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Abstract— In this paper, we evaluate different versions from
the three main kinds of model-free policy gradient methods, i.e.,
finite difference gradients, ‘vanilla’ policy gradients and natural
policy gradients. Each of these methods is first presented in its
simple form and subsequently refined and optimized. By carrying
out numerous experiments on the cart pole regulator benchmark
we aim to provide a useful baseline for future research on
parameterized policy search algorithms. Portable C++ code is
provided for both plant and algorithms; thus, the results in this
paper can be reevaluated, reused and new algorithms can be
inserted with ease.

I. INTRODUCTION

Recently, there has been a strong push in the reinforcement
learning community towards creating solid standards which al-
low the evaluation and comparison for different reinforcement
learning methods [12]. In this spirit, with the work presented in
this paper, we intend to take an area of reinforcement learning,
i.e., model-free policy gradient methods and attempt to create
useful baselines by providing benchmarking simulation setups
and well-refined algorithms.

We compare the most important different policy gradients
algorithms employing a variety of different versions of each
algorithm. The results for these algorithms should serve as
a starting point for the evaluation of future parameterized
policy search algorithms. As a considerable effort was put
into design and implementation of each algorithm as well as
the learning meta parameters (e.g., learning rates, exploration
initialization, etc). Thus, we hope to provide a solid baseline
for researchers advocating their own algorithms, variants,
heuristics or parameter choices. The software and documenta-
tion for all algorithms and evaluated plants is provided online
(www.ni.uos.de/pgmethods).

The second goal of this paper is to highlight some of
the most important properties which need to be dealt with
when applying policy gradient methods. This aim requires
that the chosen plant is well-known, easily accessible, neither
too difficult nor too easy to control. The later requirement
is particularly important as highly complex plants, e.g., an-
thromorphic robot arms [4], [8] or legged robots [2], [6],
[13], require highly task specific adaptation of both the policy
and the algorithm. Thus, in order to ensure the possibility of
generalizing to different domains, we are focussing here on a
standard problem, i.e., cart-pole regulation in a deterministic
and stochastic version.

In the remainder of this paper, we will proceed as fol-
lows. First, we will review the different basic algorithms
for estimating policy gradients [8], and, additionally, how to
combine them with a step-size adaptation method known from
supervised learning, i.e., Rprop [10]. Second, we will present
the setup in order to compare policy gradient reinforcement
learning methods, and, finally, show results and a conclusion.

II. POLICY GRADIENT METHODS: ALGORITHMS &
VARIANTS

Policy gradient methods, similar to most other reinforce-
ment learning methods, consist of two steps, i.e., (i) a policy
evaluation step which results into an estimate of the gradient
∇θJ(θ) of the expected return

J(θ) = E

{∑N

t=0
rt

∣∣∣∣ πθ

}
(1)

for the current policy πθ (where rt denotes the reward at
time t) and (ii) a policy improvement step which is realized
by updating the policy parameters through steepest gradient
ascent

θk+1 = θk + αk∇θJ(θ) (2)

where αk denotes a learning rate.
For policy gradient estimation, we consider three different

approaches, i.e., finite difference methods (FD) which perturb
the policy parameters of a deterministic policy, vanilla policy
gradient methods (VPG) and natural policy gradient methods
(NG) which both perturb the motor commands by employing a
stochastic policy [8]. The three different methods are described
in the following sections. However, we will not give an in-
depth account of each method but rather present the basic
behind each of them and refer to the literature for detailed
derivations.

For computing the policy update, we compare standard
gradient descent updates with constant learning rates αk = α
with an update rules based on the Rprop method [10]. The
Rprop method is a variable step-size method based on the sign
of the partial derivatives rather than on the magnitude. Thus,
it is usually significantly more robust and does not require
significant manual tuning.
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A. Finite Difference (FD) Gradient Estimators

The basic idea behind finite difference methods is that when
we intend to estimate gradients from roll-outs, a very simple
way is to change the current policy parameters θk by small
perturbations δθi and thus allowing the regression of parameter
differences δθi onto the resulting performance differences
δJi = J(θk + δθi) − J(θk). This allows the regression of
the parameter perturbations ∆Θ = [δθi] onto ∆J = [δJi]
resulting into a gradient estimate of

gFD = (∆ΘT ∆Θ)−1∆ΘT ∆J. (3)

In the case, where the policy parameters are perturbed se-
quentially after each other, the algorithm becomes particularly
simple as the matrix ∆ΘT ∆Θ just becomes a diagonal.

