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Abstract— We consider a multi-agent system where the overall
performance is affected by the joint actions or policies of agents.
However, each agent only observes a partial view of the global
state condition. This model is known as a Decentralized Partially-
Observable Markov Decision Process (DEC-POMDP), which can
be considered more applicable in real-world applications such as
communication networks.

It is known that the exact solution to a DEC-POMDP is NEXP-
complete and memory requirements grow exponentially even for
finite-horizon problems. In this paper, we propose to address
these issues by using an online model-free technique and by
exploiting the locality of interaction among agents in order to
approximate the joint optimal policy. Simulation results show
the effectiveness and convergence of the proposed algorithm in
the context of resource allocation for multi-agent wireless multi-
hop networks.

I. INTRODUCTION

Markov Decision Process (MDP) have been widely used
as a mathematical framework for sequential decision-making
in stochastic domains. In particular, a single agent controls
the system to optimize a global objective, while it completely
observes the state of the controlled Markov chain and acts
based on its policy [1].

There has been a number of research works that extended
the basic MDP model to multi-agent systems. Examples
of such extensions include Multi-agent MDP [2], Partially-
Observable Identical Payoff Stochastic Game (POIPSG) [3],
and Communicative Multi-agent Team Decision Problem
(COM-MTDP) [4]. As researchers apply these models in real-
world scenarios, one may realize their limitations and disad-
vantages, especially on how each agent physically interacts
with other agents in the system. An example is a typical
communication network, where an agent does not observe
the condition of the entire network and only interacts with
a limited set of neighboring agents.

In order to capture these issues, a promising multi-agent
model known as Decentralized Partially-Observable Markov
Decision Process (DEC-POMDP) was proposed in [5]. DEC-
POMDP is a decentralized stochastic control system, where
the joint policy of the agents determines system performance.
However, each agent only has local observations and does not
have complete observability of the global state of the environ-
ment. It is known that exact solutions to a DEC-POMDP are
complete for the complexity class non-deterministic exponen-
tial time (NEXP-complete) [5]. In other words, a general DEC-

POMDP does not admit polynomial-time algorithms since P
�= NEXP.

In this paper, we propose a model-free Reinforcement
Learning (RL) solution to approximate the joint optimal policy
for a DEC-POMDP. Our approach is based on the RL tech-
nique known as policy gradient that parameterizes and updates
the policies of agents during execution. In addition, we also
exploit the locality of interaction of neighboring agents for
a distributed coordination mechanism to optimize the global
long term performance.

DEC-POMDP has been widely studied recently. The con-
cept of locality of interaction for DEC-POMDP was only
introduced in the model-based algorithm in [6]. However, to
the best of the authors’ knowledge, our proposed algorithm is
the first attempt to use a coordinated model-free mechanism
to solve a multi-agent DEC-POMDP, while considering the
locality of interaction of agents.

This paper is organized as follows. Section II summarizes
the DEC-POMDP framework and discusses non-trivial com-
plexity issues of exact optimal algorithms. In addition, we also
discuss the idea of locality of interaction among agents in solv-
ing a DEC-POMDP. In Section III, we propose a model-free
control algorithm known as Locally Interacting Distributed
Reinforcement Learning Policy Search (LID-RLPS), where
each agent uses a coordinated policy gradient mechanism
among its neighbors to approximate the joint optimal policy
efficiently in a decentralized manner. In Section IV, we study
the performance of LID-RLPS in the context of resource
allocation and scheduling for a multi-hop wireless network
using the NS2 network simulator [7]. Finally, we conclude
our work and describe future research directions in Section V.

II. DECENTRALIZED STOCHASTIC CONTROL

A. DEC-POMDP

A N -agent Decentralized Partially Observable Markov De-
cision Process (DEC-POMDP) can be expressed as the tuple
[5]: 〈

S,
−→
A,P,C,

−→
Ω , O, po

〉
(1)

where:
S is a finite set of global states.−→
A = {Ai} is a finite set of joint actions, where Ai is the set
of actions available to agent i.
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P (S′|−→a , S) denotes the probability that the next state is S′

given that the agents execute the joint action −→a = {a1, ..., aN}
when the current state is S.−→
Ω = {Ωi} is a finite set of joint observations, where Ωi is
the set of observations by agent i.
O(−→o |S,−→a , S′) is the probability of jointly observing −→o =
{o1, ..., oN} ∈ −→

Ω when the agents take actions −→a in state S,
resulting in state S′.
C(S,−→a , S′) denotes the immediate cost function.
p0 is the initial state distribution of the system.

