
Two Novel On-policy Reinforcement Learning
Algorithms based on TD(λ)-methods

Marco A. Wiering and Hado van Hasselt
Intelligent Systems Group

Department of Information and Computing Sciences, Utrecht University

Padualaan 14, 3508TB Utrecht, The Netherlands

Tel: +31 30 2539209, Fax: +31 30 2513791, Email: {marco,hado}@cs.uu.nl

Abstract—This paper describes two novel on-policy reinforce-
ment learning algorithms, named QV(λ)-learning and the actor
critic learning automaton (ACLA). Both algorithms learn a state
value-function using TD(λ)-methods. The difference between the
algorithms is that QV-learning uses the learned value function
and a form of Q-learning to learn Q-values, whereas ACLA uses
the value function and a learning automaton-like update rule to
update the actor. We describe several possible advantages of these
methods compared to other value-function-based reinforcement
learning algorithms such as Q-learning, Sarsa, and conventional
Actor-Critic methods. Experiments are performed on (1) small,
(2) large, (3) partially observable, and (4) dynamic maze problems
with tabular and neural network value-function representations,
and on the mountain car problem. The overall results show
that the two novel algorithms can outperform previously known
reinforcement learning algorithms.

I. INTRODUCTION

Reinforcement learning algorithms [11], [3] are very suit-

able for learning to control an agent by letting it interact

with an environment. Currently, there are three well-known

model-free value-function-based reinforcement learning (RL)

algorithms that use the discounted future reward criterium;

Q-learning [12], Sarsa [6], [10], and Actor-Critic methods

[1], [11], [4]. Alternatively, a number of policy search and

policy gradient algorithms have been proposed, but we will

not describe these here. This paper introduces two new value-

function-based RL algorithms, named QV-learning and the

actor critic learning automaton (ACLA). Similar to Actor-

Critic methods and in contrast to Q-learning and Sarsa,

QV-learning and ACLA keep track of two functions.1 Both

algorithms learn the state value-function (V-function) with

temporal difference (TD) learning [9], and use this estimated

state value-function to learn a policy. QV-learning learns

the state-action (Q) values using a form of Q-learning, and

ACLA uses a learning automaton-like update rule [5] to learn

preference values of actions. The new algorithms are also

enhanced by eligibility traces [9] by learning the values of the

state value-function using TD(λ) methods. In the experiments,

we compare QV(λ)-learning and ACLA(λ) to Q(λ)-learning,

a conventional Actor-Critic method, and Sarsa(λ). We will not

compare the new algorithms to model-based algorithms, since

1Note that Q-learning and Sarsa only learn state-action values, the value
of a state can be derived from the different state-action values of actions
applicable in that state.

these cannot directly work with continuous input spaces and

non-linear function approximators such as neural networks.

Furthermore, we will also not do experiments with batch

algorithms that can decrease the number of experiences at the

expense of more computation time per experience, although

it is straightforward to extend the new algorithms to their

batch versions. In the experiments, we first use a small maze

and compare the algorithms using tabular and neural network

representations. Then, we use a larger maze and compare

the algorithms using tabular representations. We also perform

experiments with a partially observable maze and a dynamic

maze. We conclude the experiments with the mountain car

problem.

Outline. Section II describes previous reinforcement learn-
ing algorithms. Section III describes the new reinforcement

learning algorithms. Then, Section IV describes the results

of a number of experiments with tabular and neural network

representations. Section V discusses the obtained results, and

Section VI concludes this paper.

II. REINFORCEMENT LEARNING

Reinforcement learning algorithms are able to let an agent

learn from its experiences generated by its interaction with

an environment. We assume an underlying Markov decision

process (MDP) which does not have to be known by the

agent. A finite MDP is defined as; (1) The state-space S =
{s1, s2, . . . , sn}, where st ∈ S denotes the state of the system

at time t; (2) A set of actions available to the agent in each

state A(s), where at ∈ A(st) denotes the action executed
by the agent at time t; (3) A transition function T (s, a, s′)
mapping state-action pairs s, a to a probability distribution

over successor states s′; (4) A reward function R(s, a, s′)
which denotes the average reward obtained when the agent

makes a transition from state s to state s′ using action a,

where rt denotes the (possibly stochastic) reward obtained at

time t; (5) A discount factor 0 ≤ γ < 1 that values later
rewards less compared to immediate rewards.

A. Value-functions and Dynamic Programming

In optimal control or reinforcement learning (RL), we are

interested in computing or learning the optimal policy for

mapping states to actions. The optimal policy is defined as the

policy that receives the highest possible cumulative discounted

280

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

rewards in its future from all states. In order to learn the

optimal policy, value-function-based RL [11] estimates value-

functions using past experiences of the agent. The value of

a state V π(s) is the expected cumulative discounted future
reward when the agent starts in state s and follows policy π:

V π(s) = E(

∞∑

i=0

γiri|s0 = s, π)

An optimal policy π∗ is a policy that has the largest state-
value in all states: ∀π ∀s V π∗

(s) ≥ V π(s). In many cases
reinforcement learning algorithms used for learning to control

an agent also use a Q-function for evaluating state-action

pairs. Here Qπ(s, a) is defined as the expected cumulative
discounted future reward if the agent is in state s, executes

action a, and follows policy π afterwards:

Qπ(s, a) = E(
∞∑

i=0

γiri|s0 = s, a0 = a, π)