The advantages of the finite-difference approach are that it
is straightforward to implement, very little noise is introduced
into the system due to exploration, requires no model and it
can be used with deterministic policies in the form u = π(x)
where u denotes the action and x denotes the state. However,
the approach also comes with larger handicaps, e.g., each
parameter is differently sensitive to parameter perturbations
and, thus, the sizes of the required parameter perturbations
can differ by orders of magnitude. Furthermore, the gradient
estimation is very sensitive to perturbations which produce
extremely bad results, e.g., when a policy is destabilized.
Finally, in the presence of noise, the gradient estimate can be
very noisy; this can only be fought in simulation where fixing
the noise history, e.g., by resetting the seed of the random
generator, can reduce the variance significantly [3], [7]. The
simplest such an algorithm is shown below.

algorithm: Finite Difference Gradient Evaluation
input: policy θ
1 Set seed of random generator to fixed value.
2 for each parameter θi do
3 evaluate J0 =

∑N
t=0 rt with θ0

i = θi

4 for k = 1 to K do
5 draw δθk

i ∼ Uniform(δθmin, δθmax)
6 set θk

i = θi + δθk
i

7 evaluate Jk =
∑N

t=0 rt with θk
i

8 end.
9 Estimate gradient component

gi =
∑

δθk
i (Jk−J0)∑(δθk

i )2 .

10 end.
output: gradient estimate g

B. ‘Vanilla’ Policy Gradients (VPG)

Alternatively to perturbing the parameters θk of a determin-
istic policy u = π(x), one could choose a stochastic policy
u ∼ π(u|x) such that u = µ(x) + ε where ε is a perturbation
of the nominal motor command µ(x). In this case, one can
make use of the likelihood ratio trick, i.e., if we rewrite Eq.(1)
in terms of trajectories τ with probability

p(τ |θ) = p(x0)
N−1∏
t=0

p(xt+1|xt,ut)π(ut|xt) (4)

and summed reward R(τ) =
∑N

t=0 rt and differentiate, we
obtain

∇θJ(θ) = ∇θ

∫
p(τ |θ)R(τ)dτ =

∫ ∇θp(τ |θ)R(τ)dτ

=
∫

p(τ |θ)∇θ log p(τ |θ)R(τ)dτ

= E{∇θ log p(τ |θ)R(τ)} (5)

as ∇θp(τ |θ) = p(τ |θ)∇θ log p(τ |θ) by definition. If we
additionally make use of Eq.(4), we see that

∇θ log p(τ |θ) =
N−1∑
t=0

∇θ log π(ut|xt) (6)

and thus we can compute the gradient from samples without
a model of the system.

However, such a gradient estimate while unbiased, its
variance depends on the squared average magnitude of the
rewards R(τ) and thus can become quite large. However,
there are two important insights which allow the reduction
of the variance. First, as the rewards only depend on previous
actions, we realize that all terms ∇θ log π(ut|xt)rh with h < t
can only introduce variance but will always average out in
expectation. A second variance reduction technique is given
by the baselines, i.e., since we know that

∫
p(τ |θ)dτ = 1, we

also have∫
p(τ |θ)∇θ log p(τ |θ)dτ = ∇θ

∫
p(τ |θ)dτ = ∇θ1 = 0

and thus the gradient estimator can be rewritten as ∇θJ(θ) =
E{∇θ log p(τ |θ)(R(τ)− b)} where b is a constant. The base-
line can be selected to minimize the variance of the gradient
estimate which then results into a minimum variance unbiased
policy gradient gradient estimator, see [8] for details and the
description below for a highly optimized implementation with
optimal baselines.