In a DEC-POMDP, the joint action of the agents and the
current state determine the next state. However, each agent
only observes its own local observation oi. In addition, none
of the agents know the complete state of the system. Note
that this is similar to the centralized single-agent Partially
Observable Markov Decision Process (POMDP) framework
where an agent uses its history of local observations and
actions to find its optimal policy [8], [9].

The local history of observations for agent i up to time t is
defined as:

−→
oh

i (t) = {oi(1), ..., oi(t)} (2)

A local policy wi for agent i is defined to be a mapping

from its observation history
−→
oh

i (t) to its local actions ai(t).
A joint policy −→w = {w1, ..., wN} is defined to be a tuple of
local policies. Solving a DEC-POMDP can be seen as finding
a set of N policies, one for each agent [5].

In this paper, we only consider the average cost criterion.
The average cost of a particular joint policy −→w for a given
initial state S(0) = s0 is defined as:

J(−→w , s0) := lim
n→∞

1

n

n∑
t=0

E
−→w
s0 {C(S(t),−→a (t), S(t + 1))} (3)

A policy
−→
w∗ is optimal if J(

−→
w∗, s0) ≤ J(−→w , s0) for all

policies −→w and any initial state s0.

B. Exact Optimal Algorithms for DEC-POMDP

As mentioned in the previous subsection, DEC-POMDP
appears to be a POMDP, where each agent only has local
observation and the joint policies of the agents determine the
next state transition. In this sense, one can intuitively convert
a N -agent DEC-POMDP to N independent POMDPs and use
established POMDP techniques [10], [11].

However, the authors in [5] have shown that, on the contrary,
a DEC-POMDP requires a fundamentally different algorithmic
structure. By reducing the control problem to a tiling problem,
they have shown that if the underlying transition probability
function is known, the DEC-POMDP in a finite-horizon with
a constant number of agents (i.e. N ≥ 2) is complete
for the complexity class non-deterministic exponential time
(NEXP). This implies that problems modeled as DEC-POMDP
provably do not admit polynomial-time algorithms. This trait
is not shared by finite-horizon MDP or POMDP problems and

thus, has direct implications when solving problems involving
distributed agents.

It should be noted that, even if one can convert a DEC-
POMDP into N independent POMDPs, exact POMDP meth-
ods are PSPACE-hard [9]. Hence, approximate tractable solu-
tions are preferable.

Recently, an exact Dynamic Programming algorithm was
proposed for a general DEC-POMDP [12]. Though the al-
gorithm was used in a finite-horizon context, the authors
mentioned ways to extend it to the infinite-horizon case. Their
model-based algorithm uses policy trees that enumerate the
possible policies at each state and every possible next state
transitions up to a given depth in the tree, and performs
pruning of tree branches. The algorithm obviously suffers
from large memory requirements with each iteration as the
tree grows and in practice, has only been used to solve very
small problems. It is likely that any exact optimal algorithm
would suffer this curse of dimensionality and exponential-time
complexity, due to the NEXP-complete complexity result in
[5].

C. Locality of Interaction among Neighboring Agents

While a general DEC-POMDP captures real-world uncer-
tainty in multi-agent domains, it fails to exploit the fact that
each agent has limited interactions with a small number of
neighboring agents.

Following [6] for finite-horizon problems, we apply the
concept of locality of interaction under the infinite-horizon
criterion. To illustrate this idea, we consider a slotted commu-
nication network with N nodes or agents. We shall use this
scenario for the simulation in Section IV.

We define the global state of the N -agent DEC-POMDP as
follows:

S(t) := −→x (t) = [x1(t), .., xN (t)] (4)

where:−→x (t) is a factored representation or concatenation of the
local observation xi(t) for all i, where xi(t) represents the
queue length or congestion level at node i.

