
Abstract—This paper proposes an approximate dynamic 
programming strategy for responsive traffic signal control. It is 
the first attempt that optimizes signal control objective 
dynamically through adaptive approximation of value function. 
The proposed value function approximation is separable and 
exogenous factor independent. The algorithm updates the 
approximated value function progressively in operation, while 
preserving the structural property of the control problem. The 
convergence and performance of the algorithm have been tested in 
a range of experiments. It has been concluded that the new 
strategy is as good as the best existing control strategies while 
being efficient and simple in computation. It also has the potential 
of being extended to multi-phase signal control at isolate junction 
and to decentralized network operation.     

I. INTRODUCTION

Traffic signal governs road user at junctions in an 
increasingly congested urban traffic environment. The 
performance of traffic signals therefore largely determines the 
quality of travel within urban network, and its influence may 
well extend to other aspects of urban life. This challenging 
environment has made traffic signal control a testing ground for 
a variety of optimum control strategies. In this paper, for the 
first time in responsive traffic signal control at isolated junction, 
we develop an adaptive control strategy based on approximate 
dynamic programming (ADP) to provide efficiency in 
computation and effectiveness in operation. It will show that the 
control algorithm updates itself progressively in operation, and 
the performance is as good as the best existing control strategy. 
As ADP comes out of the latest development in adaptive control 
theory and reinforced learning, this work also provides an 
opportunity of bridging intelligent computing to the needs of 
urban traffic management. 

Section II introduces the basic context of traffic signal and its 
control objectives, followed by the explanatory discussion on 
traffic signal control strategies. Section III is a general review of 
related ADP literature and value function approximation 
methods. The problem specification and formulation are in 
Section IV, with experiment design in Section V and 
consequent results in VI. Section VII summarizes this study.
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II. TRAFFIC SIGNAL CONTROL

A. Traffic Signal 
Traffic signals are used to manage conflicting requirements 

for the use of road space by allocating right of way to different 
sets of mutually compatible traffic movements during distinct 
time intervals (see Ref. [1]). The objective of signal control will 
vary in accordance with the prevailing policy of urban traffic 
management and control. Objectives may include minimizing 
delays to road users, or reducing vehicle emissions, or 
improving safety, or providing priority for public usages, or a 
practical combination of those. The resources that are available 
for optimization are data from empirical data sets or online 
information from detectors, and optimization procedures to 
make use of data to calculate an appropriate plan.  

B. Control Strategies 
A daily life experience with traffic signal may give the 

impression of green and red indications, or possibly plus the 
amber indication. However, to calculate an appropriate signal 
timing plan, a control strategy may encounter much more 
variables denoted by specific terminologies. We here define the 
necessary terminologies to facilitate the discussion that follows. 

Fig.1. Phase, Stage and Cycle 

Link: A group of adjacent lanes on which traffic forms a 
combined queue.  
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Phase: A group of one or more traffic or pedestrian links 
which always receive identical signal light indications. 

Stage: A group of one or more traffic and/or pedestrian 
phases which receive a green signal during a particular period of 
the cycle. 

Intergreen: The period between the end of the green display 
on one stage and the start of the green display on the next stage. 

Cycle: Usually considered to be the time between successive 
starts of the stage 1 green.  

The relationship between phase, stage, intergreen and cycle is 
illustrated in Fig.1. 

The early generation of traffic signal control strategies 
operated within a fixed cycle (and often with a fixed stage 
order) and regardless of variation in approaching traffic. 
Strategies of this nature are referred as fix-time control. Ref. [2] 
provides pioneer work in this field with its fundamental 
establishment in delay function and cycle time setting. Ref. [3] 
optimizes stage-based fix-time control, followed by [4] with a 
phase-based optimization algorithm. Phase-based strategies 
yielded substantial benefits over stage-based ones, however, at 
the expenses of complexity in variables and constraints, and 
moreover, still not responsive to changing traffic.  

