
Toward effective combination of off-line and on-line
training in ADP framework

Danil Prokhorov
Toyota Technical Center
Ann Arbor, MI 48105

E-mail: dvprokhorov@gmail.com

Abstract— We are interested in finding the most effective
combination between off-line and on-line/real-time training in
approximate dynamic programming. We introduce our approach
of combining proven off-line methods of training for robustness
with a group of on-line methods. Training for robustness is
carried out on reasonably accurate models with the multi-
stream Kalman filter method [1], whereas on-line adaptation
is performed either with the help of a critic or by methods
resembling reinforcement learning. We also illustrate importance
of using recurrent neural networks for both controller/actor and
critic.

I. INTRODUCTION AND BACKGROUND

Our previous work [2] and [3] has concentrated on achieving
good performance from neurocontrollers in spite of various
uncertainties, especially parametric uncertainties. We demon-
strated that it is possible to design a robust neurocontroller
from a recurrent neural network (RNN) with fixed weights.

The trained weights of our robust neurocontroller serve as
its long-term memory, which is undesirable to change. While
robustness is a desirable property, it is occasionally useful to
be able to adapt the fixed-weight neurocontroller to a specific
plant it operates on, or track changes in the plant on-line. We
can change other elements of the neurocontroller to reinforce
the robust neurocontroller by adaptivity.

We can offer two options for combining adaptivity and
robustness. First, we can use state variables of the recurrent
network (i.e., its recurrent node outputs) as adaptive elements
[4]. Such state variables act as short-term memory, which is
strongly influenced by the weights, or the long-term memory.

Second, we can augment the robust neurocontroller with
adaptive structure, e.g., another NN. Such a NN would com-
pensate the remaining performance deficiencies of the robust
NN and provide appropriate corrective controls to be added to
the robust NN controls.

Both options above add short-term memory to the long-
term memory of the robust neurocontroller, although the first
option’s memory depth is more affected by the long-term
memory of the robust neurocontroller than that of the second
option.

The adaptive NN could implement just feedforward controls
(see, e.g., [5]). However, we think that in general a more
effective alternative is to use an RNN in the setting of direct
adaptive control.

In this paper, we will elaborate on the second option and
propose alternatives for effective combination of the off-line

and on-line RNN training. Our pivotal assumption is that
all signals in the closed-loop system are bounded, which
assures the bounded input bounded output (BIBO) stability.
Our assumption holds for all real-world systems.

We discuss our choices for on-line adaptation in the next
section. We then describe the example application and il-
lustrate our proposals in simulation. We conclude with our
observations and a discussion of outstanding issues.

II. ON-LINE ADAPTATION VIA ADDITIONAL NN

We examine here the option of augmenting the robust
recurrent neurocontroller with another NN. Figure 1 depicts
a possible augmentation.

+

J

Z-1

RNN
controller

(fixed weights)

Plant

RNN critic
(real-time
adaptation)Recurrent

node
outputs

u

Observations

u∆

Fig. 1. Proposed augmentation of the robust recurrent neurocontroller with
fixed weights by the recurrent critic for improved adaptive control of the
plant. The critic network uses the same inputs as the robust neurocontroller,
its output u, plus all outputs of the state nodes of the robust neurocontroller.
The adaptive correction ∆u of control u is computed by backpropagating
through the critic.

We employ an adaptive critic to provide bounded correction
signals to the controls u through the critic sensitivity network,
i.e., via backpropagation through the critic network with
respect to the control inputs u:

∆u = −µ∂J/∂u (1)

where J is the critic output – an approximation of the cost-
to-go function of dynamic programming.

The J critic attempts to approximate the discounted sum
below:

J∗(z(t)) = <

n=∞∑

n=0

γncost(z(t + n)) > (2)

268

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

where < · > is an average taken with respect to all possible
continuations of the closed-loop state vector z(t). The function
cost(·) is problem dependent. Our example below will employ
the instantaneous quadratic tracking error as cost(·).

The critic approximates J∗(t) via the usual recursion

J(t) = cost(t) + γJ(t + 1) (3)

where J is critic output; we suppressed the dependence on the
state vector of the closed-loop system for simplicity.

The total control input to the plant is u + ∆u. Approxima-
tion capabilities of the critic and effectiveness of its learning
will clearly affect the performance achieved by the closed-
loop system. We can reduce at least large residual errors
of the robust neurocontroller by employing a simple critic
NN. (This is illustrated in the example section.) To improve
the performance significantly, the critic may need to be a
sufficiently complex network which is fed by the controller
inputs, the controller state variables and its outputs. It is useful
to feed into the critic network as much information about
the state of the closed-loop system as available for improved
performance, as emphasized in [13]. To be especially effective,
the critic may have to be an RNN (as shown in Figure 1), for
such networks can deal with noise and partial observability
better than non-recurrent NN (see, e.g., [6]).

