforcement learning designs with

This work was supported by the National Science Foundation ECS-
0501451 and the Army Research Office W91NF-05-1-0314.

D. Vrabie, M. Abu-Khalaf, F. L. Lewis are with the Automation and
Robotics Research Institute at the University of Texas at Arlington, 7300 Jack
Newell Blvd. S., Fort Worth, TX 76118-7115 USA (e-mail: {dvrabie,
abukhalaf}@ arri.uta.edu, lewis@ uta.edu).

Y. Wang is with the School of Electrical and Electronic Engineering,
Nanyang Technological University, No. 5 Engineering Drive 1, 117608,
Singapore, Republic of Singapore (e-mail: EYYWANG@ntu.edu.sg).

dynamic programming to determine the solution of the optimal
control problem using a forward-in-time computation.
Reinforcement learning techniques, namely Adaptive Critics,
were first proposed by Werbos [15]. These methods consist in
an iterative process of updating the control policy and value
function estimate in order to bring them closer to the optimal
control policy and the corresponding optimal value function.
Each iteration step consists of an update of the value function
estimate based on the current control policy, followed by a
greedy update of the control policy based on the new value
function estimation.

Initially developed for systems with finite state and action
spaces these methods were based on Sutton’s temporal
difference method [13], Watkins’s Q-learning [14] and
Werbos’s Heuristic Dynamic Programming (HDP) [16]. For
the case of discrete-time systems with continuous state and
action spaces different adaptive critic architectures were
reported, with successful implementations and rigorous proofs;
an incomplete list being [6],[8],[10],[11].

However, for the continuous-time case only little progress
has been achieved. A dynamic programming-based
reinforcement learning scheme, formulated using a so-called
Advantage function, was introduced by Baird in [1]. Doya
proposed in [5] reinforcement learning techniques based on the
temporal difference method. The current status of work in
ADP is given in [12]. However the equivalent ADP
formulation, for continuous time and continuous state control
systems, to the existent discrete time techniques is not straight
forward. The main reason is that the optimal control solution
for continuous-time systems cannot be obtained by simply
reducing the value of the sampling time in the discrete-time
formulation of ADP [1]. Secondly, unlike the discrete-time
Hamiltonian, the Hamiltonian for continuous-time systems
immediately involves the system dynamics, [9], which must
therefore be known. This is making much more difficult the
formulation of a mathematical approach which will not require
the system model knowledge. Consequently, ADP is direct to
formulate for discrete-time systems, but not straightforward to
formulate for continuous-time systems with unknown
dynamics.

Further investigation needs to be done in order to complete
the ADP framework for continuous-time systems. This is even
more important since it is known that it is impossible to
exactly discretize continuous-time nonlinear systems; Euler
approximations for discretization are not accurate enough in
real-world control system applications. And because of this the

Continuous-Time ADP for Linear Systems with Partially
Unknown Dynamics

Draguna Vrabie, Murad Abu-Khalaf, Frank L. Lewis, Youyi Wang

T

247

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

system models or Jacobians that are required for the discrete-
time ADP techniques, with the exception of Q-learning, cannot
be computed.

In this paper we use concepts from both ADP and control
systems theory to present a Continuous-Time approach to
HDP (CT-HDP) for linear systems. That is, the adaptive critic
is solving for the continuous-time version of the optimal value
function - an approach also known as V-learning. The
investigation of linear systems is relevant for real world
control applications since, even though generally the system is
nonlinear, the requirement is often that it has to be controlled
for best performance around a specific operating point. At
such point a linear model is regularly a good approximate
description of the system. However, the exact values of the
model parameters (i.e. matrix A) are not easy to find, requiring
a tedious identification procedure, and also these values can
drift over time. Systems that fit this description could be
chemical plants, airplanes and power systems.

The CT-HDP algorithm is presented in the next section. A
mathematical formulation of the algorithm is given proving the
equivalence of the ADP iteration with a Quasi-Newton
method. The algorithm is then tested in simulation and the
optimal controller for a linear power system model is obtained
without making use of any knowledge regarding the system
matrix A.

II. CONTINUOUS-TIME ADAPTIVE CRITIC SOLUTION FOR THE

INFINITE-HORIZON OPTIMAL CONTROL PROBLEM

A. Dynamic Programming and LQR

Consider the linear, time-invariant dynamical system given
by

BuAxx +=& (1)

with nRtx ∈)(, subject to the infinite-horizon optimal control

problem

∫
∞

+=

0
)(

0)(min)(τdRuuQxxxV TT

tu
 (2)

with 0,0 >≥ RQ and),(BA controllable (i.e. the existence

of a control signal that will determine a state transition path
between any two points in the state space is guaranteed [4]).