If the optimal Q-function Q∗ is known, the agent can select
optimal actions by selecting the action with the largest value in

a state: π∗(s) = arg maxa Q∗(s, a). Furthermore the optimal
value of a state corresponds to the highest action value in

that state according to the optimal Q-function: V ∗(s) =
maxa Q∗(s, a). There exists a recursive equation known as
the Bellman optimality equation [2] that relates a state-action

value of the optimal value-function to other optimal state-

values that can be reached from that state using a single

transition:

Q∗(s, a) =
∑

s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

This equation has led to several dynamic programming (DP)

methods for solving known MDPs [2]. One of the most used

DP algorithms is value iteration that uses the Bellman equation

as an update:

Qk+1(s, a) :=
∑

s′

T (s, a, s′)(R(s, a, s′) + γV k(s′))

Where V k(s) = maxa Qk(s, a). In each step the Q-function
looks ahead one step using this recursive update rule. It can be

shown that limk→∞ Qk = Q∗, when starting from an arbitrary
Q0 containing only finite values.

B. Reinforcement Learning Algorithms

Although dynamic programming algorithms can be effi-

ciently used for computing optimal solutions for particular

MDPs, they have problems for more practical applicability;

(1) The MDP should be known a-priori; (2) For large state-

spaces the computational time would become very large;

(3) They cannot be directly used for continuous state-action

spaces. Reinforcement learning algorithms can cope with these

problems: the MDP does not need to be known a-priori, all

that is required is that the agent can interact with an environ-

ment. Furthermore, for large or continuous state-spaces, RL

algorithms can be combined with function approximators for

learning the value-functions. Then, the agent does not have

to visit all states, but can generalize from experiences and

concentrate on parts of the state-space where learned policies

lead into.

Q-learning. A famous algorithm for learning a Q-function
is Q-learning [12], [13]. Q-learning makes an update after an

experience (st, at, rt, st+1) as follows:

Q(st, at) := Q(st, at)+α(rt +γ max
a

Q(st+1, a)−Q(st, at))

Where 0 ≤ α ≤ 1 is the learning rate. Q-learning is an off-
policy reinforcement learning algorithm [11], which means

that the agent learns about the optimal value-function while

following another behavioral policy that includes exploration

steps. This has as advantage that it does not matter how

much exploration is used, as long as the agent visits all state-

action pairs an infinite number of times, tabular Q-learning

(with appropriate learning rate adaptation) will converge to the

optimal Q-function [13]. A disadvantage of Q-learning is that

it can diverge when combined with function approximators.

Another possible disadvantage is that off-policy algorithms do

not modify the behavior of the agent to better deal with the

exploration/exploitation dilemma [8].

Sarsa. Instead of Q-learning, we can also use the on-policy
algorithm Sarsa [6], [10] for learning Q-values. Sarsa makes

the following update after an experience (st, at, rt, st+1, at+1):

Q(st, at) := Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))

Tabular Sarsa converges in the limit to the optimal policy under

proper learning rate annealing if the exploration policy is GLIE

(greedy in the limit with infinite exploration), which means

that the agent should always explore, but stop exploring after

an infinite number of steps [8].

Actor-Critic. Another on-policy algorithm is the Actor-
Critic (AC) method. In contrary to Q-learning and Sarsa, AC

methods keep track of two functions; a Critic that evaluates

states and an Actor that maps states to a preference value

for each action. A number of Actor-Critic methods have been

proposed [1], [4], [11]. Here we will use the Actor-Critic

method described in [11]. After an experience (st, at, rt, st+1)

AC makes a TD-update to the Critic’s value-function V :

V (st) := V (st) + β(rt + γV (st+1) − V (st))

where β is the learning rate. AC updates the Actor with values

P (st, at) as follows:

P (st, at) := P (st, at) + α(rt + γV (st+1) − V (st))

where α is the learning rate for the Actor. The P-values

should be seen as preference values and not as exact Q-values.

Consider a bandit problem with one state and two actions.

Both actions lead to an immediate deterministic reward of 1.

When one action is selected a number of times in a row or

the initial learning rate is 1, the state or V-value and the P-

value for this action converge rapidly to 1. Afterwards the

P-value of the other action can never increase anymore using

AC and will not converge to the underlying Q-value of 1.

A number of Actor-Critic methods have still been proved to

281

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

converge to the optimal policy and state value-function for

tabular representations [4].

III. QV(λ)-LEARNING AND ACLA(λ)

We will now describe the two new on-policy reinforcement

learning algorithms. QV(λ)-learning works by keeping track

of both the Q- and V-functions. In QV-learning the state value-

function V is learned with TD(λ)-methods [9]. This is similar

to Actor-Critic methods. The new idea is that the Q-values

simply learn from the V-values using the one-step Q-learning

algorithm. In contrary to AC these learned values can be seen

as actual Q-values and not as preference values.