Recurrent critics have been known for quite some time.
The reader is referred to [7] and [8] for early publications
on the subject and additional information. Others have also
been experimenting with recurrent critics with success: see,
e.g., [9], [10], [11].

To train recurrent adaptive critics on-line, we may need
to exercise caution. First, computational constraints are likely
to restrict a set of acceptable training methods, especially
if training all weights of the critic network is desired. The
use of methods scaling linearly with the number of the NN
weights may be warranted. Second, the all-weight training in
a nonlinear NN may result in output bifurcations, i.e., small
changes of the critic weights may cause dramatic changes
of the critic output. For continuous on-line adaptation of the
critic, its bifurcations may be undesirable. In such a case only
an output subset of the critic weights may have to be trained,
as it is done in the so-called echo state network [14].

Figure 2 shows another option for on-line adaptation with
a special NN. This special NN is an adaptive portion of the
combined neurocontroller, which is to be trained by suitable
methods. The advantage of this option over Figure 1 is that
bounded control corrections ∆u are computed directly, rather
than via backpropagation through the critic. This option does
not preclude the use of the critic NN, although it creates
some redundancy between the robust neurocontroller with
fixed weights and the adaptive controller.

For training the adaptive NN, at least two possible methods
stand out, viz., the algorithm of pattern extraction (ALOPEX)
[15] and the simultaneous perturbation stochastic approxima-
tion (SPSA) [16]. Both methods belong to the family of direct
(model-free) adaptive control methods, and they can also be
interpreted as forms of reinforcement learning. The SPSA

+

∆u

Z-1

RNN
controller

(fixed weights)

Plant

Adaptive
controller

Recurrent
node

outputs

u

Observations

Combined neurocontroller

Fig. 2. Proposed combination of the robust recurrent neurocontroller with
fixed weights and an adaptive controller for improved control of the plant.
The adaptive controller can be another NN which uses the same inputs as the
robust neurocontroller, its output u, plus all outputs of the state nodes of the
robust neurocontroller. Unlike Figure 1, the adaptive correction ∆u of control
u is computed directly, thereby avoiding possible arbitrariness in choosing the
learning rate µ in (1).

method described below results in faster training than the
ALOPEX method in our example application.

A popular form of the gradient descent-like SPSA uses two
cost evaluations independent of parameter vector dimension-
ality to carry out one update of each adaptive parameter. Each
SPSA update is

Wnext
i = Wi − aGi(W) (4)

Gi(W) =
Cost+ − Cost−

2c∆i
(5)

where W is a weight vector of the adaptive controller, Cost±

is a cost function to be minimized, ∆ is a vector of symmet-
rically distributed Bernoulli random variables generated anew
for every update step (e.g., the i−th component of ∆ denoted
as ∆i is either +1 or −1), c is size of a small perturbation
step, and a is a learning rate.

Each SPSA update requires that two consecutive values of
the Cost function be computed. This means that one SPSA
update occurs no more often than once every other time step. It
may also be helpful to let the Cost function represent changes
of the cost over a short window of some number of time
steps τ , in which case each SPSA update would be even less
frequent. In our example Cost is the windowed sum of cost(·)
values used in (2). This allows the plant additional time to react
to changing W.

III. EXAMPLE APPLICATION

Our example deals with electronic throttle control (ETC).
The ETC is gaining popularity in the automotive industry
due to its capabilities for achieving improvements in fuel
economy, drivability and other crucial performance factors.
In conventional vehicles the driver pedal is linked to the
engine throttle mechanically. The ETC vehicles are “drive-
by-wire” vehicles, meaning that the throttle is driven by an
electric motor controlled electronically through an appropriate
interpretation of the driver pedal position.

269

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

The ETC is an electromechanical system consisting of a
DC motor, a gear mechanism and a throttle valve with a dual
spring system. In the neutral position, both springs are relaxed,
and throttle valve is slightly open. This is called the “limp-
home” position, and it is critical in case of the power failure
allowing the engine to operate in a low power mode. The two
springs have substantially different stiffness. The first spring
affects the throttle valve motion at angles exceeding the “limp-
home” angle, whereas the second spring counteracts the motor
moment for angles smaller than the “limp-home”. The second
spring’s stiffness must be higher to provide higher angular
resolution at small angles. The throttle position is measured
by a potentiometer. A sufficiently accurate angular control of
the throttle valve’s plate is desired.

The ETC model consists of several components (Figure 3).
It includes the DC motor dynamics, with the armature time
constant Ta, the armature gain Ka, the emf constant Kv, and
the torque constant Kt. Our control signal is the motor voltage
u, and it is limited between umin and umax. Further, there is
a complicated model of friction due to ball bearings and the
gear mechanism. The gear ratio is Kl, and the overall inertia
is J . Finally, the dual spring system is modeled in the form
of a lookup table.

