
Opposition-Based Q(λ) with Non-Markovian Update

Maryam Shokri1 (Member, IEEE), Hamid R. Tizhoosh1 (Member, IEEE), Mohamed S. Kamel2 (Fellow, IEEE)
Pattern Analysis and Machine Intelligence Laboratory

1Department of Systems Design Engineering
2Department of Electrical and Computer Engineering

University of Waterloo, 200 University Avenue West, ON, N2L 3G1,a Canada
mshokri@engmail.uwaterloo.ca, tizhoosh@uwaterloo.ca, mkamel@uwaterloo.ca

Abstract— The OQ(λ) algorithm benefits from an extension
of eligibility traces introduced as opposition trace. This new
technique is a combination of the idea of opposition and
eligibility traces to deal with large state space problems in
reinforcement learning applications. In our previous works the
comparison of the results of OQ(λ) and conventional Watkins’
Q(λ) reflected a remarkable increase in performance for the
OQ(λ) algorithm. However the Markovian update of opposition
traces is an issue which is investigated in this paper. It has been
assumed that the opposite state can be presented to the agent.
This may limit the usability of the technique to deterministic
environments. In order to relax this assumption the Non-
Markovian Opposition-Based Q(λ) (NOQ(λ)) is introduced in
this work. The new method is a hybrid of Markovian update
for eligibility traces and non-Markovian-based update for
opposition traces. The experimental results show improvements
of learning speed for the proposed technique compared to Q(λ)
and OQ(λ). The new technique performs faster than OQ(λ)
algorithm with the same success rate and can be employed
for broader range of applications since it does not require
determining state transition.

I. INTRODUCTION

In OQ(λ) algorithm [11] the idea of opposition has
been implemented in the framework of Watkins’ Q(λ).
Also, the problem of reward/punishment confusion which
sometimes occurs in opposition-based Q-learning has been
addressed [11]. In this technique the agent takes one action
in a given state but updates the Q-values for all actions
and opposite actions using the concept of eligibility and
opposition traces. OQ(λ) uses the advantage of multiple
updating by opposition traces which is mostly applied for
learning with delayed reward.

However the environment model is not always readily
accessible for many decision problems. For instance, in many
navigation problems, e.g. Mars Pathfinder, the model is not
available and the robot should navigate in a completely
unknown environment. Therefore, improvement of model-
free techniques such as Q(λ) plays an important role to solve
such problems, especially concerning fast convergence rates.
The next major goal of this research is to extend the usability
of OQ(λ) to a broader range of non-deterministic applica-
tions. This research is specifically focuses on investigating
the possible Non-Markovian updating of opposition traces
where the next state for opposite action may not be available.
This extends the usability of OQ(λ) to a broader range of
applications where the model of environment is not provided

for the agent.
The paper consists of seven sections. In Section II we de-

scribe opposition-based learning (OBL). A general overview
of Q-Learning, Q(λ), and Opposition-Based Q-learning OQ
are presented in Section III. The previous extension of Q(λ)
with opposition concept, OQ(λ), is presented in Section
IV as well as the proposed technique with non-Markovian
opposition update. In the Section V primary results are
presented and compared with the results of Watkins’ Q(λ)
and OQ(λ). Section VI contains some conclusions, and
directions for future work.

II. OPPOSITION-BASED LEARNING (OBL)

Opposition-based learning (OBL) has been recently intro-
duced [11], [16], [17], [18]. The concept of OBL is new and
not fully investigated yet.

When looking for a solution x to a given problem, we
usually make estimate x̂, which is not an exact solution but
based on experience or on a totally random guess. Complex
problems usually involve Guesses, e.g. random initialization
of weights in a neural net. In some cases, the estimate x̂
is sufficiently accurate while in others, we seek increased
accuracy in results.

Reinforcement learning often begins randomly from
scratch and moves, via exploration and exploitation, toward
an existing solution (optimal policy). The action policy of
reinforcement agents (which action to take at any given time
and for any given state) is initially based on randomness.
The random action, if leading to optimal state, may result in
fast convergence. If the random guess however is far from
the existing solution, e.g. worst-case situation, it is located
in the opposite direction, search or optimization requires
considerably more time, or may not be attained. Logically,
we should look in all directions simultaneously, or, more
concretely, in the opposite direction.