The immediate cost function C(S(t),−→a (t), S(t + 1)) is
defined as the congestion level C(−→x (t),−→a (t)) among nodes:

C(−→x (t),−→a (t)) =
N∑

i=1

xi(t) (5)

Due to the interaction among neighbors, we observe that
the immediate cost function is a summation of cost functions
of a sub-group of agents. Consider the network scenario with
six nodes shown in Figure 1.

In a single time slot t, the queue length of a node i is only
affected by neighboring nodes {Ni}. The immediate cost or
congestion function for N nodes can be simply expressed as:

C(−→x ,−→a ) =
N∑

i=1

C(xi, xNi , ai, aNi) (6)
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Fig. 1. Locality of interaction among neighboring nodes

where:
xNi

is a vector representing the local observations of the
neighboring agents Ni of agent i (i.e. xN1 = [x2, x3, x4, x6]T

in Figure 1).
ai is the chosen action of agent i at node i.
aNi

is a vector for the actions of the neighboring agents Ni

(i.e. aN1 = [a2, a3, a4, a6]T in Figure 1).
C(xi, xNi

, ai, aNi
) is the immediate cost incurred by agent

i which depends on its current local observation xi and
action ai, and the relevant information xNi

and aNi
from its

neighbors.

Let Cloc,i(t) :=
∑

k

C(xk, xNk
, ak, aNk

), ∀k ∈ {i ∪ Ni}
be the immediate localized cost. This effectively represents
the sum of the individual cost functions in (6) where xi and
ai components are included at the current time slot t. We use
this quantity to separate the immediate cost function C(−→x ,−→a )
into two independent components: one is affected by agent i,
while the other is independent of agent i.

For instance, in Figure 1, the immediate cost function in
(6) can be expressed in the following ways, depending on the
index i in Cloc,i:

C(−→x ,−→a ) = Cloc,1 + C(x3, x4, x5, a3, a4, a5)

= Cloc,2 + C(x1, x3, x4, x5, a1, a3, a4, a5) +

C(x3, x4, x5, a3, a4, a5) + C(x1, x6, a1, a6)

= Cloc,3 + C(x1, x6, a1, a6)

= Cloc,4 + C(x1, x2, x3, a1, a2, a3) + C(x1, x6, a1, a6)

We define the local neighborhood utility of agent i as
B−→w (Ni, s0) to represent the expected average long term cost
for executing joint policy −→w = {w1, ..., wN}, starting with
some global state S(0) = s0:

B−→w (Ni, s0) := lim
n→∞

1

n

n∑
t=0

E
−→w
s0 {Cloc,i(t)} (7)

Lemma 1: To find the best policy for agent i given its
neighbors’ policies in optimizing its local neighborhood utility,
agent i does not need to consider the non-neighbors’ policies.

Proof: We observe from (7) that the local neighborhood
utilities of agent i for two joint policies −→wa = [wa,1, ..., wa,N ]

and −→wb = [wb,1, ..., wb,N ] are equal, if the corresponding pol-
icy vector components are equal: B−→wa

(Ni, s0) = B−→wb
(Ni, s0)

if wa,k = wb,k for all k ∈ {i∪Ni}. Thus, any policy vector −→wb

that has different policies for only non-neighborhood agents
as compared to policy −→wa has equal value as B−→wa

(Ni, s0).
Furthermore, given the neighbors’ policies, optimizing the
local neighborhood utility of agent i does not affect the local
neighborhood utility of agent k if k /∈ {Ni}.

The proof of Lemma 1 is similar to [6]. In the example
above, we have considered a general communication network
with the state descriptor in (4) and cost function in (5). For a
general DEC-POMDP, we can refer to [6] for the concepts of
locality of interaction and local neighborhood utility.

In summary, the main idea is to capture a local neigh-
borhood utility that localizes the effect of agent i to the
global cost function, given the policies of its neighbors. In
the next section, we shall use the idea of Lemma 1 and
[6] in proposing an algorithm for solving a DEC-POMDP,
while considering locality of interaction among agents. We
emphasize that the proposed model-free algorithm differs from
model-based solution in [6].

