
 

Abstract—Approximate Dynamic Programming has been 
formulated and applied mainly to discrete-time systems. 
Expressing the ADP concept for continuous-time systems raises 
difficult issues related to sampling time and system model 
knowledge requirements.  In this paper is presented a novel 
online adaptive critic (AC) scheme, based on approximate 
dynamic programming (ADP), to solve the infinite horizon 
optimal control problem for continuous-time dynamical systems; 
thus bringing together concepts from the fields of computational 
intelligence and control theory. Only partial knowledge about the 
system model is used, as knowledge about the plant internal 
dynamics is not needed. The method is thus useful to determine 
the optimal controller for plants with partially unknown 
dynamics. It is shown that the proposed iterative ADP algorithm 
is in fact a Quasi-Newton method to solve the underlying 
Algebraic Riccati Equation (ARE) of the optimal control 
problem.  An initial gain that determines a stabilizing control 
policy is not required.  In control theory terms, in this paper is 
developed a direct adaptive control algorithm for obtaining the 
optimal control solution without knowing the system A matrix.

Index Terms—Approximate Dynamic Programming, Adaptive 
Critics, Policy iterations, V-learning. 

I. INTRODUCTION 

HE research in ADP, having its roots in computational 
intelligence, has traditionally been focused mainly to 

discrete-time systems.  For continuous-time systems there are 
difficult issues related to sampling times, and requirements for 
knowing the system dynamical equations. It is known, for 
instance, that as sampling times become small, traditional 
discrete-time ADP does not lead to the optimal control 
solution for continuous-time systems [1].  

In this paper, bringing together concepts from ADP and 
control systems theory, we develop a new ADP technique 
which offers solution, obtained in a forward-in-time fashion, to 
the continuous-time infinite horizon optimal control problem 
for linear systems with partially unknown dynamics (i.e. the 
internal dynamics, specified by the system matrix A).  

ADP combines reinforcement learning designs with 
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dynamic programming to determine the solution of the optimal 
control problem using a forward-in-time computation. 
Reinforcement learning techniques, namely Adaptive Critics, 
were first proposed by Werbos [15]. These methods consist in 
an iterative process of updating the control policy and value 
function estimate in order to bring them closer to the optimal 
control policy and the corresponding optimal value function. 
Each iteration step consists of an update of the value function 
estimate based on the current control policy, followed by a 
greedy update of the control policy based on the new value 
function estimation. 

Initially developed for systems with finite state and action 
spaces these methods were based on Sutton’s temporal 
difference method [13], Watkins’s Q-learning [14] and 
Werbos’s Heuristic Dynamic Programming (HDP) [16]. For 
the case of discrete-time systems with continuous state and 
action spaces different adaptive critic architectures were 
reported, with successful implementations and rigorous proofs; 
an incomplete list being [6],[8],[10],[11].  

However, for the continuous-time case only little progress 
has been achieved. A dynamic programming-based 
reinforcement learning scheme, formulated using a so-called 
Advantage function, was introduced by Baird in [1]. Doya 
proposed in [5] reinforcement learning techniques based on the 
temporal difference method. The current status of work in 
ADP is given in [12]. However the equivalent ADP 
formulation, for continuous time and continuous state control 
systems, to the existent discrete time techniques is not straight 
forward.  The main reason is that the optimal control solution 
for continuous-time systems cannot be obtained by simply 
reducing the value of the sampling time in the discrete-time 
formulation of ADP [1]. Secondly, unlike the discrete-time 
Hamiltonian, the Hamiltonian for continuous-time systems 
immediately involves the system dynamics, [9], which must 
therefore be known. This is making much more difficult the 
formulation of a mathematical approach which will not require 
the system model knowledge. Consequently, ADP is direct to 
formulate for discrete-time systems, but not straightforward to 
formulate for continuous-time systems with unknown 
dynamics. 

Further investigation needs to be done in order to complete 
the ADP framework for continuous-time systems.  This is even 
more important since it is known that it is impossible to 
exactly discretize continuous-time nonlinear systems; Euler 
approximations for discretization are not accurate enough in 
real-world control system applications. And because of this the 
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system models or Jacobians that are required for the discrete-
time ADP techniques, with the exception of Q-learning, cannot 
be computed. 