Motor speed ω
m

angle θ

2

Throttle plate

1

J.s

Transfer Fcn1

Ka

Ta.s+1

Transfer Fcn

1
s

Integrator1

Kl

Gain2

Kv

Gain1

Kt

Gain

In1Out1

Friction model

In1Out1

Dual spring system model

1

Voltage u

Fig. 3. Block diagram of electronic throttle. The controller (not shown)
senses the throttle valve position θ (and, possibly, the motor speed ωm) and
puts out the voltage u.

The ETC model has been validated experimentally and
demonstrated to be a very accurate description of the real
hardware, provided that the model parameters included as
components in the uncertainty vector θ (15 components in-
cluding parameters of the friction and spring models) could
be estimated with high accuracy (to within a few percent
from their true values). It is projected that the massive use
of the ETC in automotive industry in the near future will
expedite the utilization of relatively cheap components with
substantial spread of parameters around their nominal values.
For example, the friction model parameters or the spring
stiffness may have their true values significantly different from
nominal, or they may deviate significantly during the throttle
service time. The ETC pervasiveness will also mean that it
is too costly to calibrate any model-based control algorithm
with fixed parameters. Our previous studies discuss how to
obtain a robust neurocontroller for the ETC problem [3]. We
illustrate here how to employ a robust neurocontroller (2-5R-
3-1 RNN) in combinations with either the critic or the adaptive
neurocontroller for improved performance.

First, we verify that the proposed augmentation of the fixed-
weight robust neurocontroller by the adaptive critic in Figure
1 is suitable for the ETC problem. Figure 4 shows our typical
result obtained with a simple feedforward NN as critic. It has
one sigmoidal output node and eight inputs, consisting of two
inputs and one output of the robust neurocontroller and five
outputs of the recurrent nodes. The critic is trained by the
standard gradient descent Heuristic Dynamic Programming
(HDP) method [7] with the learning rate of 0.01; γ = 0.5,
µ = 0.3. We can see that the initially large tracking errors are
reduced noticeably (by at least 10 percent).

2300 2350 2400 2450 2500 2550

0.02

0.03

0.04

0.05

0.06

0.07

Reference trajectory index

R
M

S
 e

rr
or

Fig. 4. Typical results of the robust and adaptive controller combination
according to Figure 1. A fragment of a longer time series is shown. The plant
parameters are changed abruptly every 51 reference trajectories (often shows
itself as stepwise changes of the tracking RMS errors). The solid line shows
the RMS errors for the robust neurocontroller only, whereas the dashed line
shows the RMS errors when the critic training is enabled, producing ∆u.

We also verify that the proposed combined neurocontroller
in Figure 2 is effective for this problem. We employ 8-2R-1
adaptive RNN with the fully recurrent layer of two nodes and
25 weights. Its eight inputs are the same as in the previous
experiment. We update its weights by SPSA with the following
parameters: a = 0.0002, c = 0.003 and τ = 5 for computation
of Cost in (4). The histogram in Figure 5 shows that the
worst RMS error is reduced substantially for the combined
controller than for the robust controller alone, with more than
10% reduction of the mean RMS error. It is worthwhile to
point out that 8-5-1 feedforward NN (51 weights) yields a
noticeably worse reduction of the mean RMS error.

IV. DISCUSSION

In spite of conceptual simplicity of the proposed control
schemes for combining robust and adaptive components, var-
ious issues remain to be clarified.

Parameters for training the adaptive part of the combined
systems in Figures 1 and 2 should be optimized for best
performance. Our choice of the training parameters in both
experiments is reasonable, but obtained by trial and error and
by no means optimal; a random choice of the parameters is

270

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

100

200

300

400

500

600

700

800

900

RMS error

N
um

be
r

of
 p

la
nt

s

Fig. 5. Comparison of tracking RMS errors over 1000 plants for the
same reference trajectory for the robust and adaptive controller combination
according to Figure 2. The black bars are for the combination of the two
neurocontrollers (the maximum RMS error is 0.071), whereas the white bars
are for the robust neurocontroller only (the maximum RMS error is 0.096).
The mean RMS error shows 12.5% improvement for the combination.

likely to be poor, resulting in significant degradation of the
original robustness.

Ideally, the training parameters should be chosen such that
they reduce all RMS errors, i.e., for all plants, disturbances,
reference trajectories, etc. The choice of fixed parameters, as
illustrated here, is likely to fall short of this ideal, at most
resulting in reductions of the average RMS errors and the worst
among the RMS errors values. If the minimization of the worst
RMS errors is the only concern, then it is possible to create an
adaptation scheme with a dead zone in which the adaptive part
will begin its learning and affecting the robust part only if the
errors exceed a specified threshold. However, if improvement
of all RMS error values over those of the robust controller is
desired, then the training parameters of the adaptive part may
need to be adjusted on-line.