It is known that the control solution of this problem,
determined by Bellman’s optimality principle, is given
by Kxu −= with

PBRK T1−
= (3)

where the matrix P is obtained by solving the Algebraic
Riccati Equation (ARE)

01
=+−+

− QPBPBRPAPA TT . (4)

The solution of the infinite horizon optimization problem
can be obtained using the Dynamic Programming approach by
solving a finite horizon optimization problem backwards in
time and extend the horizon to infinity. In this case the
following Riccati differential equation has to be solved

ftf

TT

PtP

QPBPBRPAPAP

=

+−+=−
−

)(

1&
 (5)

the solution of which will converge to the solution of the ARE
for ∞→ft .

It should be noted that obtaining the Dynamic Programming
solution of equation (4) requires complete knowledge of the
model of the system, i.e. both A and B must be known.

Equation (4) can also be solved using policy iterations, i.e.
Newton’s method, provided that the iteration is initialized by a
stable policy [6]. The resulting iterative algorithm is the
following:

i
T

i

i
T

iiii
T

i

PBRK

RKKQBKAPPBKA

1

11)()(0
−

++

=

++−+−=
 (6)

The algorithm (6) can be compactly written as

i
T

i

i
T

ii
T

i
T

PBBRPQ

PBBRAPPPBBRA

1

1
11

1)()(0
−

−
++

−

++

+−+−=
 (7)

such that 1+iP is the solution of the Lyapunov equation

i
T

iiii
T

i PBBRPQAPPA 1
11

−
++ −−=+ (8)

where i
T

i PBBRAA 1−
−= .

Equation (7) can be expressed in a Newton’s method-like
setting as

)()(1'
1 iPii PRicRicPP

i
−

+ −= (9)

where

i
T

iii
T

i PBBRPQAPPAPRic 1)(−
−++= (10)

and '
iPRic denotes the Frechet derivative of)(iPRic taken with

respect to iP . The matrix function '
iPRic evaluated at a given

matrix M will thus be i
T

iP MAMAMRic
i

+=)(' .

Kleinman showed in [6] that if the initial policy is
stabilizing then all the subsequent updated policies will be
stabilizing and Newton’s method will solve for the root of the
quadratic matrix equation that will result in the stabilizing
optimal policy.

B. Continuous-time ADP formulation

In the following we present a new ADP approach that
allows one to recursively calculate the infinite horizon optimal
cost, and solve the infinite horizon linear quadratic regulator
problem (2), without having any knowledge about the plant
internal dynamics, i.e. the A matrix need not be known (matrix
B is required), and without starting with an initial stabilizing
policy.

The infinite horizon cost of a policy is heuristically
approximated as the summation of the observed reward for
using a given control policy over a finite interval],[Ttt + and

an approximation of the cost from Tt + to ∞ which we denote
with)(TtW + , the latter depending only on the observed new

state x(t+T):

248

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

))(()())((TtxWdRuuQxxtxV
Tt

t

TT
+++= ∫

+

τ (11)

Note that for any stable policy the associated infinite horizon
cost is given as

))(()(

)())((

TtxVdRuuQxx

dRuuQxxtxV

Tt

t

TT

t

TT

+++=

+=

∫

∫
+

∞

τ

τ

 (12)

where))((txV serves as a Lyapunov function. If Kxu −= and

K is given by (3), then PxxtxV T
=))((is the optimal cost

and P satisfies (4).
Based on equation (11) the following Greedy iteration

scheme may be implemented online

))(()())((1 TtxVdRuuQxxtxV i

Tt

t
i

T
i

T
i +++= ∫

+

+ τ (13)

xKxPBRu ii
T

i =−=
−1 (14)

with the V-function parameterized as xPxxV i
T

i =)(. The

approximated value of the cost from Tt + to ∞ (denoted in
(11) with)(TtW +) at the i-th iteration step can be calculated

as)()())((TtxPTtxTtxV i
T

i ++=+ , since the matrix iP

gives the most recent characterization of the infinite horizon
cost. Thus, (13) can be explicitly rewritten in parametric form
as

)()()()()(1 TtxPTtxdRuuQxxtxPtx i
T

Tt

t
i

T
i

T
i

T
++++= ∫

+

+ τ

(15)
and the ADP value function update amounts to the update of
the kernel matrix iP .