QV-learning. The updates after an experience

(st, at, rt, st+1) of QV-learning are the following:

V (st) := V (st) + β(rt + γV (st+1) − V (st))

and

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Note that the V-value used in this second update rule is learned

by QV-learning and not defined in terms of Q-values. There is

a strong resemblance with the Actor-Critic method; the only

difference is the second learning rule where V (st) is replaced
by Q(st, at) in QV-learning.
QV(λ)-learning. The updates after an experience

(st, at, rt, st+1) of QV(λ)-learning are the following:

∀s : V (s) := V (s) + βδtlt(s)

Where the eligibility traces lt(s) for all states are updated by:

lt(s) := γλlt−1(s) + ηt(s)

where ηt(s) is the indicator function which returns 1 if state s

occurred at time t (s = st), and 0 otherwise, and δt is defined

as:

δt = rt + γV (st+1) − V (st)

Furthermore, the Q-values are updated again with a form of

the Q-learning rule:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

QV-learning is an on-policy algorithm, since the value-

function is learned by TD-learning that uses experiences

generated by the behavioural policy that includes exploration

steps.

Actor Critic Learning Automaton. ACLA learns a state
value-function in the same way as QV-learning, but ACLA

uses a learning automaton-like update rule [5] for changing

the policy mapping states to probabilities (or preferences) for

actions. The updates after an experience (st, at, rt, st+1) of

ACLA are the following:

V (st) := V (st) + β(rt + γV (st+1) − V (st))

and, now we use an update rule that examines whether the last

performed action was good (in which case the state-value was

increased) or not. We do this with the following update rule:

If δt ≥ 0 ΔP (st, at) = α(1 − P (st, at)) and

∀a �= at ΔP (st, a) = α(0 − P (st, a))

Else ΔP (st, at) = α(0 − P (st, at)) and

∀a �= at ΔP (st, a) = α(P (st,a)P
b�=at

P (st,b) − P (st, a))

After which we addΔP (st, a) to P (st, a). For ACLA we used
some additional rules to ensure the targets are always between

0 and 1, independent of the initialization. This is done by using

1 if the target is larger than 1, and 0 if the target is smaller

than 0. If the denominator ≤ 0, all targets in the last part of
the update rule get the value 1

|A|−1 where |A| is the number of
actions. The update in case of δt < 0 is chosen to increase the
preference of actions which are good more than actions that

are considered worse. Above is the ACLA− algorithm, we
also extended ACLA− to ACLA+ which can make multiple
updates relying on the size of δt = γV (st+1) + rt − V (st).
This algorithm keeps track of the whole state space’s variance

using the following update rule:

var = var + μ(δ2
t − var)

with μ a step-size parameter set to 0.001 and var is initialized

to 10 in our experiments. The variance var is used to compute

the number of times the ACLA-update above is made. This

number of times equals: � |δt|√
var

�. Note that only ACLA+
makes use of this multiple updating technique, ACLA− does
not. We simply use ACLA to denote both algorithms. ACLA

is similar to a conventional actor-critic system in which the

update using δt is replaced by an update rule using the sign

of δt. ACLA trains the actor to output a 1 for the best action

and a zero for worse actions, which leads to a different training

algorithm of the mapping between states and actions than the

usual state-action value-function. This can also make it easier

to take into account supervised examples of states and their

optimal actions. For ACLA(λ), the algorithm stays the same

except that the state values are learned using TD(λ).

Although ACLA can perform very well on particular prob-

lems, we remark that for particular highly stochastic environ-

ments, ACLA can converge to a suboptimal final policy. The

reason is that essentially ACLA uses the sign of δt to make an

update, instead of δt itself as conventional actor-critic methods.

We have analysed that the only function on δt that can be

used is in fact a linear function for converging in stochastic

environments to an optimal policy. We will show this with

an example. Suppose that there is a single state s and two

actions. Action a1 receives a reward of +100 with probability

10% and a reward of -10 with probability 90%. Action a2

receives a reward of -100 with probability 10% and a reward

of +10 with probability 90%. Thus, the values of action a1

and a2 are +1 and -1 respectively. Since the value of the

state will be between -1 and 1 after some learning, action

a1 will have the sign of δt positive in 10% of the cases and

negative in 90% of the cases. The opposite holds for action

a2. Therefore, action a2 will be reinforced more often and

will be finally chosen by the policy. Note that this example

282

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

uses a very strange probability distribution which may happen

rarely in RL problems. If there is stochasticity, but the expected

values of δt for the actions are ordered in the same way as

the expected value of the probability of having δt > 0, then
ACLA still converges to an optimal policy. This trivially holds

for a deterministic environment.

Comparison with previous algorithms. It is known that
better convergence guarantees exist for on-policy methods

when combined with function approximators [11], and there-

fore QV-learning and ACLA might work better than Q-

learning. An advantage is also that compared to Sarsa, QV-

learning and ACLA are less sensitive to exploration actions.

Sarsa can make a large update if an action occurs with low

probability that has been tried few times and has a very

large negative value. QV-learning and ACLA learn the state’s

value and are therefore less vulnerable for exploration. A last

possible advantage is that the V-function is updated with all

experiences, whereas the Q-function has to be updated for a

specific action. This may cause the V-function to learn faster

than a Q-function. Because the state value-function receives

more updates, this may also cause faster bootstrapping of the

policy. Although many of these advantages are in principle

shared by Actor-Critic methods, the experiments have to

indicate whether Actor-Critic performs better or worse than

the two new algorithms. A disadvantage of these algorithms

is an additional learning parameter.