III. PROPOSED MODEL-FREE ALGORITHM FOR

DEC-POMDP

A. Multi-Agent Finite-State Controller (MFSC)

Due to the complexity issues of exact model-based algo-
rithms for DEC-POMDP as discussed in Section II-B, we use
model-free techniques to approximate the optimal joint policy
of agents.

When an agent does not completely observe the state
of the system and that the underlying transition probability
distribution is unknown, the agent needs memory of the past
observations and actions to act optimally, as in the case of
single-agent POMDP [9].

Following [9] for POMDP, we use the concept of a finite-
state controller (FSC) to capture relevant past information to
act optimally. Each agent i contains a finite-state controller
which is represented as the tuple:

〈Ii, φi, fi, θi, µi〉 (8)

where:
Ii is the set of internal states (I-states) of the FSC.
fi(·) and µi(·) are I-state transition and action selection
distribution functions, respectively.
φi ∈ R

nφi and θi ∈ R
nθi are vector parameters.

FSC uses φi as a nφi
-dimensional vector to parameterise the

I-state transition probabilities, while θi is a nθi
-dimensional

vector used to parameterise the action selection probabilities
in (8). Each agent learns to use the I-states Ii to remember
only what is needed to act optimally. Specifically, the I-state
transitions and action selections are learned by intelligently
searching the space of parameters φi and θi. The actual policy
search mechanism is discussed in the next subsection.
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From [6], [13], for a DEC-POMDP, each agent faces a
complex but normal single-agent POMDP if the policies of
all other agents are fixed at a given decision instant. However,
in addition to the unobserved state S(t), each agent must also
reason about the action selection and observation histories of
other agents.

Furthermore, as discussed in Section II-C and shown in
Lemma 1, given the neighbors’ policies, agent i does not need
to consider non-neighboring agents to find its best policy. The
local neighborhood utility B−→w (Ni, s0) in (7) has effectively
localized the effect of agent i’s policy to the global cost
function in (6). In other words, agent i only has to optimize
B−→w (Ni, s0), given the policies of the neighboring agents.

From these concepts, we propose a multi-agent finite state
controller (MFSC) for agent i which extends the FSC in (8)
and captures the locality of interaction of agents.

Following [6], in order to exploit the locality of interaction,
we define the tuple −→ei (t) as:

−→ei (t) =

〈
Si,Ni(t),

−→
oh

Ni
(t)

〉
(9)

where:
Si,Ni

(t) is a vector containing the local observations of
neighboring agents and agent i at the current time slot t.−→
oh

Ni
(t) =

〈−→
oh

k(t)
〉

represents the joint observation histories

of neighbors for all k ∈ {Ni} up to time t, where
−→
oh

k(t) is
defined in (2).

Given the policy of neighboring agents, treating −→ei (t) as
state of agent i results in a single-agent POMDP [6]. The
multi-agent belief state for an agent i given the distribution
over the initial state p0(s0) = P (S(0) = s0) is defined as
[13]:

Bi(t) = Pr(−→ei (t)|
−→
oh

i (t),
−→
ah

i (t − 1), p0(s0)) (10)

where:−→
ah

i (t − 1) is the history vector of actions up to time (t − 1).−→
oh

i (t) is the observation history for agent i up to time t.

Thus, when reasoning about the agent’s policy in the context
of other neighboring agents (i.e. neighboring agents’ policies
are fixed at the current context), we maintain a distribution
over −→ei (t) in (9). We emphasize that considering −→ei (t) results
in a single-agent POMDP only for a given set of policies of
neighbors at the current context where the neighbor policies
are fixed.

Furthermore, to capture the multi-agent belief state Bi(t)
under the MFSC with unknown transition probabilities (i.e.
model-free), the MFSC must also depend on the policy para-
meters of neighboring agents, and not just φi and θi for agent
i in the original FSC in (8).