If we are searching for solution x and we agree that
searching in the opposite direction could be advantageous,
the first step becomes calculating the opposite number x̆ [16].

Definition: Let x∈R be a real number defined on a certain
interval: x∈[a, b]. Opposite number x̆ is defined as follows:

x̆ = a + b− x. (1)

For a = 0 and b = 1, we receive

288

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

x̆ = 1− x. (2)

The opposite number in a multidimensional case is defined
analogously.

Definition: Let S(x1, x2, ..., xn) be a point in
n−dimensional coordinates with x1, x2, ..., xn∈R and
xi∈[ai, bi] ∀i ∈ {1, 2, ..., n}. Opposite point S̆ is completely
defined by its coordinates x̆1, x̆2, ..., x̆n, where

x̆i = ai + bi − xi. (3)

The opposition-based scheme for learning now becomes
concrete [16]:

Opposition-Based Learning: Let f(x) be the
function in focus and h̄ a proper evaluation func-
tion. If x ∈ [a, b] is an initial (random) guess
and x̆ is its opposite, then in each iteration, we
calculate f(x) and f(x̆). Learning continues with
x if h̄(f(x)) ≥ h̄(f(x̆)), otherwise with x̆. As
a measure of optimality, evaluation function h̄(.)
compares the suitability of results, e.g., fitness,
reward and punishment, error, cost, or utility.

III. Q-LEARNING

Q-learning is off-policy TD (temporal differencing) control
and is one of the most popular methods in reinforcement
learning. In an off-policy technique the learned action-value
function, Q(s, a), directly approximates the optimal action-
value function Q∗, independent of the policy being followed.
In other words, the agent uses greedy policy as well as
exploratory policy for action selection [15]. The agent learns
to act optimally in Markovian domains by experiencing
sequences of actions. The agent takes an action in a particular
state and uses immediate reward and punishment to estimate
the state value. It evaluates the consequences of taking differ-
ent actions. By trying all actions in all states multiple times,
the agent learns which action is best overall for each visited
state [21]. The agent must determine an optimal policy and
maximize the total (discounted) expected reward. Equation 4
is employed for updating the action-value function, Q, where
s is the current state, a is action, α is the learning rate, γ
is a discount factor, r is the reward or punishment, a′ is the
next action, and s′ is the next state:

Q(s, a)← Q(s, a) + α[r + γ max
a′

Q(s′, a′)−Q(s, a)].
(4)

The task of Q-learning is to determine an optimal policy
π∗. The values of the Q matrix are the expected discounted
reward for executing action a in state s based on policy
π [21]. The (theoretical) condition for convergence of the
Q-algorithm is that the sequence of episodes which forms
the basis of learning must visit all states infinitely. It must
be mentioned that based on Watkins and Dayan’s Theorem
in [21] the rewards and learning rate are bounded (|rn| ≤
Rmax, 0 ≤ αn < 1).

A. Q(λ) Technique

Q(λ) has been considered as a bridge between Monte
Carlo and Q-learning based on eligibility traces. The el-
igibility trace is one of the mechanisms in reinforcement
learning [15]. The idea is that only eligible states or actions
will be assigned a credit or blamed for an error. Sutton et
al. [15] describe an eligibility trace as “a temporary record
of the occurrence of an event, such as the visiting of a state
or the taking of an action”. Eligibility traces require more
complex implementation but yield faster learning especially
for applications with delayed rewards.

The Watkins’ Q(λ) looks ahead until the next exploratory
action. If the agent takes an exploratory action, then the
eligibility traces will become zero. During the exploration
process in early learning the traces will be cut off and as a
result learning reward will not be delayed until the end of
learning episode [15].

In this research the Watkins’ Q(λ) has been implemented
(see Table I). We explain the opposition-based Q-learning
(OQ) to establish a basic understanding. Then in the next
section we demonstrate the extension of Q(λ) algorithm
based on the opposition concept in order to introduce its
opposition-based extension OQ(λ).