algorithm:‘Vanilla’ Policy Gradient Evaluation
input: policy θ, paths τ1, . . . , τs, rewards rt (τ)
1 for each parameter θi do

compute optimal baseline

2 bi
t =

∑ s
p=1(

∑ t
h=0 ∇θi

log π(up
h|xp

h))2
rt∑ s

p=1(
∑ t

h=0 ∇θi
log π(up

h|xp
h))2

compute gradient component

3 gi = 1
s

s∑
p=1

N−1∑
t=0

t∑
h=0

∇θi
log π(up

h|xp
h)

(
rt − bi

t

)
4 end.
output: gradient estimate g

C. Natural Policy Gradients (NPG)

One of the disadvantages of ‘vanilla’ policy gradients is
that even with an optimal baseline, their convergence to the
optimal solution can be rather slow. The reason for this is
that they do not take into account how much information is
lost during the policy update and thus often tend to minimize
the exploration instead of exploiting the knowledge obtained
in the gradient estimation as illustrated in Figure 1 (a). One
principled approach to alleviate this problem is the natural
gradient approach [1], [5] which has resulted into several
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(a) Vanilla Policy Gradient
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(b) Natural Policy Gradient
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Fig. 1. The classical example of LQR can be used to illustrate why ‘vanilla’
policy gradients reduce the exploration to zero while natural policy gradients
go for the optimal solution.

fast policy gradient learning algorithms such as the Natural
Actor-Critic algorithms [9]. The basic idea behind this class of
algorithms is that the information about the policy parameters
θ contained in the observed paths τ is given by the Fisher
information F (θ) defined as

F (θ) = E{∇θ log p(τ |θ)∇θ log p(τ |θ)T }, (7)

i.e., it is the variance of the path derivatives ∇θ log p(τ |θ). If
we change the policy by a δθ, we occur an information loss
lθ(δθ) ≈ δθT F (θ)δθ which can also be seen as the size of
the change in path distribution p(τ |θ). Thus, if we search for
the policy change δθ which maximizes the expected return
J(θ + δθ) for a constant information loss lθ(δθ) ≈ ε, we
basically search for the highest value on an ellipse around θ
and go for the direction of this highest value. This direction
is illustrated in Figure 1 (b). By contrast, ‘vanilla’ policy
gradients do not take the information loss into account and in
policy into account and, thus, correspond to searching for the
highest value on a circle around θ as demonstrated in Figure 1
(a). More formalized, we realize that the direction of steepest
ascent on the ellipse corresponds to

δθ = argmaxδθ s.t. l(δθ)=ε δθT∇θJ = F−1 (θ)∇θJ. (8)

On the first inspection, this seems to result into more difficult
algorithms; however, there is a class of straightforward algo-
rithms which can estimate natural policy gradients using an
appropriate baseline, i.e., the Natural Actor-Critic algorithms
[9]. In the episodic form, the simplest instantiation of these
algorithms is very simple to implement and given below. The
derivation of this algorithm is beyond the scope of the paper
(for more information on it see [8], [9]) but it corresponds to an
unbiased natural gradient estimator with an optimal baseline.

algorithm: Episodic Natural Actor-Critic (eNAC)
input: policy θ, paths τ1, . . . , τs, rewards r1

t , . . . , rp
t

with t ∈ {1, . . . , N − 1}
Compute sufficient statistics

1 X =




N−1∑
t=0

∇θ log π(u1
t |x1

t ) 1

...
...

N−1∑
t=0

∇θ log π(us
t |xs

t ) 1




2 Y =
[∑N−1

t=0 r1
t · · · ∑N−1

t=0 rs
t

]T

Compute gradient and expected return

3

[
δθ
J

]
=

(
XT X

)−1
XT Y.

output: natural gradient estimate g = δθ

D. Improved Policy Updates using Rprop

The basic principle of Rprop is to eliminate the potentially
harmful influence of the magnitude of the partial derivative
on the parameter update [10]. As a consequence, only the
sign of the derivative is considered to indicate the direction
of the parameter update. The size of the parameter change
is exclusively determined by a so-called ’update-value’ ∆(t)

i ,
which is an individual, time-varying value for each parameter
i.

θ
(t+1)
i =




θ
(t)
i + ∆(t)

i , if (∇θJ(θ))(t)i > 0
θ
(t)
i − ∆(t)

i , if (∇θJ(θ))(t)i < 0
0 , else

where (∇θJ(θ))(t)i denotes the i − th component of the
gradient ∇θJ(θ) at time step t.