Responsive signal control, or vehicle actuated (VA) control, 
arose in a context that fix-time control may operate 
unsatisfactorily under changing traffic, and in that if not 
updated manually, even optimum fix-time plan is aging over 
time. The pioneer research in responsive control theory is [5]. 
The first generation of successful responsive systems includes 
SCOOT (Ref. [6]) which gives responses to real-time traffic 
through optimizing cycle length, phase split and offset. Similar 
to SCOOT is SCATS (Ref. [7]). These systems began to 
outperform the best fix-time control strategies with 6%–20% 
savings in travel time at network level. On the other hand, 
MOVA (Microprocessor Optimized Vehicle Actuation, Ref. 
[8]) system has been successfully implemented at isolated 
junctions and becomes standard strategy of its kind in UK. 
Nevertheless, the above systems are all stage-based. 

Not long after the establishment of initial responsive control 
strategies was backward dynamic programming (BDP) 
recognized as a complete solution. Ref. [9] uses BDP to deduce 
the analytical benchmark of optimum signal control 
performance, with a near optimum policy proposed thereafter. 
This works inspired the evolution of successful dynamic 
strategies such as OPAC (Ref. [10]) and PRODYN (Ref. [11]). 
OPAC uses a rolling horizon approach with optimum sequential 
constrained search (OSCO) algorithm. Also using rolling 
horizon approach, PRODYN employs a forward dynamic 
programming (FDP) to optimize performance, and the value 
function in FDP adopts the empirical formula in [9]. The 
dynamic feature of the two systems allows them to decentralize 
network control to local level, thus more flexible than 
centralized control strategies such as SCOOT and SCATS.  

The BDP itself, though powerful in analytical research, has 
limited rule in dynamic signal control. As in many other fields, 
it nevertheless under the curse of dimensionality: large state 
space (more links, phases, and etc.), large outcome space, and 

large action space. Not only that, in traffic control, BDP 
requires the knowledge of traffic information for the whole 
planning period, which is quite impractical. The existing 
dynamic strategies either use exhaustive search with anticipated 
traffic information (OPAC) or FDP algorithm depending on 
empirical value function which is dependent on exogenous 
factor (traffic flow). 

A more adaptive, intelligent and efficient dynamic traffic 
signal control strategy may be developed if the exhaustive 
search could be circumvented and the value function itself was 
adaptive to changing environment.  

III. APPROXIMATE DYNAMIC PROGRAMMING

Approximate dynamic programming (ADP) evolved in the 
field of dynamic programming to solve the problems that would 
have been computationally intractable via backward 
propagation. Given a single traffic junction with eight links and 
up to 20 vehicles per link, if we define the traffic state as the 
vehicles in the junction, we will have an excessive large number 
of states which is 218, not to mention that we actually have 
signal states and optional decisions to consider as well. With 
such a large dimension, dynamic programming with backward 
propagation could easily be inefficient or impractical for real 
time control, for it has to loop over all the states to find the 
optimal solution. ADP, however, is so designed to overcome the 
curse of dimensionality that it avoids evaluating through the 
whole state space by using functional approximations which 
only require the estimation of a few parameters to approximate 
the whole value function. The functional approximations may 
update the value estimates, at each iteration, using the updating 
function, which calculates discrete derivatives at a single state. 
ADP of this kind was investigated for multistage resource 
allocation problems in [12] and [13]. Based on the investigation 
of structural property, applications of ADP were further 
extended to stochastic batch service problems in [14] and [15]. 
Ref. [16] summarized approximation algorithms for discrete 
stochastic optimization and proposed a provable algorithm 
which is separable and piecewise linear. A comprehensive 
introduction to ADP, dimensionality, stepsize and functional 
approximation can be found in [17].   

Assisted by the findings in ADP literature, especially in batch 
service problems which resembles a certain kind of similarity, 
we are able to formulate an ADP algorithm for our traffic signal 
control problem.  

IV. PROBLEM DEFINITION

In the section we formulate the dynamic signal control 
problem and develop the ADP algorithm strategy according the 
problem specifications.  
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A. Assumptions 
1) The signal control strategy is designed to be stage-based. 
2) Time is divided into short intervals of 5 seconds each. 