B. OQ: Opposition-Based Q-learning

How can the idea of opposition and RL be combined? For
this purpose, at each time t, if the agent receives a reward
for taking action a in a given state s, then the agent may
also receive punishment for opposite action ă in the same
state s without taking the opposite action. It means that the
value function, Q, (e.g. Q-matrix in tabular Q-learning) can
be updated for two values Q(s, a) and Q(s, ă) instead of
only one value Q(s, a). Therefore, agent can simultaneously
explore actions and opposite actions. Hence, updating the Q-
values for two actions in a given state for each time step can
lead to faster convergence since the Q-matrix can be filled
in a shorter time [17], [16], [18].

Figure 1 demonstrates the difference between Q-matrix
updating using reinforcement learning (left image) and Q-
matrix updating using opposition-based reinforcement learn-
ing (right image).

IV. PROPOSED TECHNIQUE

In this work, we propose an improvement of OQ(λ) [11]
by introducing a new way of updating the opposition trace.
This new update is independent of determining the next state
of the environment for opposite action. In the following
OQ(λ) technique is reviewed. Then NOQ(λ) algorithm is
introduced and the details are discussed.

A. OQ(λ): Opposition-based Q(λ)
The first extension of the concept of opposition to Q(λ)

was introduced by using opposition traces [11]. The eligi-
bility traces for opposite actions are called opposition traces.
Assume that e(s, a) is the eligibility trace for action a in
state s, then the opposition trace is ĕ = e(s, ă). For updating

289

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE I

TABULAR WATKINS’ Q(λ) ALGORITHM [15]

For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
For each episode repeat

Initialize s and a
For each step of episode repeat

Take action a, observe r and next state s′

Choose next action a′ from s′ using policy
a∗←− argmaxb Q(s′, b) (if a′ ties for max, then a∗ ← a′)
δ ←− r + γ Q(s′, a∗)−Q(s, a)
e(s, a)←− e(s, a) + 1
For all s,a

Q(s, a)←− Q(s, a) + αδe(s, a)
If a′ = a∗, then e(s, a)←− γλe(s, a)
else e(s, a)←− 0

s ←−s′; a←−a′

until s is terminal

Fig. 1. Q-matrix updating; Left: Q-matrix updating using reinforcement learning, right: Q-matrix updating using opposition-based reinforcement learning
where additional update (v2) can be performed for the opposite action ă2.

in a given state s, agent takes action a and receives reward
r. Then by using reward r the Q-matrix will be updated for
all states s and actions a:

Q(s, a)←− Q(s, a) + αδ1e(s, a), (5)

where δ1 is presented in Table II, and e(s, a) is eligibility
traces for states s and actions a. By assuming that the agent
will receive punishment p by taking opposite action ă in
state s, the opposition trace can be updates. The formula for
updating the Q-values is presented as follows:

Q(s, ă)←− Q(s, ă) + αδ2e(s, ă), (6)

where δ2 is presented in Table II, and e(s, ă) is the opposition
traces for states s and opposite actions ă. The algorithm
of the OQ(λ) technique is presented in Table II where the
opposite reward r̆(= p) is punishment.

The opposition trace acts as a facilitator for updating
the Q-values for opposite actions to benefit from the idea of
concurrent updating for actions and opposite actions.

The advantage of using concurrent updating in OQ(λ) is
that instead of punishing/rewarding the action and opposite
action we punish/reward the eligible trace and opposite
trace. It is assumed that when the agent receives reward
(r)/punishment (r̆) for taking an action, it will receive
punishment (r̆)/reward (r) for taking the opposite action.

The other advantage of opposition trace is solving the
problem of Reward/Punishment Confusion. This problem
usually occurs in the situations when action and opposite
action in a given state may yield the same result instead of
opposite results. The action and opposite action may both
lead to reward, or both lead to punishment. The example
in Figure 2 [11] illustrates this situation in the grid world
problem. The goal is presented by a star and the present
state is s. For both action a1, and its opposite ă1 the result

290

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE II

OQ(λ) ALGORITHM. IF THE AGENT RECEIVES PUNISHMENT p FOR TAKING AN ACTION THEN THE OPPOSITE ACTION RECEIVES REWARD r. LINES

INDICATED BY ASTERISKS (*) EXTEND Q(λ) TO OQ(λ) [11]

For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
For each episode repeat

Initialize s and a
For each step of episode repeat

Take action a, observe r and next state s′

* Determine opposite action ă and next state s′′

* Calculate opposite reward (punishment) r̆ = p
Choose next action a′ from s′ using policy