In this paper we use concepts from both ADP and control 
systems theory to present a Continuous-Time approach to 
HDP (CT-HDP) for linear systems. That is, the adaptive critic 
is solving for the continuous-time version of the optimal value 
function - an approach also known as V-learning. The 
investigation of linear systems is relevant for real world 
control applications since, even though generally the system is 
nonlinear, the requirement is often that it has to be controlled 
for best performance around a specific operating point. At 
such point a linear model is regularly a good approximate 
description of the system. However, the exact values of the 
model parameters (i.e. matrix A) are not easy to find, requiring 
a tedious identification procedure, and also these values can 
drift over time. Systems that fit this description could be 
chemical plants, airplanes and power systems. 

The CT-HDP algorithm is presented in the next section. A 
mathematical formulation of the algorithm is given proving the 
equivalence of the ADP iteration with a Quasi-Newton 
method. The algorithm is then tested in simulation and the 
optimal controller for a linear power system model is obtained 
without making use of any knowledge regarding the system 
matrix A. 

II. CONTINUOUS-TIME ADAPTIVE CRITIC SOLUTION FOR THE 

INFINITE-HORIZON OPTIMAL CONTROL PROBLEM

A. Dynamic Programming and LQR 

Consider the linear, time-invariant dynamical system given 
by 

BuAxx +=& (1) 

with nRtx ∈)( , subject to the infinite-horizon optimal control 

problem  

∫
∞

+=

0
)(

0 )(min)( τdRuuQxxxV TT

tu
 (2) 

with 0,0 >≥ RQ  and ),( BA  controllable (i.e. the existence 

of a control signal that will determine a state transition path 
between any two points in the state space is guaranteed [4]). 

It is known that the control solution of this problem, 
determined by Bellman’s optimality principle, is given 
by Kxu −=  with  

PBRK T1−
= (3) 

where the matrix P is obtained by solving the Algebraic 
Riccati Equation (ARE) 

01
=+−+

− QPBPBRPAPA TT . (4) 

The solution of the infinite horizon optimization problem 
can be obtained using the Dynamic Programming approach by 
solving a finite horizon optimization problem backwards in 
time and extend the horizon to infinity. In this case the 
following Riccati differential equation has to be solved 
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=
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 (5) 

the solution of which will converge to the solution of the ARE 
for ∞→ft . 

It should be noted that obtaining the Dynamic Programming 
solution of equation (4) requires complete knowledge of the 
model of the system, i.e. both A and B must be known. 

Equation (4) can also be solved using policy iterations, i.e. 
Newton’s method, provided that the iteration is initialized by a 
stable policy [6]. The resulting iterative algorithm is the 
following: 

i
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The algorithm (6) can be compactly written as 
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such that 1+iP  is the solution of the Lyapunov equation 

i
T

iiii
T

i PBBRPQAPPA 1
11

−
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where i
T

i PBBRAA 1−
−= . 

Equation (7) can be expressed in a Newton’s method-like 
setting as 

)()( 1'
1 iPii PRicRicPP

i
−

+ −=  (9) 

where   

i
T

iii
T

i PBBRPQAPPAPRic 1)( −
−++=  (10) 

and '
iPRic denotes the Frechet derivative of )( iPRic  taken with 

respect to iP . The matrix function '
iPRic  evaluated at a given 

matrix M will thus be i
T

iP MAMAMRic
i

+=)(' . 

Kleinman showed in [6] that if the initial policy is 
stabilizing then all the subsequent updated policies will be 
stabilizing and Newton’s method will solve for the root of the 
quadratic matrix equation that will result in the stabilizing 
optimal policy.

B. Continuous-time ADP formulation 

In the following we present a new ADP approach that 
allows one to recursively calculate the infinite horizon optimal 
cost, and solve the infinite horizon linear quadratic regulator 
problem (2), without having any knowledge about the plant 
internal dynamics, i.e. the A matrix need not be known (matrix 
B is required), and without starting with an initial stabilizing 
policy. 