Queue lengths are calculated at the end of each interval, 
neglecting the detail of vehicle behavior during the interval. 
Signals may only be switched at the boundary between 
intervals. 

3)  Approaching traffic is homogenous. The arriving rate of 
traffic is known at the beginning of each time interval for the 
next 10s (two intervals). Traffic rate within a single time 
interval may take an integer value of 0, 1 or 2 vehicles only. It 
is assumed that the information comes from detectors 100m 
upstream.  

4) Signal phases are composed of effective greens and 
effective reds only, so that no amber interval needs be 
considered. The intergreen period, which follows a decision 
to change the signals from green on one stage to green on the 
other stage, is of 5 seconds duration. This is to say that the 
signals will be all red for one interval when a switching 
decision is made.  

5) The saturation flow on all traffic links is 2 vehicles per 
interval. This is equivalent to 1440 vehicles per hour, a rate 
that is sufficiently close to the saturation flow of a single 
traffic lane.  

6) There are no constraints on the minimum or maximum 
duration of a green period. The maximum queue length on a 
single link is restricted to 20 vehicles. 

B. State Variable 
A control state in dynamic traffic signal control is defined 

here as the total number of vehicle queuing in traffic links 
which receive identical signal indications. The total number of 
vehicles in queue receiving green signal is represented by the 
variable qg, and those receiving red by qr. These two variables 
together form the state variable S given by 

g

r

q
S

q
= .

State variable S can be seen as a product of two subordinate 
state variables — the queue state variable Q, and the signal state 
variable G. We define the subordinate state variables as the 
followings: 

1

i

q
Q

q
= , where qi is the queue length on link i;

1

i

g
G

g
= , where 

[ ]
[ ]
1 0 , if link receives green,
0 1 , if link receives red.   ig =

The relationship between the control state variable and its 
two subordinate variables is simply as: 

TS G Q= .  (1) 

Based on this relationship and for convenience, we refer to S
in the rest of this paper as primary state variable. The 
corresponding value function should therefore return the value 
of being in primary state S.   

Another interesting but also critical issue about state 
variables is whether they are incomplete. Ref. [14] and [15] 
provide a thorough definition of incomplete state variables S-

and its distinction from complete one S. In short, St =St
-+Wt,

where Wt is the information vector which becomes available at 
time t. This is to say that S contains the already arrived 
information, while S- does not. In our case, all the state variables 
are incomplete. But for the simplicity in notations, we do not 
explicitly denote them as in [14] or [15].  

C. System Dynamics 
Arrival traffic information vector W and decision vector X are 

introduced as:  

1

i

w
W

w
=  , 

and 

1 1
for change signal

1 1
X = , or 

0 0
for not change

0 0
X = .

Given that at time interval t, at state St, with arrival traffic 
information Wt, we make decision Xt. Thus the transfer function 
for subordinate state variable Q is expressed by: 

( )1 , , ,t t t t t t tQ Q W O Q W X+ = + −  (2) 

where the O is the outflow vector, 

1

i

o
O

o
= , and 

0 if on red or  change signal
2 if on green and 2  

if on green and < 2 
i i i

i i i i

o q w
q w q w

= + ≥
+ +

.

The transfer function for subordinate state variable G is given 
by: 

( )1 mod 2
.t t tG G X+ = +  (3) 

The primary state is then transferred through (1): 
1 1 1.

T
t t tS G Q+ + +=

D. Delay Functions  
Delay functions (or cost function in general terms) can be 

divided into two parts: the first part represents the one-step 
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delays, and the second part represents discount delays incurred 
the future. We define the one-step delay function as: 

( ) ( )
1

, , , , .
I

t t t t t t t t t t
i

C S W X Q W O Q W X
=

= + −  (4) 

The second part is frequently referred as the value function. 
In BDP the value function returns directly the expected value 
(in probabilistic BDP) or exact value (in deterministic BDP) of 
being in a state. In ADP, however, we usually have to 
approximate the value function.  