The second step of Rprop learning is to determine the
new update-values ∆i(t). This is based on a sign-dependent
adaptation process.

∆(t)
i =




η+ ∗ ∆(t−1)
i , if (∇θJ(θ))(t−1)

i ∗ (∇θJ(θ))(t)i > 0
η− ∗ ∆(t−1)

i , if (∇θJ(θ))(t−1)
i ∗ (∇θJ(θ))(t)i < 0

∆(t−1)
i , else

(9)

where 0 < η− < 1 < η+

In other words, the adaptation-rule works as follows: Every
time the partial derivative of the corresponding parameter
changes its sign, which indicates that the last update was too
big and the algorithm has jumped over a local minimum, the
update-value ∆i is decreased by the factor η−. If the derivative
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retains its sign, the update-value is slightly increased in order
to accelerate convergence in shallow regions.

In order to reduce the number of freely adjustable param-
eters, often leading to a tedious search in parameter space,
the increase and decrease factor are set to fixed values, i.e.
η− = 0.5 and η+ = 1.2.

At the beginning of learning, the update values ∆i are set to
an initial value, ∆0. Typically, ∆0 = 0.1, is used as a default
value. To assure that the update values stay in a reasonable
range, the update values are restricted to fulfill ∆min ≤ ∆i ≤
∆max. For the following experiments, the standard choice was
∆min = 0.01 and ∆max = 5.0.

III. SETUP

In this section, we outline the main parts of the setup, i.e.,
(i) the plant, rewards and policy as well as (ii) the learning
setup.

A. Plant, Rewards & Policy:

We focussed on the cart-pole system as a well-understood
plant using the standard dynamics and standard parameters
(see Appendix VI). As the control problem definition, we used
a regulator task, that is, we do not only require the controller
to avoid failure of the pole, but we want the controller to move
the cart to the target position in the middle of the track with
the pole standing upright.

The reward signal basically follows the definition given in
[12]: the target set for the state is reached, when the angle
of the pole is within [−0.05rad,+0.05rad] and the position
of the cart is within [−0.05m,+0.05m]. The system failed, if
the absolute pole angle is larger than 0.7 or the absolute cart
position is larger than 2.4m. In case of a failure, the episode is
stopped. The final reward is computed by −2∗ (N − t), where
N gives the maximum episode length (here: N = 200 for
training and N = 500 for test), and t is the time step, where
the failure occured. This means, that a later failure is better
than an early failure. In case of the state being within the target
region, the reward is 0 and the episode is continued (since the
system might leave the target region again). In every other
situation, the reward is −1. The above setting expresses the
desire for a minimum-time controller, that ends up in the target
region, with - in case of an inevitable failure - the preference
of a longer balancing time over a short one.

The controller was represented using a linear parameterized
policy

u = θx + ε, (10)

with policy parameters θ where ε = 0 for deterministic policies
and ε ∼ N (0, σ2) for stochastic policies. Policy gradient
methods typically require that the learning process is started
with a reasonable policy. Such initial conditions were realized
by selecting the parameters randomly while ensuring that these
lead to an overall stable system. Additionally, in Section IV-
E, we tested the methods when started with arbitrary control
policies. The VPG and the NG method require a stochastic
policy which explores; this was realized by adding a zero
mean gaussian noise with variance 1 to the control signal.

The FD method relies on parameter perturbations which are
selected using uniformly distributed random number in the
range [−δθmax,+δθmax] with δθmax set to 2.0 (unless stated
differently).

B. Learning Setup

We evaluated three different methods for gradient estima-
tion, i.e., Finite-Differences (FD), Vanilla Policy Gradient
(VPG) and Natural Gradient (NG), as described in Section
II. Each of these methods was combined with both simple
gradient descent and the Rprop method for updating the
controller parameters. The parameters for the learning rates
for gradient descent where adapted manually for each task.
Rprop uses the standard values of ∆max = 5, ∆min = 0.01
and ∆0 = 0.1 for all tasks.