* Determine next opposite action ă′ from s′′

a∗←− argmaxb Q(s′, b) (if a′ ties for max, then a∗ ← a′)
* a∗∗←− argmaxb Q(s′′, b) (if ă′ ties for max, then a∗∗ ← ă′)

δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
* δ2 ←− r̆ + γ Q(s′′, a∗∗)−Q(s, ă)

e(s, a)←− e(s, a) + 1
* e(s, ă)←− e(s, ă) + 1

For all s, a
Q(s, a)←− Q(s, a) + αδ1e(s, a)
If a′ = a∗, then e(s, a)←− γλe(s, a)
else e(s, a)←− 0

s ←−s′; a←−a′

* For all s, ă:
* Q(s, ă)←− Q(s, ă) + αδ2e(s, ă)
* If ă′ = a∗∗, then e(s, ă)←− γλe(s, ă)
* else e(s, ă)←− 0

until s is terminal

Fig. 2. Example to show that action and opposite action in state s can
yield the same result, here punishment p. The target is presented by a star
and the next states are s′ or s′′ respectively

is punishment because they both increase the distance of the
agent from the goal. Hence, both of them should be punished.
Rewarding one of them will falsify the value function and
affect the convergence.

B. NOQ(λ): Opposition-based Q(λ) with Non-Markovian
Update

One issue regarding the OQ(λ) algorithm is the problem
of Markovian-based updating of the opposite trace which
will be addressed here. As it is presented in the algorithm
of OQ(λ) (Table II, line 6), the agent should determine
the next state s′′ after defining the opposite action ă. In
this algorithm the agent does not actually take ă, but rather
determines the opposite one. For instance if the action is
going to the left in the Gridworld [11] then the opposite
action is determined (not taken) as going to the right. In a
deterministic environment the agent can figure out the next
state by using the model of the environment. In the case of
Gridworld problem the agent assumes that the next state s′′

for opposite action ă is the opposite of next state s̆′ with
respect to initial states. In this case the Q values can be
updated for the opposition trace as follows:

Q(s, ă)←− Q(s, ă) + αδ2e(s, ă), (7)

291

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

where
δ2 ←− r̆ + γQ(s′′, a∗∗)−Q(s, ă). (8)

Equations 7 and 8 present the Markovian-based updating by
considering the next state of s′′. In NOQ(λ) we address
this problem by introducing the non-Markovian updating for
opposition traces. In the following paragraphs the details and
the algorithm of the proposed technique are introduced.

As it is mentioned earlier the OQ(λ) method updates
opposite traces without taking opposite actions. For this
reason the opposition update (the Markovian update) depends
on the agent that should know the next state of the opposite
action. This limits the applicability of the OQ(λ) to the deter-
ministic environments. We relax the constraint of Markovian
updating by introducing a new update for opposition traces
in NOQ(λ). Equation 9 presents the new update formula
for opposition traces where W is opposition weight, r̆ is the
opposite reward, and e(s, ă) is the opposite trace.

Q(s, ă)←− Q(s, ă) + W ∗ r̆ ∗ e(s, ă). (9)

W is a parameter introduced to impose a weight between
0 and 1 to the opposition update. If in some application
the definition of opposite action is not straightforward then
we assume that at the beginning of the learning the weight
of the update is low and increases gradually as the agent
explores the actions and the opposite actions. In the case of
the Gridworld problem which will be introduced in the next
section the definition of opposite actions are known and the
weight W is set to 1.

As it is presented in the Equation 9 the Q(s, ă) in the
proposed method does not depend on the next state in
contrast to the OQ(λ) technique which the update depends
on the s′′ (see Equations 7 and 8). The algorithm of the
proposed technique is presented in the Table III.

Figure 3 is NOQ(λ) backup diagram which is an exten-
sion of the backup diagram for Watkins’ Q(λ) presented
by Sutton et al. [15]. There are two backups, one based on
eligibility traces and the other one is for opposition traces.

Figure 4 is also the extension of the Gridworld example
of eligibility trace presented by Sutton et al. [15]. In this
extension the Gridworld is presented with two traces. The
black arrows represent increases of the action values. On the
other hand, the gray arrows with different sizes represent the
negative increases (decreases) in the action values for the
opposition trace. The trace ends at a location of high reward
value marked by a star.