IV. EXPERIMENTS

We performed seven experiments with different maze tasks

and the mountain car problem to compare QV-learning and

ACLA to other value-function-based RL algorithms. In the

first two experiments, the RL algorithms are combined with

tabular and neural network representations and are compared

on a small maze task. In the third and fourth experiment, the

RL algorithms are tested on a much larger maze using tabular

representations and ε-greedy and Boltzmann exploration. In

the fifth and sixth experiments we use a partially observable

maze and a dynamic maze respectively and neural networks as

function approximators. Finally, we perform experiments with

neural networks on the mountain car problem.

A. Small Maze Experiment

We compare QV(λ)-learning and ACLA(λ) to naive Q(λ)

[11], Sarsa(λ), and AC(λ). AC(λ) uses eligibility traces for

both the Actor and the Critic [11]. We performed experiments

with Sutton’s Dyna maze shown in figure 1. This simple maze

consists of 9× 6 states and there are four actions; north, east,
south, and west. We kept the maze small, since we also want to

use neural networks in the experiments and wanted to prevent

too much computational cost. The goal is to arrive at the goal

state G as soon as possible starting from the starting state

denoted by S under the influence of stochastic (noisy) actions.

Experimental set-up. The reward for arriving at the goal
is 100. When the agent bumps against a wall or border of

the environment it stays still and receives a reward of -2.

For other steps the agent receives a reward of -0.1. A trial

S

G

P

Fig. 1. Sutton’s Dyna maze. The starting position is indicated by S and the
goal position is indicated by G. In the partially observable maze of the fifth
experiment the goal position is P and the starting position is arbitrary.

is finished after the agent hit the goal or 1000 actions have

been performed. The random replacement (noise) in action

execution is 20%. We use λ values of 0.0, 0.6, and 0.9. We

use ε-greedy exploration with fixed ε = 10%.

TABLE I

TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR THE

ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.15/0.15 (0.98) 0.1/0.05 (0.98) 0.25 (0.9) 0.2 (0.9) 0.15/0.05 (0.98)
0.6 0.15/0.10 (0.98) 0.15/0.04 (0.98) 0.15 (0.9) 0.2 (0.9) 0.15/0.03 (0.98)
0.9 0.15/0.04 (0.9) 0.1/0.03 (0.9) 0.1 (0.9) 0.1 (0.9) 0.1/0.03 (0.9)

1) Results for a Tabular Representation.: We performed
experiments consisting of 50,000 learning steps and averaged

the results of 500 simulations. For evaluation we measured

after each 2,500 steps the average reward intake during that

period. We first performed simulations to find the best learning

rates and discount factors for the different values of λ for the

different RL algorithms. We used the learning rates shown in

Table I. Some algorithms use two learning rates (α and β).

TABLE II

FINAL RESULTS FOR A TABULAR REPRESENTATION WITH DIFFERENT

VALUES FOR λ. RESULTS ARE AVERAGES OF 500 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 4.58 ± 0.16 4.52 ± 0.23 4.48 ± 0.25 1
ACLA+ 4.54 ± 0.19 4.42 ± 0.27 4.47 ± 0.25 2/3/4
Q 4.53 ± 0.22 4.42 ± 0.26 4.16 ± 0.35 2/3/4
Sarsa 4.52 ± 0.23 4.43 ± 0.33 4.26 ± 0.31 2/3/4
AC 4.29 ± 0.29 4.00 ± 0.35 3.75 ± 0.61 5

In Table II we show average results and standard deviations

of 500 simulations of the final reward intake during the last

2500 learning-steps. The best final results for this small maze

are obtained with λ = 0.0. We also see that QV-learning has
the best final performance for this problem and significantly

(p < 0.01) outperforms all other algorithms. Finally, we note
that for high λ values, QV(λ)-learning and ACLA(λ) perform
much better than the other algorithms. The Rank of each

algorithm is computed with the student t-test using the results

of the best value for λ.

In Table III we show average results and standard deviations

of 500 simulations of the total summed reward (adding all

20 average reward intakes after each 2,500 steps) during

the entire trial lasting 50,000 learning-steps. This evaluation

measure shows the overall performance and the learning rate

with which good solutions are obtained. The table shows

283

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE III

TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 500

SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 85.4 ± 3.1 85.2 ± 4.2 83.4 ± 4.6 2
ACLA+ 86.1 ± 4.9 86.2 ± 4.7 85.1 ± 6.2 1
Q 81.6 ± 4.8 81.5 ± 5.1 76.0 ± 5.2 4
Sarsa 82.0 ± 4.6 83.2 ± 5.9 78.5 ± 5.5 3
AC 78.1 ± 5.7 76.7 ± 6.8 69.5 ± 13.0 5

that ACLA+ has the best overall performance and learns

significantly faster for all values for λ. QV-learning comes

as second best and Actor-Critic performs worst.
2) Results for Neural Networks.: We also performed ex-
periments with neural networks as function approximators. As

input-vector we used 54 inputs that indicate whether the agent

is in that location. The state and actions use separate neural

networks consisting of 20 hidden units and no skip-weights

or input-output connections (which would allow for a tabular

solution). This experiment was primarily conducted to see the

difference in learning behavior between a tabular representa-

tion and the use of a neural network. We let the algorithms

run for 100,000 learning steps and measured performance after

each 5,000 steps. The experimental results are averages of 100

simulations.