In all experiments, the policy was updated after every 10
episodes. Performance is measured after every 50 episodes by
doing 50 test runs starting from random initial states where
the pole angle is between −0.2rad and 0.2rad and the cart
position is within -0.5m and 0.5m. For testing, the gaussian
noise in the policy was set to 0. Every experiment was repeated
20 times, each with randomly determined (but stabilizing)
initial controller parameters. The figures report the average
cumultated costs over these 20 runs.

To summarize the learning results in a tabular represen-
tation, we distinguish between two performance levels of the
learned controllers: reaching average cumulated costs of −120
(corresponding to a satisfying controller performance), and
reaching average cumulated costs of −80 (corresponding to a
good controller performance). The table reports the number of
episodes that are needed to reach the respective performance
level and the overall best result achived in a maximum of
50,000 episodes. The average cumulated cost value of the
initial controllers is −245.7.

C. Illustrative Learning Result

Figure 2 illustrates the results of a typical successful learn-
ing trial. The learning controller is started with an initial policy
that has an average cumulated cost value of -384. Applying
the initial policy to a sample initial state, the position of the
cart reaches the target position only very slowly after about
700 cycles (which corresponds to about 14s in realtime). After
learning, the controller achieves an average cumulated cost
value of -89. Accordingly, control is much faster with the
learned controller: after only about 200 cycles (corresponding
to 4s), the cart stabily reached the target position with the pole
standing upright (the latter is not shown in the figure). In this
example case, the controller was trained by VPG-Rprop within
1500 episodes. Also note, that the target position is achieved
with a very high precision.

IV. RESULTS

We compare the results of the main gradient estimators
described in Section II when applied in the setup described in
Section III. Each time, we compare the setup using standard
gradient descent with the Rprop rule.
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Fig. 2. Comparison of control behavior of initial controller (value -384)
and controller learned by vpg Rprop in 1500 episodes (value -89). The figure
shows the position of the cart over the number of time steps (0.02s each). Both
controllers accurately control the position to the final position. The trained
controller achieves the position much faster. In both cases, the pendulum is
standing upright at the end of the episodes.

A. Estimating the Gradient using Finite Differences (FD)

1) FD and Standard Gradient Descent (FD-GD): The
combination of the FD method to estimate the gradient and
the standard gradient descent rule to update the controller
parameters delivered controllers with satisfying performance.
When the learning rate was carefully tuned (ε = 0.001), the
performance measure of the controller could be increased from
an average cumulated cost of about −250 to −84.3 (row 2 in
Table I), which corresponds to a good controller performance.
A satisfying controller with a performance value better than
−120 was reached for the first time after 12300 episodes.

When taking a closer look at the learning curve for ε =
0.001, a highly varying controller performance can be ob-
served. This is a typical indicator, that the learning rate
for gradient descent might have be too large. Indeed, when
choosing a smaller value ε = 0.0001, the learning behaviour
was smoother but also significantly slower. This trend is
continued, when the learning rate is lowered further (see figure
3). Increasing the learning rate beyond 0.001 resulted in a non-
successful learning behaviour (row 1 in table I).

2) FD and Rprop (FD-Rprop): Rprop adapts the size
of the update step based on the observed curvature of the
cost function. When the gradient information is reliable, this
usually leads to a faster and more robust optimization pro-
cess. Combining Rprop with the FD method actually resulted
in a significant improvement compared to standard gradient
descent.

TABLE I

RESULTS WITH THE FD METHOD

> −120 > −80 best
FD-GD, ε = 0.01 - - -245.7
FD-GD, ε = 0.001 12 300 - -84.3
FD-GD, ε = 0.0001 18 100 - -99.7
FD-GD, ε = 0.00001 - - -158.4
FD-Rprop 7 450 45 650 -75.6

-250

-200

-150

-100

-50

 0  10000  20000  30000  40000  50000

Rprop
lrate= 0.001

lrate= 0.0001

Fig. 3. Finite Difference method combined with both gradient descent and
Rprop. The figure shows average cumulated costs over the number of training
episodes. Using standard gradient descent, a large learning rate might lead to
oscillating learning behaviour, whereas small learning rates might result in
slow learning progress. Rprop achieves a fast and smooth learning behaviour
with standard parametrisation.