V. EXPERIMENTAL RESULTS

The Gridworld problem with three sizes (20×20, 50×50,
and 100 × 100) is chosen as a test-case problem. The grid
represents the learning environment and each cell of the grid
represents a state of the environment. A sample Gridworld
is presented in Figure 5. The agent can move in 8 possible
directions indicated by arrows in the figure. The goal of
the agent is to reach the defined target in the grid which
is marked by a star.

Fig. 3. The backup diagram for NOQ(λ) which is an extension of backup
diagram for Watkins’s Q(λ) similar to the diagram presented by Sutton et
al. [15]

Fig. 4. The extension of the Gridworld with eligibility trace similar to the
example presented by Sutton et al. [15]. In this extension the Grid world is
presented with two traces, eligibility trace and opposition trace

Four actions with their corresponding four opposite actions
(if al = Up then ăl = Down) are defined [11]. By taking an
action agent has the ability to move to one of the neighboring
states. The actions/opposite actions are left/right, up/down,
up-right/down-left, and up-left/down-right. The initial state
is selected randomly for all experiments. If the size of a grid
is (Xmax, Ymax), then the coordinates of the target is fixed
at (Xmax

2 , Ymax

3). The value of immediate reward is 10, and
punishment is -10. After agent takes an action, if the distance
of the agent from the goal is decreased, then agent will
receive reward. If the distance is increased or not changed,
the agent receives punishment. The Boltzmann policy [5]
is applied for all implementations. The Q(λ), OQ(λ), and
NOQ(λ) algorithms are implemented. The initial parameters
for the algorithms are presented in Table IV.

The following measurements are considered for comparing
the results of Q(λ), OQ(λ), and NOQ(λ) algorithms:

• overall average iterations I: average of iterations over
100 runs

292

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE III

NOQ(λ) ALGORITHM. IF THE AGENT RECEIVES PUNISHMENT p FOR TAKING AN ACTION THEN THE OPPOSITE ACTION RECEIVES REWARD r.

LINES INDICATED BY ASTERISKS (*) EXTEND Q(λ) TO OQ(λ) AND LINES INDICATED BY ASTERISKS (**) EXTEND OQ(λ) TO NOQ(λ)

For all s and a initialize Q(s,a) with arbitrary numbers and initialize e(s, a) = 0
For each episode repeat

Initialize s and a
For each step of episode repeat

Take action a, observe r and next state s′

** Determine opposite action ă
Choose next action a′ from s′ using policy

** Determine next opposite action ă′

a∗←− argmaxb Q(s′, b) (if a′ ties for max, then a∗ ← a′)
δ1 ←− r + γ Q(s′, a∗)−Q(s, a)
e(s, a)←− e(s, a) + 1

* e(s, ă)←− e(s, ă) + 1
For all s, a

Q(s, a)←− Q(s, a) + αδ1e(s, a)
If a′ = a∗

e(s, a)←− γλe(s, a)
e(s, ă)←− γλe(s, ă)

else
e(s, a)←− 0

** e(s, ă)←− 0
s ←−s′; a←−a′

** For all s, ă:
** Q(s, ă)←− Q(s, ă) + W ∗ r̆ ∗ e(s, ă)

until s is terminal

Fig. 5. Sample Gridworld. There are eight possible actions presented by
arrows. S is a state and the star is the target

• average time T : average of running time (seconds) over
100 runs

• number of failures χ: number of failures in 100 runs
The agent performs the next episode if it reaches the target

represented by star. The learning stops when the accumulated
reward of the last 15 iterations has a standard deviation below
0.5. The results are presented in Table V.

The results presented in the Table V are also plotted in
Figures 6 and 7 for visual comparisons.

Figure 6 presents changes of overall average iterations for

TABLE IV

THE INITIAL PARAMETERS FOR ALL EXPERIMENTS

nE Imax α γ λ

100 1000 0.3 0.2 0.5

Q(λ), OQ(λ), and NOQ(λ) algorithms for the three grids,
20×20, 50×50 and 100×100 over 100 runs. We observe that
the total number of iterations for convergence of Q(λ) is far
higher than OQ(λ) and NOQ(λ) algorithms. The NOQ(λ)
takes slightly less iterations than OQ(λ).