A restriction on the initial matrix 0P such that the

corresponding 0K be a stabilizing controller is not required.

Equations (15) and (14) formulate a new ADP scheme for
continuous-time systems, motivated by the work of Murray et
al. in [11]. The algorithm presented in [11] is iterating on
Lyapunov equations using the measurement of the infinite
horizon control cost at each iteration step, this requiring
stabilizing control policy at all times. This algorithm avoids
the use of the A matrix by measuring not only the system states
but also their derivative.

C. Online tuning based on V-learning algorithm for
partially unknown systems

For the implementation of the iteration scheme given by
(15) and (14) one only needs to have knowledge of the B
matrix. The information on the A matrix of the system is
embedded in the states)(tx and)(Ttx + which are observed

online.
To find the parameters of 1+iV in (15), the left-hand side of

(15) is written as

)()()()),((1111 txptxPtxptxV T
ii

T
ii ++++ == (16)

where)(tx is the Kronecker product quadratic polynomial

basis vector with the elements nijniji txtx ,;,1)}()({ == and

)(Pp ν= with (.)ν a vector valued matrix function that acts

on n×n matrices and gives a column vector by stacking the
elements of the symmetric matrix into a vector with the off-
diagonal elements summed as jiij PP + , [3].

The right-hand side of (15), using (14), is

)()()()()),((1 TtxpdxPBBRPQxPtxd T
i

Tt

t
i

T
i

T
i +++= ∫

+
−

τττ

(17)
Equating (16) and (17), (15) and (14) can be written as

)()()()()(1
1 TtxpdxPBBRPQxtxp T

i

Tt

t
i

T
i

TT
i +++= ∫

+
−

+ τττ

(18)
At each iteration step, after a sufficient number of state-

trajectory points are collected using the same control
policy iK , a least-squares method is employed to solve for the

V-function parameters, 1+ip , which will then yield 1+iP . The

parameter vector 1+ip is found by minimizing, in the least-

squares sense, the error between the target function given by
(17) and the parameterized relation (16) over a compact set

nR⊂Ω . Evaluating (18) at 2/)1(+≥ nnN points ix in the

state space, the least-squares solution is obtained as

XYXXp T
i

1
1)(−

+ = (19)

where

]...[21 NxxxX =

T
i

N
ii PxdPxdPxdY]),(...),(),([21

= .

To obtain a solution for the least-squares problem (19) one
requires at least 2/)1(+= nnN points, which is the number of

independent elements in the matrix P . The least-squares
problem can be solved in real-time after a sufficient number of
data points are collected along a single state trajectory. In
practice, the matrix inversion in (19) is not performed, the
solution of the equation being obtained using algorithms that
involve techniques such as Gaussian elimination,
backsubstitution, and Householder reflections. The solution of
equation (18) can also be obtained using the Recursive Least
Squares algorithm (RLS) in which case a persistence of
excitation condition is required.

This procedure requires only measurements of the states at
discrete moments in time, t and t+T, as well as knowledge of
the observed reward over the sample time interval],[Ttt +

∫
+

−
+=

Tt

t
i

T
i

T
i dxPBBRPQxPxr τττ)())((),(1 .

Therefore there is no required knowledge about the system A

249

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

matrix for the update of the critic or the action. The
continuous-time ADP algorithm consists of the iteration
between (19) and (14). However the B matrix is required for
the update of the control policy (actor), using (14), and this
makes the tuning algorithm only partially model free.

It has to be observed that the update of both the actor and
the critic is performed at discrete moments in time. However,
the control action (14) is a continuous-time control, with gain
updated at the sample points. Moreover, the critic update is
based on the observations of the continuous-time cost over a
finite sample interval. As a result, the algorithm converges to
the solution of the continuous-time optimal control problem.

D. Mathematical formulation of the ADP algorithm

In this section we analyze the proposed ADP algorithm to
place it into the context of control system theory; this being
required prior to acceptance by the control systems community
or industry.