FD-Rprop on average reaches a satisfying controller (better
than -120) within 7450 episodes and a good one (with a cost
of less than -80) after 45 650 episodes (see row 4 in Table I).
The final value reached was -75.6, which is considerably better
than the value reached by the FD-GD approach. Also, learning
behaviour was much smoother than with the most successful
but aggressive gradient descent parameter (see Figure 3).

An additional benefit of using Rprop rule is that it works
well with the standard parametrization given in Section III.
Being less sensitive to the choice of its parameters is an highly
important feature when it comes to more complex real-world
applications.

3) Influence of further FD Parameters: We initially ex-
pected the FD method to be more sensitive to noise in the
learning process, e.g. induced by selecting random initial states
or taking random perturbation steps). However, we found that
in our experiments the FD method behaved surprisingly robust
in the presence of that kind of noise; a fact that is additionally
supported by the results on the application to a noisy plant
(see Section IV-D).

FD also turned out to be very robust against the choice of
the maximum perturbation step size parameter. Values between
0.1 and 10 lead to very similar results. Only when the value
was chosen extremely big (e.g larger than 50), the learning
curves started to become less smooth.

B. Estimating the Gradient by Vanilla Policy Gradient (VPG)

1) VPG and Standard Gradient Descent (VPG-GD): Com-
bining vanilla policy gradient and standard gradient descent
for updating the parameters, a value of 0.2 for the learning
rate gave the best results (Row 2 in Table II). The results
improved over the FD results in the previous section. Not
only did it learn much faster (only 1200 episodes to learn
a satisfying controller with performance better than −120),
but also achieved a much better controller performance (of
roughly −75.8).
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Fig. 4. Vanilla Policy Gradient (VPG) method combined with both gradient
descent and Rprop. Figure shows average cumulated costs over the number
of training episodes. Blue line shows gradient descent behaviour, when no
baselines are used. Using optimal baselines, gradient descent performs much
better (green line). Rprop and baselines results in a very fast and effective
learning behaviour.

Varying the learning rate by a factor of 10 has a considerable
effect on the results of learning with respect to speed and final
performance ( see Rows 1 and 3 in Table II). With a too large
learning rate, we observed that learning got trapped very early
on a low but stable level. In this case, it seems that the variance
of the stochastic policy has decreased too fast which results
in bad exploration behaviour.

2) VPG and Rprop (VPG-Rprop): Vanilla policy gradient
and Rprop were found to be a very successful combination
(see row 4 in Table II). Not only good controllers were found
quickly (a performance better than −120 in 450 episodes and
better than −80 in 3000 episodes), but also a final performance
achieved −64.3 was very good. This speed is on average more
than 10 time steps faster than the best controller found by
VPG-GD.

Again, for Rprop the standard parameters given in Section
III were used.

3) The Effect of Baselines on VPGs: To examine the
influence of the baseline (see Section II-B), we conducted
also experiments with a baseline of bi

t = 0, i.e., no baseline.
Using no baseline at all has a dramatic effect on VPG. In
combination with gradient descent learning, it became much
slower and the resulting controllers performed significantly
worse (see rows 5-7 in Table II and Figure 4). When no
baselines are used, the Rprop update did not work at all.

TABLE II

RESULTS WITH THE VPG METHOD

> −120 > −80 best
VPG-GD, baseline, ε = 0.02 10 850 - -102.5
VPG-GD, baseline, ε = 0.2 1 200 26 450 -75.8
VPG-GD, baseline, ε = 2.0 - - -154.2
VPG-Rprop, baseline 450 3 000 -64.3
VPG-GD, no baseline, ε = 0.003 - - -123.8
VPG-GD, no baseline, ε = 0.03 22 200 - -102.4
VPG-GD, no baseline, ε = 0.3 - - -217.7
VPG-Rprop, no baseline - - -245.7

-250

-200

-150

-100

-50

 0  10000  20000  30000  40000  50000

NG-GD, unbounded action
NG-GD, bounded action

Fig. 5. NG and standard gradient descent, prior control. The performance
finally decreases again. Only when the control signal is not constrained, a
continuously improving performance was achieved.