Ideally we would assume that the value function could 
represent the delays that are to be incurred to the vehicles in 
queue. Ref. [2] established one of the most fundamental 
formulas to estimate the average delay per vehicle at a 
signalized junction. Although this algorithm was widely 
adopted in deriving optimum fixed-time control, its application 
in dynamic control is limited in that it applies to fixed values of 
cycle time, green time split, degree of saturation and traffic 
flow, and moreover, does not associate the primary state 
variable S.

Ref. [9] proposes an approximate function to estimate the 
total additional delays in 10 minutes caused by non-zero initial 
queues in the traffic links. The additional delay D is expressed 
by: 

20.2 ( 1.3 ) ,
(1 ) g rD q q

Y
= +

−
 (5) 

where  

Links

Arrival flow
Saturation flow

Y = .

Equation (5) associates primary state variable S to the delay 
estimating function. It assigns a greater coefficient for queues 
on red than on green. The purpose of this is to define the 
structure of signal control problem—leaving the same amount 
of queue on red will cause more delay than leaving them on 
green. A near optimum strategy was proposed based on (5). The 
strategy determines whether to change the traffic signal or not 
based on the values that sum up the one-step delays and the 
additional delays from (5) caused by respective decisions. We 
refer this strategy here as RB (Robertson and Bretherton), and it 
will be a competing method in experiment to our ADP strategy 
later proposed in the paper. Strategy RB was later validated in 
[18] which found that the consequences of a non-zero initial 
queue persisted only for finite length of time, after which the 
optimum state sequences merged. In most cases merge 
happened within 10mins in the latter study. 

Equation (5) presents a good basis to construct our 
approximate value function in ADP. However, it is clear that it 
has an inseparable quadratic form and also depends on the 
exogenous factor, i.e. variable Y. Further investigation through 
simulations also demonstrated considerable discrepancies 

between estimations from (5) and the true values. To apply 
those already proofed ADP algorithms, and to facilitate the 
possible introduction of Mote Carlo sampling techniques in 
cases of high dimensionality, we would prefer an approximate 
value function of separability as well as independence from 
exogenous factor. To make the value function also adaptive 
over time and reinforce the learning, we would further prefer 
adaptive variable coefficients. In those regards we propose an 
approximate value function for the signal control problem, 
which takes the form of:    

( ) ,T
g rV S S A q qα β= = +  (6) 

where the coefficient matrix A is given by 

A
α
β

= .

E. Objective Function  
Our objective then is to minimize the total discounted delay 

within a time horizon of T intervals, which can be expressed as: 

( )
0

min , , ,
T

t
t t t t

t
C S W Xγ

=
 (7) 

through recursively computing the optimality equation: 

( ){ ( )( )
( )}

1 1 1 1

1 2 1 1 1

( ) min , , , , , ,

          + , , ,

k t t t t t t t t t t t tX

k t t t t

V S C S W X C S S W X W X

V S S W Xγ

+ + + +∈Χ

− + + + +

= +
 (8) 

where k indicates the number of iterations.  

F. Decision Rule 
The decision rule governs the optimum decision to be made 

at each epoch of time. It first offers three optional decisions for 
the next 10s, i.e. next two time intervals, as such 

( )
1

1

1

1 :  no change, no change 
2 :  change,  no change    
3 :  no change, change     

st
t t

nd
t t t

rd
t t

Option X X
S Option X X

Option X X
χ

+

+

+

= =
= = =

= =
.

The decision rule allows the change in signal indication at time t
if and only if when 2nd option gives lower value than both 1st

and 3rd option. 

G. Adaptive Approximation 
To approximate the value function adaptively through 

progress, we first obtain the new observation of each element of 
the coefficient matrix A by: 

( ) ( )
ˆ ,t g tk

g g

V S e V SV
q q

α
+ −∂ =

∂ Δ
 (9) 
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( ) ( )ˆ ,t r tk

r r

V S e V SV
q q

β
+ −∂ =

∂ Δ
  (10) 

where e is a 2-by-1 column vector with q in the respective 
entry and the other zero. We then update current coefficient 
matrix through: 

( ) 1 ˆ1 ,k k k
k kA A Aθ θ−= − +  (11) 

where  is the stepsize and takes the value of 1/k.