The infinite horizon cost of a policy is heuristically 
approximated as the summation of the observed reward for 
using a given control policy over a finite interval ],[ Ttt +  and 

an approximation of the cost from Tt + to ∞  which we denote 
with )( TtW + , the latter depending only on the observed new 

state x(t+T): 
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Note that for any stable policy the associated infinite horizon 
cost is given as 
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where ))(( txV  serves as a Lyapunov function. If Kxu −=  and 

K  is given by (3), then PxxtxV T
=))((  is the optimal cost 

and P satisfies (4).  
Based on equation (11) the following Greedy iteration 

scheme may be implemented online  

))(()())((1 TtxVdRuuQxxtxV i

Tt

t
i

T
i

T
i +++= ∫
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xKxPBRu ii
T

i =−=
−1  (14) 

with the V-function parameterized as xPxxV i
T

i =)( . The 

approximated value of the cost from Tt + to ∞  (denoted in 
(11) with )( TtW + ) at the i-th iteration step can be calculated 

as  )()())(( TtxPTtxTtxV i
T

i ++=+ , since the matrix iP

gives the most recent characterization of the infinite horizon 
cost. Thus, (13) can be explicitly rewritten in parametric form 
as 

)()()()()( 1 TtxPTtxdRuuQxxtxPtx i
T

Tt
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T
i

T
i

T
++++= ∫

+

+ τ

(15) 
and the ADP value function update amounts to the update of 
the kernel matrix iP . 

A restriction on the initial matrix 0P  such that the 

corresponding 0K be a stabilizing controller is not required. 

Equations (15) and (14) formulate a new ADP scheme for 
continuous-time systems, motivated by the work of Murray et 
al. in [11]. The algorithm presented in [11] is iterating on 
Lyapunov equations using the measurement of the infinite 
horizon control cost at each iteration step, this requiring 
stabilizing control policy at all times. This algorithm avoids 
the use of the A matrix by measuring not only the system states 
but also their derivative.  

C. Online tuning based on V-learning algorithm for 
partially unknown systems 

For the implementation of the iteration scheme given by 
(15) and (14) one only needs to have knowledge of the B
matrix. The information on the A matrix of the system is 
embedded in the states )(tx  and )( Ttx +  which are observed 

online. 
To find the parameters of 1+iV  in (15), the left-hand side of 

(15) is written as 

)()()()),(( 1111 txptxPtxptxV T
ii

T
ii ++++ ==  (16) 

where )(tx  is the Kronecker product quadratic polynomial 

basis vector with the elements nijniji txtx ,;,1)}()({ ==  and 

)(Pp ν=  with (.)ν  a vector valued matrix function that acts 

on n×n matrices and gives a column vector by stacking the 
elements of the symmetric matrix into a vector with the off-
diagonal elements summed as jiij PP + , [3]. 

The right-hand side of (15), using (14), is 
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Equating (16) and (17), (15) and (14) can be written as 
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(18) 
At each iteration step, after a sufficient number of state-

trajectory points are collected using the same control 
policy iK , a least-squares method is employed to solve for the 

V-function parameters, 1+ip , which will then yield 1+iP . The 

parameter vector 1+ip  is found by minimizing, in the least-

squares sense, the error between the target function given by 
(17) and the parameterized relation (16) over a compact set 

nR⊂Ω . Evaluating (18) at 2/)1( +≥ nnN  points ix  in the 

state space, the least-squares solution is obtained as 

XYXXp T
i

1
1 )( −

+ =  (19) 

where 

]...[ 21 NxxxX =

T
i

N
ii PxdPxdPxdY ]),(...),(),([ 21

= . 

To obtain a solution for the least-squares problem (19) one 
requires at least 2/)1( += nnN  points, which is the number of 

independent elements in the matrix P . The least-squares 
problem can be solved in real-time after a sufficient number of 
data points are collected along a single state trajectory. In 
practice, the matrix inversion in (19) is not performed, the 
solution of the equation being obtained using algorithms that 
involve techniques such as Gaussian elimination, 
backsubstitution, and Householder reflections. The solution of 
equation (18) can also be obtained using the Recursive Least 
Squares algorithm (RLS) in which case a persistence of 
excitation condition is required. 

This procedure requires only measurements of the states at 
discrete moments in time, t and t+T, as well as knowledge of 
the observed reward over the sample time interval ],[ Ttt +

∫
+

−
+=

Tt

t
i

T
i

T
i dxPBBRPQxPxr τττ )())((),( 1 .  

Therefore there is no required knowledge about the system A
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matrix for the update of the critic or the action.  The 
continuous-time ADP algorithm consists of the iteration 
between (19) and (14). However the B matrix is required for 
the update of the control policy (actor), using (14), and this 
makes the tuning algorithm only partially model free. 