We assume, that this is due to the increased variance of the
gradient estimates without baselines: in this case, the gradient
information is too noisy and the Rprop step-size adaptation can
not work effectively. Only when we increased the number of
samples per update (which also decreases the variance in the
gradient information), we could make Rprop to work without
baselines. But of course, since more episodes are needed to do
a parameter update, this method results in a slower learning
process.

C. Estimating the Gradient by the Natural Gradient Method
(NG)

1) NG and Standard Gradient Descent (NG-GD): The
combination of natural gradients and standard gradient descent
resulted both in reasonably fast and successful learning (see
rows 1-3 in Table III). A good controller (better than −80)
could be learned in 5 050 episodes, which is about 5 times
faster than the combination of vanilla policy gradient and
gradient descent. Also NG-GD was able to produce the best
controller obtained so far (average reward of −55).

An interesting effect we observed, is that the performance of
NG-GD decreased again after continuing the learning process
over a certain limit. Varying the parameters (learning-rate,
number of samples per update, variance) did not solve the
problem. The cause of this phenomenon lies in the fact, that
the control signal actually applied to the plant is cut off at
±10N : if we allow arbitrary control signals, then the learning
curve continuously improves as expected (see Figure 5). This
artifact will be further investigated in the future.

2) NG and Rprop (NG-Rprop): Combining NG and Rprop
worked but could not compete with standard gradient descent

TABLE III

RESULTS WITH THE NG METHOD

> −120 > −80 best
NG-GD, ε = 0.001 14 400 37 350 -62.1
NG-GD, ε = 0.01 3750 5 050 -55.0
NG-GD, ε = 0.1 - - -245.7
NG-Rprop, ε = 0.01 - - -129.5
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when used with good learning rates (line 4 in Table III).
NG-Rprop was able to produce controllers with an average
performance of -129.5, which is an improvement of the initial
performance, but far from the performance achieved with other
methods. Looking closer at the results, we saw, that for some
runs, learning was fast and effective, while other runs failed
completely. On average, this resulted into bad performance.
Future work might explore, whether a refined approach will
result in better and more robust learning behaviour.

D. Application to a Noisy Plant

To check the behaviour of the learning methods in a noisy
environment, gaussian noise was added to the plant state
variables in every time step (see appendix). The noise-level
parameter was set to 0.05. The average performance value of
the intial controllers was -809.7

The initial conjecture, that the FD method is particularly
sensitive to noise and probably would not work at all, was not
confirmed. Both the gradient descent and the Rprop variant
achieved to produce satisfying controllers, with the Rprop
variant learning faster and producing better results (row 1 and
2 in table IV).

VPG reached an overall better performance level than FD,
VPG-Rprop being again faster than gradient descent (row 3
and 4 in table IV). The Rprop-Version of VPG reached a very
high performance level very quickly. NG-GD reached the best
overall performance, whereas NG-Rprop managed to improve
the initial controller performance, but did not deliver satisfying
results (row 5 and 6 in table IV).

E. Learning in the Absence of Prior Knowledge

Policy gradient methods in general make the assumption
that a fair amount of prior knowledge about the policy is
available at the beginning of learning and given in form of the
(initial) parameterized policy. In the cart-pole example, both
the general form of the policy law (a linear combination of
state variables) and on the initial policy parameters was used
so far.

This experiment tests how the methods behave in the ab-
sence of knowledge on reasonable initial controller parameters.

> −700 > −650 > −600 best
FD-GD 35 050 - - 679.9
FD-Rprop 10 050 25 350 - -633.57
VPG-GD 21 750 - - -678.0
VPG-Rprop 350 1 650 10 650 -577.87
NG-GD 2 100 3 950 9 450 -528.2
NG-Rprop - - - -758.0

TABLE IV

APPLICATION OF THE VARIOUS METHODS TO A NOISY PLANT

TABLE V

LEARNING, WHEN CONTROLLER PARAMETERS ARE INITIALIZED WITH

ZERO

> −120 > −80 best
FD-Rprop 22 900 46 950 -78.8
all other - - -1000
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Fig. 6. Finite Differences in combination with Rprop were the only method
that found a controller when starting with no initial knowledge on the
controller parameters (ie. R = (0, 0, 0, 0)T ).