H. Approximate Dynamic Programming Algorithm 
The ADP algorithm can now be set as: 

Step 1: Initialize A0, S0. Set t=0, and k=1.  
Step 2: Obtain information vector Wt.
Step 3: Calculate  

( ) ( ){ ( )( )
( )}

1 1 1 1

1 2 1 1 1

argmin , , , , , ,

          + , , .

t t t t t t t t t t t t tX

k t t t t

X S C S W X C S S W X W X

V S S W X
χ

γ

+ + + +∈

− + + + +

= +
 (12) 

Step 4: Obtain new estimations of coefficient matrix ˆ kA using 
(8), (9) and (10), and then update coefficient matrix Ak

using (11). 
Step 5: Implement the optimum decision Xt(St).  
Step 6: If t<T, set t=t+1, k=k+1, and then go to step 2; else stop 

here.  

V. EXPERIMENT DESIGN

The experiments are designed to test the convergence of 
value function coefficients and the performance of ADP 
strategy. Experiments are realized via computer simulation. The 
testing bed for the experiments is an isolated four-arm junction. 
Considering the preliminary nature of our study, we prefer a 
kind of simplicity in the junction design so that it is just enough 
to fulfill the purpose of the investigation. Therefore, we only 
consider two traffic links: Link A from East to West, and Link B 
from North to South. The two links are mutually exclusive and 
no turning traffic is included. Flows on each link are random 
and have their constant mean rates in vehicles per hour. Flows 
are generated by random number generator with binomial 
distribution. Four optional in-flows are available to Link A , and 
they are 252 v/h, 396 v/h, 600 v/h, and 678 v/h respectively. 
Link B has two optional in-flows that are 240 v/h and 432 v/h. 
In total, there are 8 traffic in-flow combinations with Link A the 
major link and Link B the minor link. This design represents a 
typical sample of under-saturation traffic at an isolated junction.   

Performance of ADP strategy will be compared with three 
other competing strategies which are BDP, OSCO (used in 
OPAC system, Ref. [10]) and RB (Robertson and Bretherton, 
Ref. [9]), of which BDP will serve as the benchmark. Since the 
significant advantages of all the three competing opponents 
over optimum fix-time method have been evidenced (Ref. [9], 
[10]), we will not include fix-time control in comparison.  

We fix the following parameters, T=1200 (100mins in real 
time), q=1, =0.95, throughout the experiments. We 
artificially initialize A0 at the beginning of each experiment by 
referring to (5) with the assumption that Y=0.833, which is 
equivalent to set traffic flow as 600 v/h on both links. This 
specification is to illustrate adaptive approximation and 
reinforced learning.   

VI. RESULTS

A. Convergence of Value Function Coefficients 
The value of coefficients  and  converge in all experiments. 

As shown in TABLE 1, the converged values of  and 
increase in proportion to the increase in traffic, thus the heavier 
the traffic, the more additional delay per vehicle. In each case, 
the value of is higher than , thus vehicles on red link suffer 
more delay than vehicles on green. This scenario directly 
reflects the problem structure of traffic signal control, and it is 
well preserved in operations. It is worth noticing that the 
structure preservation is achieved without explicit effort in 
algorithm development. The absolute difference between the 
two coefficients, however, is out of proportion to the changes in 
traffic. It floats between 0.945 and 1.211 over different pairs of 
traffic. Coefficients in all experiment converge to values 
significantly different from their initialization at the beginning 
of experiments.  