Figure 7 presents average time for Q(λ), OQ(λ), and
NOQ(λ) algorithms for the three grids, 20 × 20, 50 × 50
and 100 × 100 over 100 runs. Even though the number of
iterations for OQ(λ) and NOQ(λ) are almost the same but
the average computation time of NOQ(λ) is much less than
the average time of the OQ(λ) for 100×100 grid. The reason
is that NOQ(λ) algorithm is more efficient than OQ(λ) due
to decrease in the computational overhead associated with
updating the opposition traces.

In order to compare Q(λ), OQ(λ), and NOQ(λ) al-

293

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

TABLE V

THE RESULTS FOR THE FIVE MEASURES OF I , E , T , χ, AND ζ FOR ALGORITHMS (Q(λ), OQ(λ), AND NOQ(λ)). THE RESULTS ARE BASED ON 100

RUNS FOR EACH ALGORITHM

Q(λ) OQ(λ) NOQ(λ)

X × Y 20× 20 50× 50 100× 100 20× 20 50× 50 100× 100 20× 20 50× 50 100× 100

I 255± 151 528± 264 431± 238 20± 8 57± 26 103± 50 19± 7 48± 23 100± 46

T 3± 2 17± 6.6 102± 25 0.3± 0.1 5± 1 80± 7 0.2± 0.1 5± 0.7 58± 6

χ 0 11 9 0 0 0 0 0 0

ζ 93.3% 100% 100%

Fig. 6. The changes of average of average iterations I for Q(λ), OQ(λ),
and NOQ(λ)

gorithms we also need to consider that Q(λ) failed1 to
reach the goal or target 20 times. To reflect this failure in
the performance measure, the success rate ζoverall for the
algorithms (presented in [11]) is calculated:

ζoverall = (1−
kP

i=1
χi

P

k

H)× 100, (10)

where k is the number of grids tested (in this case k = 3),
χ is the number of failures, and H is the number of times
the code is run for each grid. Considering the convergence
conditions, for the Q(λ) algorithm the overall success rate
is ζoverall = 93.3% because the agent failed to reach the
goal 20 times. For the proposed algorithm NOQ(λ), and
the oppsotion-based algorithm OQ(λ), the overall success
rate is ζoverall = 100%; They always successfully find the
target and reach the goal.

1If the fixed numbers of iterations and episodes are not enough for the
algorithm to reach the target (in one run) then we consider this as one
failure.

Fig. 7. The changes of average time T for Q(λ), OQ(λ), and NOQ(λ)

VI. CONCLUSIONS

In previous work [11], OQ(λ) was introduced to accelerate
Q(λ) algorithm with discrete state and action space. This
research is an extension of OQ(λ) to a broader range of non-
deterministic environments. The update of opposition trace in
OQ(λ) depends on next state of the opposite action (which
cannot be taken). This limits the usability of this technique to
the deterministic environments because the next state should
be detected or known by the agent.

In this paper an extended version, NOQ(λ), was presented
to update the opposition traces independent of knowing
the next state for the opposite trace. The primary results
show that NOQ(λ) can be employed in non-deterministic
environments and performs even faster (see Figure 7) than
OQ(λ).

Generally, defining opposite actions is not always a
straightforward task. The applicability of learning opposite
actions through the exploration and defining a dynamic
procedure for adapting the opposition weight W will be
considered in our future work.

294

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

APPENDIX

Nomenclature for the Presented Results
• α: Learning step
• γ: Discount factor
• λ: Parameter for eligibility traces
• Xmax × Ymax: Grid size
• nE : Maximum number of episodes
• Imax: Maximum number of iterations
• T : Running time of the program
• I: Average of iterations over 100 runs (overall average

iterations)
• E: Episodes taken to reach the convergence criteria
• E: Average of episodes over 100 times run
• T : Average of running time (seconds) over 100 times

run
• ζ: Success rate
• H: Number of times the code is run (the algorithm with

all episodes and iterations) for a specific grid size which
is 100 times for each of the grids, 20× 20, 50× 50 and
100× 100