To test this, controller parameters were initialized with 0 each.
Clearly, this controller initially is not able to fulfill the control
task.

The only method that shows improvement at all was the
finite difference approach combined with Rprop (Figure 6).
However, in order to get a fast learning and good performance,
we had to choose quite aggressive learning meta-parameters.
The maximum perturbation step was chosen to be 50.0 and
the minimum parameter update step was ∆min = 0.1. Using
the original parameters showed improvement, but resulted in
a very slow learning process.

In contrast, both VPG and NG methods did not show any
improvement at all over a wide range of tested parameters,
both with gradient descent and Rprop.

In a second, more difficult setting, controller parameters
were randomly initialized to each lie within the interval
[−50, 50]. This is a particularly hard test, since controller
parameters might be far from reasonable or even good values.
Again, FD + Rprop was the only method that was able to
produce reasonable controllers even out of a very bad initial
situation.

F. Summary

A central focus of this study was dedicated to the situation,
when a reasonable parametrisation of initial controllers is
available. This is the typical assumption when policy gradient
methods are to be applied. For the cart-pole benchmark
considered here, all of the gradient computation methods (FD,
VPG, NG) where able to successfully improve initial controller
performance when combined with gradient descent parameter
update. However, in order to be successful, a careful tuning of
the learning rate is necessary. A good value for the learning
rate differs from application to application, potentially by
several magnitudes. If the learning rate is too large, no learning
occurs, and even a decrease of the controller performance
was observed. It therefore seems reasonable, to start with a
rather small value first and if learning is successful, increase
it, until a good value is found. For FD and VPG, the Rprop
method to update the parameter values resulted in a siginificant
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improvement of the results, both with respect to learning speed
and performance of the resulting controllers. Also, standard
parameters can be used, which might be an important fact
when it comes to practical real world applications, where
tedious parameter tuning might be costly.

NG and VPG turned out to be considerably faster and to
result in better controllers than FD. FD on the contrary has
the advantage, that it is the simplest algorithm of all, and
that it might also be applied in more general situations (e.g.
it does not rely on a stochastic policy). FD-Rprop also was
the only algorithm, that was able to learn a controller in
the absence of a good guess for the controller parameters.
NG was superior to VPG with respect to the final controller
performance learned. When VPG was combined with Rprop,
it was faster than NG with gradient descent, but could not
reach the very good performance that NG-GD achieved. The
baseline method turned out to be very efficient for the VPG
method both with respect to learning time and to the controller
performance that could be achieved.

V. CONCLUSION

The paper discusses three main algorithms of policy gra-
dient methods on the cart-pole regulator benchmark. Several
variants of the original methods are discussed. The results
obtained in the empirical section may serve as a baseline for
the further investigation of modifications and improvements of
the algorithms. To make comparison easier, complete source
code of plant and controllers is released, available under
www.ni.uos.de/pgmethods. Since only very general interfaces
are used, it should be easy to integrate the code into other RL
software packages, like e.g. RL-Glue developped at University
of Alberta.
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VI. APPENDIX

The dynamics of the cart-pole system are given by the
following equations:

ẍ =
F − mp l (θ̈ cos θ − θ̇2 sin θ)

mc + mp

θ̈ =
g sin θ (mc + mp) − (F + ms l θ̇2 sin θ) cos θ

4
3 l (mc + mp) − mp l cos2 θ

where l = 0.5 (half length of pole), mc = 1.0 (mass of
cart), mc = 0.1 (mass of pole), g = 9.81m/s2 (gravity), and
−10N ≤ F ≤ +10N (force applied to the cart). The control
interval was 0.02s. The dynamics were simulated by a fourth
order Runge-Kutta method.

For the noisy plant, a noise vector ξ was added to the state
vector x = (θ, θ̇, s, ṡ)T in every time-step, i.e. x(t + 1) :=
f(x(t), u(t)) + ξ. ξ is a four dimensional, zero-mean, gaus-
sian distributed noise vector, i.e. ξ ∼ N(0,Σ), with Σ =
noise level ∗ diag(0.5, 2., 2., 2.).
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