Hence, we define the internal state transition distribution of
the MFSC as:

fi(· | φi, g, y, ai(t − 1), δNi
) (11)

where:

g ∈ Ii.
y is current local observation.
ai(t − 1) is the previous local action.
δNi

∈ R
nδi is a nδi

-dimensional vector that captures the
effect of the neighbors’ policy parameters 〈θk, φk〉 for all
k ∈ {Ni}.

Similarly, the action selection policy is based on the action
selection probabilities defined as µi(· | θi, h, y, δNi

) > 0 for
each I-state h, local observation y, and parameters θi and δNi

.
The I-state transitions and policy distribution are learned by
searching the space of parameters φi and θi.

It is known from [14] that if −→ei (t) is the state defined in
(9) and g(t) ∈ Ii is an internal state of the MSFC for agent i,
then the tuple 〈−→ei (t), g(t)〉 forms a Markov chain. Interaction
begins at an initial state −→ei (0) and agent i completely observes
its own initial I-state g(0) ∈ Ii. Given the fixed neighbors’
policies −−→wNi

, the goal of agent i is to find φi and θi that
minimizes the local neighborhood utility, independent of the
initial state:

B(Ni, φi, θi|−−→wNi) = lim
n→∞

1

n

n∑
t=0

Eφi,θi {Cloc,i(t)|−−→wNi} (12)

where the expectation Eφi,θi
denotes the expectation over all

trajectories 〈−→ei (0), g(0)〉 , 〈−→ei (1), g(1)〉 , ....
This search process can be viewed as an automatic quanti-

zation of the multi-agent belief state Bi(t) in (10) to provide
the optimal policy representable by ‖Ii‖ internal states. As
‖Ii‖ → ∞, we can represent the optimal policy accurately,
without knowing the exact model of the system [15].

In summary, a MFSC consists of the tuple 〈Ii, φi, fi, θi, µi〉
with internal state transition distribution in (11) and action
selection distribution µi(· | θi, h, y, δNi

). Agent i searches
the space of parameter vectors φi and θi to act optimally,
with consideration of neighbor policy parameters δNi

, without
knowing the state transition and observation probabilities of
the DEC-POMDP in (1).

The next subsection describes the actual parameter search
mechanism and how each agent coordinates its own policy
search among its neighbors to attain the global optimal average
cost.

B. Model-Free Policy Generation algorithm

The idea of exploiting locality of interaction in distributed
agents to optimize a global objective function has already been
addressed in the formalism known as Distributed Constraint
Optimization (DCOP) [16], [17]. A DCOP problem includes
a set of variables, each variable is assigned to an agent
who can control its value, and agents must coordinate their
choice of values. DCOPs have successfully exploited limited
agent interactions in multi-agent systems, with over a decade
of algorithm development. However, DCOPs do not capture
planning under uncertainty as compared to DEC-POMDP.

In this sub-section, we extend the concepts of Net-
worked Distributed-POMDP (ND-POMDP) and the model-
based LID-JESP algorithm [6]. ND-POMDP combines DEC-
POMDP and an N -ary DCOP, where N is the number of
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Algorithm 1 Locally Interacting Distributed Reinforcement
Learning Policy Search (LID-RLPS)
Let t = 0 and T = required number of iterations.
Each agent i starts with a random policy wi represented as 〈θi, φi〉.
Let wNi

be the policies of agent i’s neighbors {Ni}, and are represented as
the set of policy parameters {θk, φk} ∀k ∈ {Ni} .
Let gt be the I-state of the agent at time t.
While t < T

Obtain yt as local observation
Agent i exchanges policies wi with neighbors {Ni}
Form δNi

as a feature vector from 〈θk, φk〉 ∀k ∈ {Ni}
Choose gt+1 from fi(· | φi, gt, yt, ai(t − 1), δNi

)
Choose and execute action ai(t) from µi(· | θi, gt+1, yt, δNi

)
Get the immediate localized cost Cloc,i(t)
cV alue = GetEstimate(wi, δNi

)
w∗

i =
〈
θ∗i , φ∗

i

〉
= LocalBestPolicy(wi, δNi

, yt, Cloc,i(t))
mV alue = GetEstimate(w∗

i , δNi
)

gaini = ‖cV alue − mV alue‖
Broadcast gaini to {Ni}
maxGain = max

k∈{i∪Ni}
gaink

winner = arg max
k∈{i∪Ni}

gaink

If maxGain > 0
If i = winner then

Update policy: wi = w∗
i or 〈θi, φi〉 =

〈
θ∗i , φ∗

i

〉
Broadcast w∗

i to {Ni}
Else

Receive policy wwinner from winner
Update wNi

End If
Else

Break While;
End If
t = t + 1

End While

agents and the DCOP variable at each node is the individual
agent’s policy.