TABLE 1 Converged Value of Coefficients 

          Arm A 
Arm B 

Con- 
efficient 

252
V/h 

396
V/h 

600
V/h 

678
V/h 

0.437 0.739 1.100 1.217 
1.503 1.866 2.274 2.428 

240
V/h 

|  -  | 1.066 1.127 1.174 1.211 

0.789 1.128 1.757 1.941 
1.913 2.265 2.767 2.886 

432
V/h 

|  -  | 1.124 1.137 1.009 0.945 

We take two examples from the experiments to illustrate the 
process of convergence. The first example is shown in Fig. 2, 
with 396 v/h on Link A and 240 v/h on Link B. This is a 
relatively light flow condition. The second example represents a 
heavier flow condition, with 678 v/h on Link A and 432 v/h on 
Link B, and is shown in Fig.3. The values converge in both 
examples in the first half of the time horizon.  

So far the convergence of coefficients has indicated the 
adaptive approximation of the value function. To further justify 
the robustness of the ADP strategy, we will compare its 
performance with both the benchmark which is BDP and other 
competing strategies. 
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Fig.2. Convergence of coefficients 
Link A: 396 V/h, Link B: 240 V/h 
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Fig.3. Convergence of coefficients 
Link A: 678 V/h, Link B: 432 V/h 

     

B. Performance 
Performances of competing strategies in each experiment are 

grouped into TABLE 2 and TABLE 3. The former summarizes 
the performances in the first 10 minutes, while the latter 
summarizes the averaged performances in 10 minutes over the 
whole time horizon that is 100 minutes in total. The 
performance of ADP in the first 10 minutes, in comparison with 
benchmark and other competing strategies, varies in 
experiments. When approaching traffic flows are light, as 
shown on the left half of TABLE 2, ADP performs better than 
RB and OSCO in general. With higher traffic flows, the 
performance of ADP fluctuates around that of RB, but is 
constantly better than OSCO. Two factors may contribute to 
this occurrence: first, the presumed initial coefficient A0, and 
second, the effects of transition.  

TABLE 3 indicates that the performance of ADP in the long 
run is as good as RB, and significantly better than OSCO. With 
higher traffic flows, ADP may produce a slightly higher delay 
than RB in average, but the difference may owe to the effects of 
transition. Moreover, because of that in our experiments 
in-flows have constant hourly rates, the RB strategy does not 

have to estimate parameter Y over time. This further implies that 
ADP might be as good as RB in overall performance. Another 
noticeable feature of RB is that it can only operate with 
under-saturated traffic because of the structure of the 
denominator in (5). The ADP strategy is not limited to 
under-saturation, and a preliminary experiment has shown that 
it works well with over-saturation, with an acceptable gap from 
BDP performance.   

TABLE 2 Vehicle delay (vehicle-intervals) in the first 10mins 

           Arm A 
Arm B Method 252

V/h 
396
V/h 

600
V/h 

678
V/h 

BDP 62 88 161 200 
RB 90 149 196 251 

OSCO 85 109 254 301 
240
V/h 

ADP 84 112 249 288 
BDP 122 206 418 486 
RB 157 246 481 542 

OSCO 170 279 497 645 
432
V/h 

ADP 156 235 465 544 

TABLE 3 Averaged vehicle delay (vehicle-intervals) per 10mins 

           Arm A 
Arm B Method 252

V/h 
396
V/h 

600
V/h 

678
V/h 

BDP 61 105 182 223 
RB 78 137 228 277 

OSCO 83 135 245 303 
240
V/h 

ADP 71 123 238 287 
BDP 119 208 403 525 
RB 145 252 453 589 

OSCO 158 263 486 641 
432
V/h 

ADP 146 255 451 594 

The gaps between the performances of ADP and the 
benchmark BDP shrink in the long run, and the short run 
differences may well correlate with short-term variation. 
However, it is still interesting to investigate the difference in 
performance between the two strategies. In Fig.4 we compare 
the performance of the two strategies thoroughly by plotting 
in/out flow profile and the evolution of queue on link A. The 
comparison consists of two parts. The first part compares the 
performances in the first 10 minutes (first 120 time intervals), 
thus representing the transition state. The second part compares 
the performance in the last 10 minutes, representing the 
steady-state.  