Lemma 1. The ADP iteration between (15) and (14) is
equivalent to the Quasi-Newton method

⎟
⎠
⎞

⎜
⎝
⎛

−−=
−

+
TA

i
TTA

iPii
ii

i
ePRicePRicRicPP)()()(1'

1 . (20)

Proof:
Differentiating (15) with respect to time one obtains

))((

)()()()(

)()()()())((1

TtxV

TtRuTtuTtQxTtx

tRututQxtxtxV

i

i
T

i
T

i
T

i
T

i

++

++++++

+−−=+

&

&

 (21)

which can be written as

.)(

)()(

)(1)(

11

TBKA
i

T
iii

TTTBKA

i
T

iiii
T

i

ii eQPBBRPAPPAe

QRKKBKAPPBKA

+−+

++

+−+

=+++++
 (22)

Adding and subtracting iii
T

i APPA + and making use of

(10), (22) becomes

TA
i

TTA
iiiiii

T
i

ii ePRicePRicAPPPPA)()()()(11 +−=−+− ++

(23)
and can be written in a Quasi-Newton formulation as

⎟
⎠
⎞

⎜
⎝
⎛

−−=
−

+
TA

i
TTA

iPii
ii

i
ePRicePRicRicPP)()()(1'

1 . █

Remark 1. If ii BKAA += is stable and ∞→T one may

recover from (19) the standard Newton method, (9), to solve
the ARE, for which Kleinman [7] proved convergence
conditioned by an initial stabilizing control gain 0K . The last

term, appearing in the formulation of the new ADP algorithm,
avoids the need for an initial stabilizing gain.

Equations (15) and (14) can be written as

∫ ++=
−

+

T
TA

i
TTAtA

i
T

i
TtA

i
iiii ePedtePBBRPQeP

0

1
1)((24)

so that we obtain the next result.
Lemma 2. Iteration (24) is equivalent to

∫+=+

T
tA

i
TtA

ii dtePRicePP ii

0
1)(. (25)

Proof:
From matrix calculus one may write

∫ +−=−

T
tA

iii
T

i
TtATA

i
TTA

i dteAPPAeePeP iiii

0

)((26)

From (24) and (26) follows (25). █
Note that (25) is just a different way of writing (19).
Remark 2. As 0→T , (25) becomes

0

1

)0(PP

QPBPBRPAPAP TT

=

+−+=
−&

 (27)

which, compared with (5), is a forward-in-time computation of
the ARE solution, with the terminal boundary condition
considered at the starting time, 0PP

ft = .

Remark 3. The term TAie is the discrete-time version,
obtained for the sample time T, of the closed-loop system
matrix iA . Therefore (24) is the expression of a hybrid

discrete-time/continuous-time Riccati equation recursion.
Lemma 3. Let the ADP algorithm converge so that

*PPi→ . Then *P satisfies 0)(*
=PRic , i.e. *P is the solution

the continuous-time ARE.
Proof:
If }{ iP converges, then taking the limit in (25),

∫
→

+
→

=−

T
tA

i
TtA

PP
ii

PP
dtePRicePP ii

ii 0
1)(lim)(lim

**
. (28)

This implies

0)(
0

* **
=∫

T
tA

T
tA dtePRice (29)

with *1* PBBRAA T−
−= , and thus 0)(*

=PRic . █

III. ONLINE CT ADP CONTROLLER DESIGN FOR POWER

SYSTEMS

In this section the continuous-time V-learning ADP
algorithm developed in this paper is used to determine an
optimal controller for a power system.

A. Motivation and system model

Power systems are complex nonlinear systems. However
during normal operation the system load, which gives the
nonlinearity, has only small variations. As such, a linear model
can be used to represent the system dynamics around an
operating point specified by a constant load value. Although
this assumption seems to have simplified the design problem
of a load-frequency controller for the system, a problem rises
from the fact that in an actual plant the parameter values are
not precisely known. For this reason the ADP model free
design technique based on V-learning is used in this section
for the design of the optimal LQR controller for a given

250

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

operating point of the system.
The model of the system that is considered here, [17], is

)()(tButAxx +=& (30)

where

[]0/100

000

/1/10/1

0/1/10

00//1

])()()()([)(

G
T

E

GGG

TT

ppp

T
gg

TB

K

TTRT

TT

TKT

A

tEtXtPtftx

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

=

ΔΔΔΔ=

The system states are:)(tfΔ - incremental frequency deviation

(Hz),)(tPgΔ - incremental change in generator output (p.u.

MW),)(tX gΔ - incremental change in governor position (p.u.