We call our proposed model-free algorithm as: Locally
Interacting Distributed Reinforcement Learning Policy Search
(LID-RLPS) that uses the MFSC to generate the policies
(i.e. find best policy vectors) while considering locality of
interaction, and without the state and observation transition
model of DEC-POMDP. The pseudo-code of LID-RLPS is
shown in Algorithm 1.

The proposed LID-RLPS algorithm can be summarized
as follows: Each agent i starts with a random local policy
and exchanges its policies 〈θi, φi〉 with its neighbors {Ni}.
Note that the policy wi of agent i is represented by the
policy vector 〈θi, φi〉. During the exchange of policies, the
actual policy vector is communicated among the neighbors.
Agent i then chooses an action from its action or policy
distribution µi(· | θi, gt+1, yt, δNi

). The immediate localized
cost Cloc,i(t) is then obtained from its neighbors. After-
wards, agent i computes its local neighborhood utility in (12)
with respect to its current policy and its neighbors’ policies
(i.e. function GetEstimate(wi, δNi

) in Algorithm 1). It then
uses a policy-gradient model-free technique (i.e. function
LocalBestPolicy(wi, δNi

, yt, Cloc,i(t)) in Algorithm 2) to
get the local neighborhood utility of agent i’s best policy given
the policies of its neighbors. The difference between the two
local neighborhood utilities is represented as the gain message.

Each agent broadcasts its gain message among its neighbors

Algorithm 2 Finding the Best Local Policy Response
Given β ∈ [0, 1). αt = 1

t
= learning rate

Set z
θi
0 = z

θi
new = [0], z

φi
0 = z

φi
new = [0];

�θi
0 = �θi

new = [0]; �φi
0 = �φi

new = [0];
φi,new = [0], θi,new = [0];
where z

θi
0 , z

θi
new,�θi

0 ,�θi
new, θi,new ∈ R

nθi ,
z

φi
0 , z

φi
new,�φi

0 ,�φi
new, φi,new ∈ R

nφi .

Function LocalBestPolicy(wi, δNi
,yt,Cloc,i(t))

z
φi
new = βz

φi
t +

∇fi(gt+1|φi,gt,yt,ai(t−1),δNi
)

fi(gt+1|φi,gt,yt,ai(t−1),δNi
)

z
θi
new = βz

θi
t +

∇µi(ai(t)|θi,gt+1,yt,δNi
)

µi(ai(t)|θi,gt+1,yt,δNi
)

�φi
new = �φi

t + 1
t+1

[
Cloc,i(t)z

φi
new −�φi

t

]
�θi

new = �θi
t + 1

t+1

[
Cloc,i(t)z

θi
new −�θi

t

]
φi,new = φi − αt+1�φi

new

θi,new = θi − αt+1�θi
new

Return w∗
i = 〈φi,new, θi,new〉

End Function

for the current context. Agent i is allowed to improve its policy
if its gain message is larger than all the gain messages it
receives from all its neighbors. Essentially, agent i changes
its policy to the computed best local policy if it is the winner
at the current context or cycle of the algorithm. This process
is then repeated.

The idea of exchanging policies and gain messages in the
LID-RLPS algorithm to improve agent i’s policy with respect
to its neighbors’ policies in a distributed manner is based
on the Distributed Breakout Algorithm (DBA) for DCOPs
[6], [16]. However, LID-RLPS includes planning under un-
certainty, where the value of the local neighborhood utility
depends on the expected long term value, whereas DBA does
not handle uncertainty in the variables of a DCOP problem.