It has to be observed that the update of both the actor and 
the critic is performed at discrete moments in time. However, 
the control action (14) is a continuous-time control, with gain 
updated at the sample points.  Moreover, the critic update is 
based on the observations of the continuous-time cost over a 
finite sample interval. As a result, the algorithm converges to 
the solution of the continuous-time optimal control problem.  

D. Mathematical formulation of the ADP algorithm 

In this section we analyze the proposed ADP algorithm to 
place it into the context of control system theory; this being 
required prior to acceptance by the control systems community 
or industry.   

Lemma 1. The ADP iteration between (15) and (14) is 
equivalent to the Quasi-Newton method 
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Proof: 
Differentiating (15) with respect to time one obtains 
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which can be written as 
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Adding and subtracting iii
T

i APPA +  and making use of 

(10), (22) becomes 
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and can be written in a Quasi-Newton formulation as
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Remark 1. If ii BKAA += is stable and ∞→T one may 

recover from (19) the standard Newton method, (9), to solve 
the ARE, for which Kleinman [7] proved convergence 
conditioned by an initial stabilizing control gain 0K . The last 

term, appearing in the formulation of the new ADP algorithm, 
avoids the need for an initial stabilizing gain. 

Equations (15) and (14) can be written as 
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so that we obtain the next result. 
Lemma 2. Iteration (24) is equivalent to
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Proof: 
From matrix calculus one may write 
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From (24) and (26) follows (25). █
Note that (25) is just a different way of writing (19). 
Remark 2. As 0→T , (25) becomes

0
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)0( PP

QPBPBRPAPAP TT

=
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 (27) 

which, compared with (5), is a forward-in-time computation of 
the ARE solution, with the terminal boundary condition 
considered at the starting time, 0PP

ft = .  

Remark 3. The term TAie  is the discrete-time version, 
obtained for the sample time T, of the closed-loop system 
matrix iA . Therefore (24) is the expression of a hybrid 

discrete-time/continuous-time Riccati equation recursion.  
Lemma 3. Let the ADP algorithm converge so that 

*PPi→ . Then *P satisfies 0)( *
=PRic , i.e. *P is the solution 

the continuous-time ARE. 
Proof: 
If }{ iP  converges, then taking the limit in (25), 
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This implies 

0)(
0
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T
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T
tA dtePRice  (29) 

with *1* PBBRAA T−
−= , and thus 0)( *

=PRic . █

III. ONLINE CT ADP CONTROLLER DESIGN FOR POWER 

SYSTEMS

In this section the continuous-time V-learning ADP 
algorithm developed in this paper is used to determine an 
optimal controller for a power system. 

A. Motivation and system model 

Power systems are complex nonlinear systems. However 
during normal operation the system load, which gives the 
nonlinearity, has only small variations. As such, a linear model 
can be used to represent the system dynamics around an 
operating point specified by a constant load value. Although 
this assumption seems to have simplified the design problem 
of a load-frequency controller for the system, a problem rises 
from the fact that in an actual plant the parameter values are 
not precisely known. For this reason the ADP model free 
design technique based on V-learning is used in this section 
for the design of the optimal LQR controller for a given 

250

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



operating point of the system.  
The model of the system that is considered here, [17], is 
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where  
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The system states are: )(tfΔ - incremental frequency deviation 

(Hz), )(tPgΔ  - incremental change in generator output (p.u. 

MW), )(tX gΔ  - incremental change in governor position (p.u. 

MW), )(tEΔ  - incremental change in integral control; and the 

system parameters are: GT  - the governor time constant, TT - 

turbine time constant, PT - plant model time constant, PK - 

planet model gain, R - speed regulation due to governor 
action, EK - integral control gain. 

B. Simulation setup and results 

In the simulation only the time constant GT  of the governor, 

which appears in the B matrix, is considered to be known, 
while the values for all the other parameters appearing in the 
system A matrix are not known. 

The system parameters, necessary for simulating the system 
behavior are picked randomly before the simulation is started 
in some realistic ranges, as specified in [17], such that: 
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Note however that, even if the parameters’ values are chosen 
to be in the above mentioned ranges, the algorithm does not 
make use of any of this knowledge, only the exact value of  

GT  being necessary. Also, although the values of the 

controller parameters EK  and R  are known, as they are 

specified by the engineer, this information is not used by the 
CT HDP algorithm to determine the optimal controller. 