MW),)(tEΔ - incremental change in integral control; and the

system parameters are: GT - the governor time constant, TT -

turbine time constant, PT - plant model time constant, PK -

planet model gain, R - speed regulation due to governor
action, EK - integral control gain.

B. Simulation setup and results

In the simulation only the time constant GT of the governor,

which appears in the B matrix, is considered to be known,
while the values for all the other parameters appearing in the
system A matrix are not known.

The system parameters, necessary for simulating the system
behavior are picked randomly before the simulation is started
in some realistic ranges, as specified in [17], such that:

]639.10,081.3[/1

]857.17,615.9[/1

]762.4,564.2[/1

]12,4[/

]1.0,033.0[/1

∈

∈

∈

∈

∈

G

G

T

pp

p

RT

T

T

TK

T

Note however that, even if the parameters’ values are chosen
to be in the above mentioned ranges, the algorithm does not
make use of any of this knowledge, only the exact value of

GT being necessary. Also, although the values of the

controller parameters EK and R are known, as they are

specified by the engineer, this information is not used by the
CT HDP algorithm to determine the optimal controller.

In the following there will be presented the results of an
HDP experiment considering a randomly picked set of values
(in the above mentioned ranges) for the systems unknown
parameters, i.e. matrix A. In all the simulations the B matrix is

]07355.1300[=B and it is considered to be known. For

the purpose of demonstrating the CT-HDP algorithm the initial
state of the system is taken different than zero,

]001.00[0 =x , and the matrix 00 =P .

The online implementation requires the setup of a least-

squares problem of the kind presented in Section II-C to solve
for the values of the critic parameters, the matrix iP , at each

iteration step i. In the simulations the matrix iP is determined

after collecting 12 points for each least-squares problem. Each
such point is calculated after observing the value of the reward
over a time interval of s1.0=T . Therefore a least-squares
problem is solved and the critic is updated at each 1.2 s. The
simulations were performed over a time interval of 50 s. As
such, a number of 41 iterations were performed during each
simulation experiment.

For the simulation the unknown values of the system
parameters were randomly picked in the specified ranges and
the system matrix was

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

=

0006.0

7355.137355.1300912.10

00938.30938.30

000811.50596.0

A .

The algorithm was run and at each iteration step a solution
of (18), explicitly given by (19), was obtained. The
convergence of few of the critic parameters)1,1(P ,

)4,2(),3,1(PP and)4,4(P is presented in Fig.1.

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5
P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

Time (s)

P(1,1)
P(1,3)
P(2,4)
P(4,4)

Fig.1 Convergence of P matrix parameters in online CT-HDP

The solution of the ARE (4) for this given matrix A and
1,4 == RIQ is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3550.20302.04173.06398.0

0302.00451.01009.00551.0

4173.01009.07361.05388.0

6398.00551.05388.06920.0

P .

After 41 iteration steps the critic is characterized by

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3442.20299.04144.06371.0

0299.00451.01008.00551.0

4144.01008.08922.05381.0

6371.00551.05381.06914.0

41P .

Comparing the values of the two matrices it can be noted that
after 41 iteration steps the error between their parameters is of

251

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

order 310− , i.e. the algorithm converged to the solution of the
ARE.

 In Fig. 2 is presented the evolution of the states of the
system during the simulation. In Fig. 3 the system states are
showed in detail during the first 6 seconds, i.e. the first 5
iteration steps of the simulation. The control signal that was
applied to the system during the CT HDP tuning is presented
in Fig. 4.

0 10 20 30 40 50
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
System states

Time (s)

Fig.2 System states during the simulation

0 1 2 3 4 5 6
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
System states

Time (s)

Fig.3 System states during the first 5 iteration steps

C. Comments on the convergence of CT HDP algorithm

The relation between the time period T over which the value
function is observed at each step and the algorithm
convergence is investigated in the following.

Fig. 5 shows the convergence of the critic parameters, in the
case of the second simulation setup, when the time period is
taken s 2.0=T . Over the 50 s duration of the simulation only
20 iterations are performed, the necessary data (12 points) for
solving each least-squares problem being collected over an
interval of 2.4 s.

By comparing the results plotted in Fig. 1 with the ones
presented in Fig. 5 it becomes clear that the amount of time
necessary for convergence is not dependent on the sample
period that is used for observation. However, the number of

iteration steps that are required for convergence is reduced
when a large sample period is considered. The reason is that,
in case a larger observation sample is used, an increased
amount of information regarding the system is carried in the
data points collected for the critic update. As such, at each
iteration the critic improvement is larger when the time period
is increased.