C. Algorithm Implementation Issues

The function LocalBestPolicy(wi, δNi
, yt, Cloc,i(t)) in Al-

gorithm 1 returns the best response policy: w∗
i =

arg min
wi

B(Ni, φi, θi|−−→wNi
). This function is implemented as

a policy gradient algorithm similar to the model-free IState-
GPOMDP algorithm proposed in [9]. The pseudo-code for
LocalBestPolicy(wi, δNi

) is shown in Algorithm 2. The proof
of convergence is omitted for brevity.

The function GetEstimate(wi, δNi
) in Algorithm 1 computes

the estimated local neighborhood utility B(Ni, φi, θi|−−→wNi
)

given the neighbors’ policies. If we simply follow the IState-
GPOMDP algorithm in [9], this estimate is obtained from the
immediate localized cost Cloc,i(t) as follows: Let ηBi

(t) be
the current estimate of B(Ni, φi, θi|−−→wNi

) given the current
neighbor policies −−→wNi

. It is then updated as follows:

ηBi(t + 1) = ηBi(t) +
1

t + 1
[Cloc,i(t + 1) − ηBi(t)] (13)

However, this update structure may not be suitable in storing
the estimates of every possible policies of neighbors −−→wNi

. This
is due to the fact that δNi

is obtained from the set of neighbor
parameters 〈θk, φk〉 ∀k ∈ Ni, which are from continuous
vector spaces. In this paper, we propose that the estimated
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utility ηBi
(t) is approximated using a form of neural network,

known as Cerebellar Model Articulation Controller (CMAC).
A CMAC is a tile-coding structure that performs linear

function approximation, where the output (i.e. ηBi
(t)) is

a weighted linear sum of the features of the input vector
parameters. The input vector for the CMAC is represented
as [gt+1, yt]. The CMAC internal neural network weights are
represented by the vector parameters 〈δNi

, θi, φi〉. The CMAC
displays local generalization for approximating the estimated
utility. With this structure, different policies of neighbors are
represented compactly and the estimate ηBi

(t) is retrieved
easily. The CMAC neural network weights are first initialized
to zero, and are then updated with the immediate localized cost
Cloc,i(t) as the target value. More details on CMAC networks
can be found in [18].

In Algorithm 1, the vector parameter δNi
is obtained from

the policy vectors of the neighbors {Ni}. In our experiments,
δNi

is computed where its vector elements are the average
of the corresponding elements in the policy vectors: 〈θk, φk〉
∀k ∈ {Ni}. Other possible feature representation for δNi

can
also be investigated.

In representing the MFSC distribution functions fi(gt+1 |
φi, gt, yt, ai(t − 1), δNi

) and µi(ai(t) | θi, gt+1, yt, δNi
), we

face the same issue for storing the function values for every
possible neighbor policies, since the vector parameter δNi

is a
continuous real-valued vector. Hence, we use neural networks
to represent the these distribution functions. Following [9], we
use the soft-max function to generate these distributions.

Specifically, for fi(· | φi, gt, yt, ai(t − 1), δNi
), a neural

network is used where the input vector is represented as
[gt, yt, ai(t−1)], which is a concatenation of the current I-state
gt, current observation yt, and previous action ai(t − 1). The
weights of the neural network are represented by the parameter
vectors 〈δNi

, φi〉. For the sake of brevity, we omit the update
equations (see [9]) for computing the gradient as required in
Algorithm 2. Basically, the update expression is implemented
similar to error back propagation, which is a standard pro-
cedure for training neural networks [18]. However, instead
of propagating the gradient of an error measure, we back
propagate the soft-max gradient for the agent’s choice of the
next I-state. We derive

∇µi(ai(t)|θi,gt+1,yt,δNi
)

µi(ai(t)|θi,gt+1,yt,δNi
) in Algorithm 2

in the same way by having another neural network with input
as [gt+1, yt] and evaluating the soft-max distribution for each
possible action at(t) by using the real-valued outputs of the
neural network.

IV. SIMULATION AND DISCUSSION

In this section, we study the performance of the proposed
model-free algorithm known as LID-RLPS in the context of
packet scheduling in wireless multi-hop networks.