In the following there will be presented the results of an 
HDP experiment considering a randomly picked set of values 
(in the above mentioned ranges) for the systems unknown 
parameters, i.e. matrix A. In all the simulations the B matrix is 

]07355.1300[=B  and it is considered to be known. For 

the purpose of demonstrating the CT-HDP algorithm the initial 
state of the system is taken different than zero, 

]001.00[0 =x , and the matrix 00 =P .  

The online implementation requires the setup of a least-

squares problem of the kind presented in Section II-C to solve 
for the values of the critic parameters, the matrix iP , at each 

iteration step i. In the simulations the matrix iP  is determined 

after collecting 12 points for each least-squares problem. Each 
such point is calculated after observing the value of the reward 
over a time interval of s1.0=T . Therefore a least-squares 
problem is solved and the critic is updated at each 1.2 s. The 
simulations were performed over a time interval of 50 s. As 
such, a number of 41 iterations were performed during each 
simulation experiment. 

For the simulation the unknown values of the system 
parameters were randomly picked in the specified ranges and 
the system matrix was

⎥
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7355.137355.1300912.10

00938.30938.30

000811.50596.0

A . 

The algorithm was run and at each iteration step a solution 
of (18), explicitly given by (19), was obtained. The 
convergence of few of the critic parameters )1,1(P , 

)4,2(),3,1( PP  and )4,4(P  is presented in Fig.1. 
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Fig.1 Convergence of P matrix parameters in online CT-HDP 

The solution of the ARE (4) for this given matrix A and 
1,4 == RIQ  is 
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After 41 iteration steps the critic is characterized by 
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41P . 

Comparing the values of the two matrices it can be noted that 
after 41 iteration steps the error between their parameters is of 
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order 310− , i.e. the algorithm converged to the solution of the 
ARE. 

 In Fig. 2 is presented the evolution of the states of the 
system during the simulation. In Fig. 3 the system states are 
showed in detail during the first 6 seconds, i.e. the first 5 
iteration steps of the simulation. The control signal that was 
applied to the system during the CT HDP tuning is presented 
in Fig. 4. 
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Fig.2 System states during the simulation 
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Fig.3 System states during the first 5 iteration steps 

C. Comments on the convergence of CT HDP algorithm 

The relation between the time period T over which the value 
function is observed at each step and the algorithm 
convergence is investigated in the following. 

Fig. 5 shows the convergence of the critic parameters, in the 
case of the second simulation setup, when the time period is 
taken s 2.0=T . Over the 50 s duration of the simulation only 
20 iterations are performed, the necessary data (12 points) for 
solving each least-squares problem being collected over an 
interval of 2.4 s. 

By comparing the results plotted in Fig. 1 with the ones 
presented in Fig. 5 it becomes clear that the amount of time 
necessary for convergence is not dependent on the sample 
period that is used for observation. However, the number of 

iteration steps that are required for convergence is reduced 
when a large sample period is considered. The reason is that, 
in case a larger observation sample is used, an increased 
amount of information regarding the system is carried in the 
data points collected for the critic update. As such, at each 
iteration the critic improvement is larger when the time period 
is increased. 
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Fig.5 Convergence of P matrix parameters in online CT HDP for T=0.2s 

IV. CONCLUSION

In this paper is presented a continuous-time ADP scheme 
which solves the continuous-time infinite horizon optimal 
control problem.  

The control signal is applied to the system in a continuous 
time fashion. The actor’s continuous time performance is 
measured over given time intervals and, based on this acquired 
information data, the critic reevaluates the infinite horizon cost 
and updates the actor’s parameters (i.e. the continuous time 
system controller) in the sense of improving the over all 
system performance (i.e. to minimize the infinite horizon 
continuous time cost). As such, the system performance 
informational loop, which involves the critic entity, handles 
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discrete information regarding the continuous time 
performance while the system control loop, which involves the 
actor, operates entirely in continuous time. 

The proposed algorithm, equivalent to a Quasi-Newton 
method, solves the CARE and obtains the optimal controller in 
an online, forward in time iteration without using knowledge 
of the internal dynamics of the plant and without starting with 
an initial stabilizing policy.  
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