TABLE IV

NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.04/0.04 (0.9) 0.1/0.02 (0.98) 0.04 (0.9) 0.04 (0.9) 0.02/0.02 (0.98)
0.6 0.03/0.03 (0.9) 0.1/0.01 (0.98) 0.03 (0.9) 0.03 (0.9) 0.02/0.03 (0.9)
0.9 0.03/0.01 (0.9) 0.1/0.01 (0.9) 0.005 (0.9) 0.005 (0.9) 0.01/0.02 (0.9)

Parameters.We first performed experiments to set the best
learning rates and discount factors. We used the learning rates

shown in Table IV. For this problem we used ACLA− instead
of ACLA+ since it performed slightly better.
Table V shows the final results for the last 5,000 learning

steps. The table shows that ACLA− performs best in general,
although for λ = 0.9 QV-learning is the best algorithm. Actor-
Critic again performs worst of all algorithms.

TABLE V

FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) WITH

NEURAL NETWORKS. RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 4.65 ± 0.08 4.59 ± 0.10 4.63 ± 0.10 3/4
ACLA− 4.71 ± 0.08 4.71 ± 0.07 4.49 ± 0.13 1
Q 4.67 ± 0.08 4.45 ± 0.5 4.48 ± 0.96 2/3/4
Sarsa 4.68 ± 0.08 4.57 ± 0.5 4.37 ± 1.12 2/3
AC 3.65 ± 1.9 3.32 ± 2.2 2.9 ± 2.2 5

In Table VI we show average results and standard deviations

of 100 simulations of the total summed reward (adding all

20 average reward intakes after each 5,000 steps) during the

entire trial lasting 100,000 learning-steps. The table shows that

ACLA− has the best overall performance and therefore learns
fastest, but QV-learning performs best for λ = 0.9.

TABLE VI

NEURAL NETWORK TOTAL SUMMED RESULTS FOR 100,000 LEARNING

STEPS WITH AVERAGE REWARD COMPUTATION AFTER EACH 5,000 STEPS.

RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Algorithm λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 81.4 ± 3.1 82.9 ± 1.9 82.1 ± 2.4 2
ACLA− 84.0 ± 2.1 84.6 ± 0.8 77.5 ± 2.6 1
Q 81.7 ± 2.9 70.1 ± 14.5 57.3 ± 17.8 3
Sarsa 77.4 ± 3.3 61.9 ± 18.1 49.6 ± 20.0 4
AC 56.4 ± 31.0 54.0 ± 36.3 33.7 ± 32.7 5

B. A Larger Maze Environment

We compare QV(λ)-learning and ACLA(λ) to naive Q(λ),

Sarsa(λ), and AC(λ) with tabular representations on a larger

maze shown in Fig. 2. The goal is again to arrive at the goal

state G as soon as possible starting from the starting state

denoted by S under the influence of stochastic (noisy) actions.

S
G

Fig. 2. The larger maze. The starting position is indicated by S and the goal
position is indicated by G.

Experimental set-up. The reward function is the same as
before. A trial is finished if the agent hit the goal or 10,000

actions have been performed. The random replacement in

action execution is 20%. We use λ values of 0.0, 0.6, 0.9.
1) ε-greedy exploration: We performed experiments con-
sisting of 400,000 learning steps with a tabular representation

and ε-greedy exploration with ε = 0.1. We averaged the results
of 50 simulations. For evaluation we measured after each

20,000 steps the average reward intake during that period. We

first performed simulations to find the best learning rates and

discount factors for the different values of λ for the different

RL algorithms. We used the learning rates shown in Table VII.

TABLE VII

TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR THE

ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.3/0.3 (0.99) 0.05/0.2 (0.99) 0.35 (0.98) 0.35 (0.97) 0.15/0.15 (0.98)
0.6 0.3/0.1 (0.99) 0.15/0.1 (0.99) 0.15 (0.97) 0.2 (0.99) 0.1/0.1 (0.99)
0.9 0.25/0.04 (0.99) 0.1/0.06 (0.99) 0.05 (0.96) 0.1 (0.995) 0.04/0.04 (0.99)

In Table VIII we show average results and standard devia-

tions of 50 simulations of the final reward intake during the last

20,000 learning-steps. ACLA+ significantly outperforms the

other algorithms, and Sarsa and Actor-Critic perform worst.

Note that (naive) Q(λ)-learning fails completely for λ = 0.9.
In Table IX we show average results and standard deviations

of 50 simulations of the total summed reward (adding all 20

284

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE VIII

FINAL RESULTS (AVERAGE REWARD FOR LAST 20,000 STEPS) ON THE

LARGE MAZE FOR A TABULAR REPRESENTATION WITH DIFFERENT

VALUES FOR λ. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 1.15 ± 0.09 1.20 ± 0.05 1.19 ± 0.05 2/3
ACLA+ 1.24 ± 0.02 1.20 ± 0.02 1.22 ± 0.02 1
Q 1.19 ± 0.04 1.17 ± 0.05 0.27 ± 0.30 2/3
Sarsa 1.12 ± 0.06 1.13 ± 0.03 0.95 ± 0.10 5
AC 1.15 ± 0.03 1.09 ± 0.04 0.88 ± 0.19 4

average reward intakes after each 20,000 steps) during the en-

tire trial lasting 400,000 learning-steps. It clearly indicates that

ACLA+ learns fastest and has the best overall performance.