A wireless multi-class network of 20 mobile nodes in a
1,000m by 1,000m area is simulated in the NS2 simulator [7].
We use the IEEE 802.11 Distributed Coordination Function
(DCF) for the MAC. For the routing protocol, the Ad hoc On-
Demand Distance Vector (AODV) protocol is used. A two-
ray ground reflection model is used for the radio propagation

model. The nodes are simulated with a speed of 0 to 10m/s
with a random way-point mobility model and varying pause
times. The simulation is done for 3,000 seconds.

We define three traffic classes and simulate eight long-lived
Constant Bit Rate (CBR) connections with the characteristics
shown in Table I. We choose CBR flows since this type of
flows captures the worst case and average long term perfor-
mance. Data packets are marked as Class I, II or III, where
Class I packets receive the highest priority and experience the
lowest delay. The control packets from the routing protocol
are marked as Class I and the data packet size is 64 bytes.

TABLE I

TRAFFIC SOURCE CHARACTERISTICS

Traffic Source Traffic Class Rate (kbps)
Nodes 1 & 2 I 128
Nodes 3 & 4 III 32
Nodes 5 & 6 II 100
Nodes 7 & 8 III 128

The DEC-POMDP formulation for this simulation scenario
is similar to the earlier formulation in Section II-C. However,
the global state descriptor is defined as:

S(t) := −→x (t) = {xj
1(t), .., x

j
N (t)}, ∀j = 1, 2, 3

The global state is thus the concatenation of the queue
length or congestion level of all traffic classes in all nodes.
Each agent i executes its policy by allocating bandwidth to its
local class queues. The immediate cost function is defined as:

C(−→x (t),−→a (t)) =
N∑

i=1

3∑
j=1

xj
i (t) (14)

Starting with any global state S(0) := s0 = −→x (0), the main
goal is to find the joint optimal scheduling policy −→w for the
20 mobile nodes that minimizes the average congestion level
defined as:

J(−→w , s0) := lim
n→∞

1

n

n∑
t=0

E
−→w
s0 {C(−→x (t),−→a (t))} (15)

We compare the performance of LID-RLPS with a single-
agent based RL algorithm similar to [19]. We refer to the latter
as Independent RL Provisioning (IRLP), where each node only
considers its own locally-observed MDP independently and
does not communicate its policies with any other agent.

Figure 2 shows the normalized average long term cost or
congestion level under different scenarios and pause times. As
expected, IRLP incurs higher congestion level even though
each agent learns and adapts its policy. LID-RLPS achieves
significantly lower congestion level since each agent coordi-
nates among its neighbors before the winner agent changes its
policy, as explained in Algorithm 1.

301

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 500  1000  1500  2000  2500  3000

N
or

m
al

iz
ed

 A
ve

ra
ge

 C
os

t

Time (secs)

LID-RLPS 5secs pause
IRLP 5secs pause

LID-RLPS 25secs pause
IRLP 25secs pause

LID-RLPS 50secs pause
IRLP 50secs pause

LID-RLPS 100secs pause
IRLP 100secs pause

Fig. 2. Normalized average cost under varying pause times

V. CONCLUSION

We have considered the problem of decentralized stochastic
control in a multi-agent system under the DEC-POMDP
framework. Due to the non-trivial complexities of solving
a DEC-POMDP, we have proposed a model-free algorithm
known as LID-RLPS that performs a cooperative decentralized
optimization. LID-RLPS employs a multi-agent finite state
controller together with the concepts of locality of interac-
tion and local neighborhood utility, to approximate the joint
optimal policy of the agents.

In the context of resource allocation and scheduling for
a communication network, simulation results have shown
that the proposed scheme is able to attain its objective of
optimizing the average long term cost, as compared to in-
dependent agents. To the best of the authors’ knowledge, our
proposed algorithm is the first attempt to use a coordinated
RL mechanism to solve a multi-agent DEC-POMDP, while
considering the locality of interaction of agents. For future
work, we intend to apply the proposed algorithm in other
applications and study its convergence properties.
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