0 10 20 30 40 50
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
Control signal

Time (s)

Fig.4 Control signal for simulation of online CT HDP

0 10 20 30 40 50
-0.5

0

0.5

1

1.5

2

2.5
P matrix parameters P(1,1),P(1,3),P(2,4),P(4,4)

Time (s)

P(1,1)
P(1,3)
P(2,4)
P(4,4)

Fig.5 Convergence of P matrix parameters in online CT HDP for T=0.2s

IV. CONCLUSION

In this paper is presented a continuous-time ADP scheme
which solves the continuous-time infinite horizon optimal
control problem.

The control signal is applied to the system in a continuous
time fashion. The actor’s continuous time performance is
measured over given time intervals and, based on this acquired
information data, the critic reevaluates the infinite horizon cost
and updates the actor’s parameters (i.e. the continuous time
system controller) in the sense of improving the over all
system performance (i.e. to minimize the infinite horizon
continuous time cost). As such, the system performance
informational loop, which involves the critic entity, handles

252

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

discrete information regarding the continuous time
performance while the system control loop, which involves the
actor, operates entirely in continuous time.

The proposed algorithm, equivalent to a Quasi-Newton
method, solves the CARE and obtains the optimal controller in
an online, forward in time iteration without using knowledge
of the internal dynamics of the plant and without starting with
an initial stabilizing policy.

REFERENCES

[1] Baird, L., “Reinforcement Learning in Continuous Time: Advantage
Updating,” Proceedings of the International Conference on Neural
Networks, Orlando, FL, June 1994.

[2] Bradtke S. J., B. E. Ydestie, A. G. Barto, “Adaptive linear quadratic
control using policy iteration”, Proceedings of the American Control
Conference, pp. 3475-3476, Baltmore, Myrland, June, 1994.

[3] Brewer J. W., “Kronecker Products and Matrix Calculus in System
Theory”, IEEE Trans. on Circuit and System, Vol. CAS-25, No. 9,
1978.

[4] Callier, F. M., C. A. Desoer, Linear Systems Theory, Springer-Verlag,
New York, 1991.

[5] Doya, K., “Reinforcement Learning in Continuous Time and Space,”
Neural Computation, vol. 12, pp. 219-245, MIT Press, 2000.

[6] Ferrari, S., R. Stengel, “An Adaptive Critic Global Controller,”
Proceedings of the American Control Conference, pp. 2665-2670,
Anchorage, AK, 2002.

[7] Kleinman D., “On an Iterative Technique for Riccati Equation
Computations”, IEEE Trans. on Automatic Control, February, 1968.

[8] Landelius, T., Reinforcement Learning and Distributed Local Model
Synthesis, PhD Dissertation, Linköping University, 1997.

[9] Lewis, F. L., V. Syrmos, Optimal Control, John Willey, 2nd Edition,
New York,1995.

[10] Liu, X., S. N. Balakrishnan, “Convergence Analysis of Adaptive Critic
Based Optimal Control”, Proceedings of the American Control
Conference, pp. 1929-1933, Chicago, IL, 2000.

[11] Murray J. J., C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive
Dynamic Programming”, IEEE Trans. on Systems, Man and
Cybernetics, Vol. 32, No. 2, pp 140-153, 2002.

[12] Si J., A. Barto, W. Powel, D. Wunch, Handbook of Learning and
Approximate Dynamic Programming, John Wiley, New Jersey, 2004.

[13] Sutton, R., “Learning to predict by the method of temporal differences,”
Machine Learning, 3:9-44, 1988.

[14] Watkins, C., Learning from Delayed Rewards, Ph.D. Thesis,
Cambridge University, Cambridge, England, 1989.

[15] Werbos, P., Beyond Regression: New Tools for Prediction and Analysis
in the Behavior Sciences, Ph.D. Thesis, Committee on Appl. Math.
Harvard Univ., 1974.

[16] White, D., D. Sofge, Eds., Handbook of Intelligent Control, Neural,
Fuzzy, and, Adaptive Approaches, New York: Van Nostrand, 1992.

[17] Wang, Y., R. Zhou, C. Wen, “Robust load-frequency controller design
for power systems”, IEE Proc.-C, Vol. 140, No. I , 1993.

253

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