In both time periods, ADP and BDP have the same number of 
cycles, and what make the difference are the starting time of a 
cycle and the cycle length. When queues are prominent in the 
system and short-term traffic is heavy, like in the time period 
between interval 40 and 80, and that between 1120 and 1160, 
the
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two strategies generate similar or even identical signal plans. 
This can be explained by, when queues in the system are 
prominent, the optimal solution is to dissipate queues on 
green link until clearance, or as much as possible. The 
arriving vehicles become less important to decision making. 
On the other hand, when queues are rare and traffic is light, 
BDP becomes more adaptive than ADP. This is because 
under such condition, a quick response to future arrivals is 
critical to maintain queue and hence delay at minimum. BDP 
utilizes the information of the whole time horizon to achieve 
global optimum, while ADP strategy utilizes the information 
of next 10 seconds, fairly close to real control situation. In 
these regards, we have indicated the robustness of the ADP 
strategy for responsive traffic signal control at an isolated 
junction with simple geometry. 

C. Implication to complex control problems 
The experiments in this paper are limited to an isolated 

junction with only two conflict links, and thus only two 
phases. There are nevertheless concerns about the possible 
extension to multi-phase signal control and to coordinate 
traffic signal control.  

To address the concern about multi-phase junction, we 
need to modify the state variables, and thus the approximate 
value function to represent the property of each incompatible 
phase. Given a total number of I incompatible phases, for 
each phase i, we introduce queue state variable Qi and signal 
state variable Gi, where 

[ ]
[ ]

T

T

1 0 , if link receives green,

0 1 , if link receives red.   
iG =

A coefficient vector Ai, where 

,i
i

i

A
α
β

=

is assigned to each phase. Like in the two-phase problem, i
is a multiplier to queue on link i if it receives green, otherwise 

i applies. An advantage of introducing Ai instead of grouping 
all the queues to green and red is that the unique property of 
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each individual phase can be presented. The approximate 
value function is then given by 

1
.

I
T
i i i

i
V G AQ

=
=                 (13) 

Equation (13) will be substituted to (12) to represent the 
multi-phase control problem, and the decision vector X will 
be further expanded to accommodate the additional options 
as which phase to change to. Coefficient vector Ai will be 
updated in the same way as in the two-phase problem. A 
preliminary experiment on multi-phase control with above 
specifications shows a good performance that replicates the 
adaptive property and convergence in two-phase problem. 
Except for the expansion in optional decisions, there is no 
significant increase in state space.   

If an ADP strategy is able to work with multi-phase 
junction, it then can be extended to coordinate signal control 
by adopting the concept of decentralized network control as 
in [10] and [11]. In simple terms, it means the network 
controller finds a critical junction in the network at each time 
epoch to synchronize critical variables like minimum and 
maximum stage length, whereas performances are optimized 
by local controller at individual junctions with the subjection 
to the limits set by network controller. A sophisticated traffic 
model is indispensable to the network dynamic control, and 
there are wide choices of them.  

VII. CONCLUSION

This paper, for the first time in dynamic traffic signal 
control, proposes a traffic responsive, self-adaptive 
optimizing strategy based on ADP architecture. Instead of an 
inseparable, exogenous factor dependent value function 
descended from earlier studies, the proposed strategy 
incorporates a separable, exogenous factor independent 
value function approximation. The strategy updates the 
coefficients of the approximate value function through the 
iterative estimation of partial derivatives. The experiments, 
though preliminary in junction geometry, have tested the 
convergence as well as the performance of the ADP strategy 
with a range of traffic combinations. The results have not 
only installed confidence in that the strategy is as good as the 
best existing control methods but also indicated the 
significance of the control strategy in real operation and more 
complex traffic control environment.    

The success of ADP in preliminary dynamic traffic signal 
control opens a new opportunity by which we are able to 
develop the strategy in further to accommodate complex 
junctions with more sophisticated control objectives, and to 
expand to network control. Eventually, it is in complex, high 
dimensional problems where ADP technique excels. A 
deliverable ADP strategy in dynamic signal control may 
offer traffic engineers a powerful tool to manage an 
increasingly challenging control environment. 
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