TABLE IX

TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 17.2 ± 0.5 18.7 ± 0.4 18.9 ± 0.7 2
ACLA+ 19.7 ± 0.8 21.3 ± 0.3 21.6 ± 0.6 1
Q 17.1 ± 0.6 15.0 ± 1.7 -0.5 ± 2.1 4/5
Sarsa 14.5 ± 1.0 17.0 ± 0.7 13.7 ± 0.8 4/5
AC 17.5 ± 0.6 18.1 ± 1.0 10.8 ± 3.2 3

2) Boltzmann exploration: We also performed experiments
with the large maze using Boltzmann exploration. Again a trial

consists of 400,000 learning steps with a tabular representa-

tion. We averaged the results of 100 simulations. For evalua-

tion we measured after each 20,000 steps the average reward

intake during that period. We first performed simulations to

find the best learning rates, discount factors, and greediness

(inverse of the temperature) used in the Boltzmann exploration

rule. We use a fixed value for the greediness: schemes for

increasing the greediness online did not improve results. We

used different values of λ (0.0 and 0.9). The learning rates are

shown in Table X.

TABLE X

TABULAR LEARNING RATES α/β (AND DISCOUNT FACTORS, AND

GREEDINESS) FOR THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.3/0.3 (0.99, 9) 0.02/0.25 (0.99, 13) 0.3 (0.98, 9) 0.3 (0.98, 9) 0.02/0.4 (0.99, 10)
0.9 0.2/0.02 (0.99, 8) 0.02/0.05 (0.99, 9) 0.07 (0.99, 8) 0.1 (0.99, 8) 0.005/0.25 (0.99, 9)

In Table XI we show average results and standard deviations

of 100 simulations of the final reward intake during the

last 20,000 steps. It shows that using Boltzmann exploration

ACLA performs best, but is closely followed by AC.

In Table XII we show average results and standard devia-

tions of 100 simulations of the total summed reward. It clearly

indicates that ACLA+ learns fastest and has the best overall

performance.

C. A Partially Observable Maze

In this experiment we will use Markov localization and neu-

ral networks to solve a partially observable Markov decision

process in case the model of the environment is known. We use

TABLE XI

FINAL RESULTS (AVERAGE REWARD FOR LAST 20,000 STEPS) FOR A

TABULAR REPRESENTATION WITH BOLTZMANN EXPLORATION WITH

DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 100

SIMULATIONS.

Method λ = 0.0 λ = 0.9 Rank

QV 1.24 ± 0.18 0.74 ± 0.25 3/4/5
ACLA+ 1.41 ± 0.02 1.38 ± 0.03 1
Q 1.23 ± 0.20 0.67 ± 0.17 3/4/5
Sarsa 1.21 ± 0.20 0.66 ± 0.19 3/4/5
AC 1.39 ± 0.02 1.15 ± 0.36 2

TABLE XII

TOTAL SUMMED RESULTS FOR A TABULAR REPRESENTATION WITH

BOLTZMANN EXPLORATION WITH DIFFERENT VALUES FOR λ. RESULTS

ARE AVERAGES OF 100 SIMULATIONS.

Method λ = 0.0 λ = 0.9 Rank

QV 18.1 ± 2.8 10.9 ± 4.0 2/3
ACLA+ 22.5 ± 0.8 22.8 ± 1.7 1
Q 13.7 ± 2.6 8.1 ± 3.1 4/5
Sarsa 13.5 ± 2.6 9.9 ± 3.3 4/5
AC 18.1 ± 1.7 16.9 ± 6.6 2/3

Markov localization to track the beliefstate (or probability dis-

tribution over the states) given an action and observation after

each time-step. This beliefstate is then the input for the neural

network. We used 20 hidden neurons in our experiments, and

the maze shown in Fig. 1 with the goal indicated by P and

each state can be the starting state. The initial beliefstate is a

uniform distribution where only states that are not obstacles

get assigned a belief. After each action at the beliefstate bt(s)
is updated with the observation ot+1:

bt+1(s) = ηP (ot+1|s)
∑

s′

T (s′, at, s)bt(s
′)

Where η is some normalization factor. The observations are

whether there is a wall to the north, east, south, and west.

Thus, there are 16 possible observations. We use 20% noise
in the action execution and 10% noise for observing each

independent wall (or empty cell) at the sides. That means

that a correct observation is observed with probability 0.94

= 66%. Note that we use a model of the environment to be

able to compute the beliefstate, and the model is based on the

uncertainties in the transition and observation functions.

We performed experiments consisting of 100,000 learn-

ing steps with a neural network representation and ε-greedy

exploration with ε = 0.1. We averaged the results of 100
simulations. For evaluation we measured after each 5,000

steps the average reward intake during that period. We first

performed simulations to find the best learning rates and

discount factors for the different values of λ for the different

RL algorithms. The learning rates are shown in Table XIII.

In Table XIV we show average results and standard devi-

ations of 100 simulations of the final reward intake during

the last 5,000 learning-steps. We observe that AC outperforms

the other algorithms. ACLA seems to suffer from the high

stochasticity in the partially obervable maze due to the noise

in the observations.

285

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE XIII

NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS GIVEN DIFFERENT VALUES FOR λ.