In our illustrations above we chose to apply the corrections
∆u at every time step. Determining when to apply ∆u
for maximum effect may be important, especially for the
scheme of Figure 1 because changes of controls may act as
disturbances to the critic, as noted in [12].

The optimal representation for the adaptive part in Figures
1 and 2 is another issue, stemming from the well known
stability-plasticity dilemma. The fastest adaptation may require
the simplest possible representation, i.e., the adaptive bias for
each of the components of u. However, such memoryless
representation might not be the optimal choice for many
problems.

V. CONCLUSION

We propose two combinations for the off-line and the on-
line training in the ADP framework and demonstrate their
performance on an industrial application. They feature a robust
neurocontroller with weights fixed after off-line training and
adaptive elements for on-line training. Explicit adaptivity

originates from a special NN which may need be recurrent for
improved performance. Such a NN can be either an adaptive
critic, or an adaptive controller which augments the robust
controller and is trained via forms of reinforcement learning.
This special (adaptive) NN and the associated training algo-
rithm may need to have the complexity simpler than that of
the robust NN to reduce computational load of the on-line
implementation.

REFERENCES

[1] L. A. Feldkamp, D. V. Prokhorov, C. F. Eagen, and F. Yuan, “Enhanced
multi-stream Kalman filter training for recurrent networks,” in J. Suykens
and J. Vandewalle (eds), Nonlinear Modeling: Advanced Black-Box
Techniques, Kluwer Academic Publishers, 1998., pp. 29–53.

[2] D. V. Prokhorov, G. V. Puskorius, and L. A. Feldkamp, “Dynamical neural
networks for control,” see in A Field Guide to Dynamical Recurrent
Networks, J. Kolen and S. Kremer (Eds.), IEEE Press, 2001, pp. 257–289.

[3] D. Prokhorov, “Training Recurrent Neurocontrollers for Robustness with
Derivative-Free Kalman Filter,” IEEE Trans. Neural Networks, November
2006, pp. 1606–1616.

[4] D. Prokhorov, “Training Recurrent Neurocontrollers for Real-Time Ap-
plications,” IEEE Trans. Neural Networks, to appear.

[5] M. Kawato, Y. Uno, M. Isobe, and R. Suzuki, “Hierarchical neural
network model for voluntary movement with application to robotics,”
IEEE Control Systems Magazine, vol. 8, no. 2, April 1988, pp. 8–15.

[6] J. Suykens, J. Vandewalle, and B. De Moor, Artificial Neural Networks for
Modeling and Control of Non-Linear Systems, Kluwer Academic, 1996.

[7] Publications of Paul J. Werbos at www.werbos.com.
[8] L.-J. Lin and T. Mitchell, Memory Approaches To Reinforcement Learn-

ing In Non-Markovian Domains, Technical Report CMU-CS-92-138,
School of Computer Science, Carnegie Mellon University, May 1992.

[9] P. Eaton, D. Prokhorov, and D. Wunsch, “Neurocontroller Alternatives
for Fuzzy Ball-and-Beam Systems with Nonlinear, Nonuniform Friction,”
IEEE Trans. on Neural Networks, March 2000, pp. 423-435.

[10] K. Bush and C. Anderson, “Modeling Reward Functions for Incomplete
State Representations via Echo State Networks,” Proceedings of the
International Joint Conference on Neural Networks, Montreal, Canada,
August 1-4, 2005.

[11] B. Bakker, “Reinforcement learning by backpropagation through an
LSTM model/critic,” Proceedings of the 2007 IEEE International Sympo-
sium on Approximate Dynamic Programming and Reinforcement Learn-
ing, Honolulu, Hawaii, April 1-5, 2007.

[12] L. Feldkamp and D. Prokhorov, “Observations on the Practical Use
of Derivative Adaptive Critics,” Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Orlando, FL,
October 1997, pp. 3061-3066.

[13] D. Prokhorov, “Backpropagation through time and derivative adaptive
critics: a common framework for comparison,” Chapter 15 in Handbook
of Learning and Approximate Dynamic Programming, J. Si et al. (eds),
IEEE Press, 2004.

[14] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunications,” Science,
April 2, 2004, pp. 78–80.

[15] E. Micheli-Tzanakou, Supervised and Unsupervised Pattern Recogni-
tion: Feature Extraction in Computational Intelligence, CRC Press, 2000.

[16] J. C. Spall and J. A. Cristion, “Model-free control of nonlinear stochas-
tic systems with discrete-time measurements,” IEEE Trans. Automatic
Control, vol. 43, no. 9, September 1998, pp. 1198–1210.

271

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