• χ: Number of failures
• G: Grid
• W : opposition weight

REFERENCES

[1] A. Ayesh, Emotionally Motivated Reinforcement Learning Based Con-
troller, proceedings of IEEE SMC conference, The Hague, The Nether-
lands, page(s): 874- 878, vol.1, 2004

[2] S. Gadanho, Reinforcement Learning in Autonomous Robots: An
Empirical Investigation of the Role of Emotions, PhD Thesis, University
of Edinburgh, Edinburgh, 1999

[3] S. K. Goel, Subgoal Discovery for Hierarchical Reinforcement learn-
ing Using Learned Policies, Master of Science in Computer Science
and Engineering, Department of Computer Science and Engineering,
University of Texas at Arlington, TX, USA, 2003

[4] C. L. Isbell Jr., C. R. Shelton, M. Kearns, S. Singh, P. Stone, Cobot: A
Social Reinforcement Learning Agent, Advances in Neural Information
Processing Systems 14 (NIPS), 1393-1400, 2002

[5] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement Learning:
A Survey, Journal of Artificial Intelligence Research 4, 237-285, 1996

[6] L. Paletta, E. Rome, Reinforcement Learning for Object Detection
Strategies, Proceedings of 8th International Symposium on Intelligent
Robotic Systems, SIRS 2000, University of Reading, UK, 2000

[7] J. Peng, B. Bhanu, Learning to Perceive Objects for Autonomous
Navigation, Autonomous Robots 6, 187-201, 1999

[8] P. Preux, S. Delepoulle, J. C. Darcheville, A generic Architecture
for Adaptive Agents Based on Reinforcement Learning, Information
Sciences-Informatics and Computer Science: An International Journal,
Elsevier Science Inc., vol. 161, Issue 1-2, 37-55, 2004

[9] C. Ribeiro, Reinforcement Learning Agent, Artificial Intelligence Re-
view, 17, 223-250, 2002

[10] S. J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach,
Pearson Education Inc., New Jersey, 2003

[11] M. Shokri, H. R. Tizhoosh, M. Kamel, Opposition-Based Q(lambda)
Algorithm, International Joint Conference on Neural Networks, IJCNN,
646-653, 2006

[12] M. Shokri, H. R. Tizhoosh, Q(λ)-Based Image Thresholding, 1st
Canadian Conference on Computer and Robot Vision (CRV 2004), 504-
508, 2004

[13] M. Shokri, H. R. Tizhoosh, Using Reinforcement Learning for Image
Thresholding, Canadian Conference on Electrical and Computer Engi-
neering, 1, 1231-1234, 2003

[14] S. Singh, D. Litman, M. Kearns, M. Walker, Optimizing Dialogue
Management with Reinforcement Learning: Experiments with the NJ-
Fun System, Journal of Artificial Intelligence (JAIR), Vol. 16, 105-133,
2002

[15] R. S. Sutton, A.G. Barto, Reinforcement learning: An Introduction,
Cambridge, Mass., MIT Press, 1998

[16] H. R. Tizhoosh, Opposition-Based Learning: A New Scheme for
Machine Intelligence, International Conference on Computational Intel-
ligence for Modeling Control and Automation - CIMCA’2005, Vienna,
Austria, vol. I, 695-701, 2005

[17] H. R. Tizhoosh, Reinforcement Learning Based on Actions and Oppo-
site Actions, ICGST International Conference on Artificial Intelligence
and Machine Learning (AIML-05), Cairo, Egypt, 2005

[18] H. R. Tizhoosh, Opposition-Based Reinforcement learning, Journal of
Advanced Computational Intelligence and Intelligent Informatics, Vol.
10, No. 4, 578-585, 2006

[19] H. R. Tizhoosh, M. Shokri, M. Kamel, The Outline of a
Reinforcement-Learning Agents for E-Learning Applications, Accepted
for Samuel Pierre (ed.), E-Learning Networked Environments and
Architectures: A Knowledge Processing Perspective, Springer Book
Series, 2005

[20] C. J. C. H. Watkins, Learning from Delayed Rewards, PhD Thesis,
Cambridge, Cambridge University, 1989

[21] C. J. H. Watkins, P. Dayan, Technical Note, Q-Learning, Machine
Learning, 8, 279-292, 1992

295

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