λ QV ACLA Q Sarsa AC
0.0 0.015/0.015 (0.98) 0.035/0.005 (0.99) 0.01 (0.95) 0.03 (0.99) 0.015/0.02 (0.95)
0.6 0.005/0.005 (0.98) 0.015/0.005 (0.9) 0.005 (0.95) 0.005 (0.95) 0.01/0.02 (0.99)
0.9 0.005/0.01 (0.95) 0.015/0.005 (0.95) 0.005 (0.9) 0.01 (0.95) 0.005/0.01 (0.9)

TABLE XIV

FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) FOR A

NEURAL NETWORK REPRESENTATION ON THE PARTIALLY OBSERVABLE

MAZE. RESULTS ARE AVERAGES OF 100 SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 8.80 ± 0.33 8.90 ± 0.31 8.69 ± 0.36 2/3/4
ACLA- 8.18 ± 0.29 7.94 ± 0.30 7.47 ± 0.44 5
Q 8.83 ± 0.25 8.87 ± 0.31 8.79 ± 0.31 2/3/4
Sarsa 8.62 ± 0.34 8.87 ± 0.29 8.64 ± 0.53 2/3/4
AC 8.90 ± 0.31 9.02 ± 0.33 8.13 ± 1.14 1

In Table XV we show average results and standard devia-

tions of 100 simulations of the total summed reward (adding

all 20 average reward intakes after each 5,000 steps) during

the entire trial lasting 100,000 learning-steps.

TABLE XV

TOTAL SUMMED RESULTS FOR A NEURAL NETWORK REPRESENTATION

WITH DIFFERENT VALUES FOR λ. RESULTS ARE AVERAGES OF 100

SIMULATIONS.

Method λ = 0.0 λ = 0.6 λ = 0.9 Rank

QV 138.7 ± 4.9 98.6 ± 12.6 94.6 ± 11.5 1/2/3
ACLA- 131.3 ± 5.0 100.7 ± 4.3 88.3 ± 13.4 4
Q 115.6 ± 11.7 104.6 ± 16.6 97.8 ± 18.1 5
Sarsa 137.0 ± 6.2 99.6 ± 11.6 110.9 ± 17.1 1/2/3
AC 129.5 ± 10.7 137.9 ± 13.1 93.9 ± 25.0 1/2/3

D. Solving a Dynamic Maze

We also compared QV-learning and ACLA to Sarsa, Q-

learning and AC on a dynamic maze in which each trial there

are several obstacles at random locations. In order to deal

with this task the agent uses a neural network that receives as

inputs whether a particular state-cell contains an obstacle (1)

or not (0). The agent cannot go through obstacles or push them

away. At the start of each new trial there are between 4 and

7 obstacles generated at random positions and it is made sure

that a path to the goal exists from the fixed starting location

S. A specific instance of this maze is shown in Fig. 3. Since

there are many instances of this maze, essentially the neural

network has to learn the knowledge of a path planner. Since

preliminary experiments indicated that the best results were

obtained with λ = 0, we do not show results with the use of
eligibility traces.

Parameters. We used ε-greedy exploration with a fixed

ε = 0.1. The reward function is the same as before. We
used 20% noise in action execution. A simulation lasts for

3,000,000 learning steps and we measure performance after

each 150,000 steps. A trial ends after 1000 actions or when

the goal is hit. Results are averages of 50 simulations. We used

feedforward neural networks with 60 sigmoidal hidden units.

G

S

Fig. 3. The dynamic 9 × 6 maze. The starting position is denoted by S

and the goal position is indicated by G. The obstacles indicated in black are
dynamically generated at the start of each new trial.

The best found learning rates are shown in Table XVI, but

note that it was difficult to do many experiments for finding

optimal learning rates.

TABLE XVI

NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS FOR THE DYNAMIC MAZE.

λ QV ACLA+ Q Sarsa AC
0.0 0.005/0.005 (0.9) 0.1/0.005 (0.98) 0.008 (0.9) 0.008 (0.9) 0.005/0.005 (0.9)

Table XVII shows the final and total performance of the

different algorithms. Q-learning outperforms the other algo-

rithms on this problem: it reaches the best final performance

and also has the best overall learning performance.

TABLE XVII

FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

TOTAL SUMMED RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE DYNAMIC MAZE. RESULTS ARE AVERAGES OF 50 SIMULATIONS.

Method Final Rank Total Rank

QV 6.05 ± 0.18 2 103.6 ± 2.2 2
ACLA+ 5.72 ± 0.18 4 98.6 ± 1.5 3/4
Q 6.22 ± 0.15 1 108.7 ± 2.6 1
Sarsa 5.91 ± 0.18 3 97.6 ± 2.9 3/4
AC 1.86 ± 0.63 5 27.0 ± 6.7 5

E. Mountain Car Experiments

We finally compare the RL algorithms on the mountain car

problem, see [7] for a description of this problem. We use

neural networks as representations of the value functions and

used 20 sigmoidal hidden units. There are 2 inputs (velocity

and position) and 3 actions (right, left, no-action). The reward

function emits -0.1 on every step and 0 if the goal is hit. The

maximum number of actions in a trial is set to 1000. The

number of trials in an experiment is set to 76,000. The results

are averages of 30 simulations. The best found learning rates

are shown in Table XVIII, we only report results for λ = 0.0,
because it gave the best results.

TABLE XVIII

NEURAL NETWORK LEARNING RATES α/β (AND DISCOUNT FACTORS) FOR

THE ALGORITHMS FOR THE MOUNTAIN CAR PROBLEM.

λ QV ACLA+ Q Sarsa AC
0.0 0.04/0.013 (0.99) 0.07/0.047 (0.99) 0.06 (0.99) 0.063 (0.99) 0.02/0.007 (0.99)

286

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Table XIX shows the results. Sarsa significantly outperforms

the other methods on this problem. It also learns very fast: its

overall learning performance is better than the final perfor-

mance of all other algorithms.

TABLE XIX

FINAL RESULTS (AVERAGE NUMBER OF STEPS TO REACH THE GOAL FOR

LAST 4,000 TRIALS) AND TOTAL AVERAGE NUMBER OF STEPS TO REACH

THE GOAL FOR A NEURAL NETWORK REPRESENTATION ON THE

MOUNTAIN CAR PROBLEM. RESULTS ARE AVERAGES OF 30 SIMULATIONS.

Method Final Rank Total Rank

QV 147 ± 3 2/3/4 153 ± 3 2/3
ACLA- 144 ± 10 2/3/4 153 ± 5 2/3
Q 153 ± 3 5 157 ± 2 4/5
Sarsa 126 ± 1 1 131 ± 3 1
AC 145 ± 6 2/3/4 158 ± 9 4/5

V. DISCUSSION

The RL algorithms were compared on many different prob-

lems. If we put the ranks of all seven experiments in tables

for the final performance of the learning controller, we get the

overall results shown in Table XX. This table shows that the

overall results of QV-learning and ACLA are better than the

overall final results obtained with the other three algorithms.

TABLE XX

THE RANKS OF THE DIFFERENT ALGORITHMS WHEN WE LOOK AT FINAL

PERFORMANCE OF THE LEARNED CONTROLLERS.

Experiment QV ACLA Q Sarsa AC

1 (Tab.) 1 2/3/4 2/3/4 2/3/4 5
2 (NN) 3/4 1 2/3/4 2/3 5
3 (Tab.) 2/3 1 2/3 5 4
4 (Tab.) 3/4/5 1 3/4/5 3/4/5 2
5 (NN) 2/3/4 5 2/3/4 2/3/4 1
6 (NN) 2 4 1 3 5
7 (NN) 2/3/4 2/3/4 5 1 2/3/4

Total 19 18 21.5 21.5 25

The overall learning performance of the different algorithms

where the performances are measured during a whole learning

trial are shown in Table XXI. QV-learning and ACLA have

the best overall performance and therefore are the fastest RL

algorithms on the tested problem.

TABLE XXI

THE RANKS OF THE DIFFERENT ALGORITHMS WHEN WE LOOK AT TOTAL

LEARNING PERFORMANCE DURING A COMPLETE TRIAL.

Experiment QV ACLA Q Sarsa AC

1 (Tab.) 2 1 4 3 5
2 (NN) 2 1 3 4 5
3 (Tab.) 2 1 4/5 4/5 3
4 (Tab.) 2/3 1 4/5 4/5 2/3
5 (NN) 1/2/3 4 5 1/2/3 1/2/3
6 (NN) 2 3/4 1 3/4 5
7 (NN) 2/3 2/3 4/5 1 4/5

Total 15 14 26.5 22.5 27

The results of independent experiments have also shown

some interesting results. Boltzmann exploration seems to be

a good option for ACLA and AC, since these methods learn

preference values for actions and therefore select actions which

are clearly optimal in all cases. AC may perform better with

eligibility traces, if we only use the traces for the critic and

not also for the actor. We did not try that possibility. In

most cases eligibility traces did not improve results, although

learning speed improved in the large maze. A strange problem

for using eligibility traces is the dynamic maze, where the

obstacles that remain stationary during a trial get very large

traces compared to the position of the agent. Therefore, for

this problem eligibility traces failed.

VI. CONCLUSION

We introduced two new value-function based reinforcement

learning algorithms, ACLA and QV(λ)-learning, which are

based on TD(λ) methods for learning a state value-function,

and another update rule to learn either Q-values or preference

values for selecting actions. The new algorithms have some

advantages compared to Sarsa and Q-learning, and one of

them is that the state value-function is updated more often

than a state-action value function, which can cause faster

bootstrapping of the policy. Another advantage is that these

algorithms use TD(λ)-methods and therefore are less sensitive
to exploration actions and work better with eligibility traces

than the other methods. The experiments showed that ACLA

and QV-learning in general learn fastest and reach the best

final performance, although the results differ a lot for different

experiments. In future work we want to use ensembles of RL

algorithms and let the agent discover which algorithm works

best for a specific environment.

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13:834–846,
1983.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[4] V.R. Konda and V. Borkar. Actor-critic type learning algorithms for
Markov decision processes. SIAM Journal on Control and Optimization,
38(1):94–123, 1999.

[5] K. S. Narendra and M. A. L. Thathatchar. Learning automata - a survey.
IEEE Transactions on Systems, Man, and Cybernetics, 4:323–334, 1974.

[6] G.A. Rummery and M. Niranjan. On-line Q-learning using connection-
ist sytems. Technical Report CUED/F-INFENG-TR 166, Cambridge
University, UK, 1994.

[7] S. P. Singh and R. S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22:123–158, 1996.

[8] S.P. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence
results for single-step on-policy reinforcement-learning algorithms. Ma-
chine Learning, 38(3):287–308, 2000.

[9] R. S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3:9–44, 1988.

[10] R. S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8, pages 1038–1045. MIT Press, Cambridge MA,
1996.

[11] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[12] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, England, 1989.

[13] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8:279–292, 1992.

287

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

