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Abstract— In this paper, an approximate optimal control-
based neurocontroller for guiding the seedlings growth in 
greenhouse is presented. The main goal of this approach is to 
obtain a close-loop operation with a state neurocontroller, whose 
design is based on approximate optimal control theory. The 
neurocontroller drives the progress of the crop growth 
development while minimizing a predefined cost function in 
terms of operative costs and final state errors under physical 
constraints on process variables and actuator signals. The aim is 
to find an approximate optimal control policy to guide the 
development of tomato seedlings from an initial to a desired state 
by controlling the greenhouse’s microclimate. In this paper we 
propose an indirect measuring of the seedlings growth state using 
artificial vision. In order to show the performance and practical 
feasibility of the proposed approach, an experiment was carried 
out for the development of tomato seedings. 

I. INTRODUCTION

Several optimal control-based controllers for guiding the 
crop growth had been designed, such as [14] [12] [13] [15]; 
[16], among others. The goal of the guidance processes is to 
obtain a certain output according to a production schedule 
within a predefined period and with the lowest cost and the 
greatest profit. In addition, the final product should have 
certain characteristics as imposed by the market, such as 
weight, number of nodes, number of leaves, color, size or 
others. 

Since the internal microclimatic variables of the greenhouse, 
such as temperature, relative humidity, carbon dioxide (CO2)
and solar radiation, affect the growth and development rate of 
crops  [8] [9], these variables can be manipulated to guide 
such growth development and reach the predefined technical 
and economical objectives [15] [16]. Another aspect to take 
into account is that each crop imposes their own particular 
constraint to the ranges of variation for microclimate 
conditions. For instance, with temperatures below a minimum 
level, the seedlings stop growing, and with temperatures 
above a maximum level they can suffer irreversible damages. 
Thus, it is very important to reach internal climatic conditions 
(set points) following an appropriated trajectory, which guides 
the seedlings growth from an initial state to a desired final 
state minimizing a costs function, in a predefined time, and 

considering the climate constraints imposed by the particular 
crop. The generated trajectory will be optimal with respect to 
that criterion function defined for each particular case. 
Therefore, a problem is to obtain an optimal strategy in order 
to get that optimal trajectory conformed by a set points. In 
such a sense, the work proposes to use the theory of optimal 
control to solve said problem. It can be complemented, 
approached through the neuro-dynamic programming (NDP) 
technique allows designing a control system that can be 
implemented by using low cost equipments. This fact results 
in low investments, which is an important factor to be 
considered when applications have low profit margins, as does 
in agriculture business. 

In this work, a state observation scheme for guiding the crop 
growth under greenhouse conditions is proposed. This 
observer operates with a NDP based optimal controller, whose 
design procedure is detailed in [12] and [14]. This scheme has 
the advantage of demanding few computational resources for 
obtaining the control actions. At the same time, this fact 
allows that the sophisticated state observer be incorporated, 
given that it performs an on-line acquisition and image 
processing. The main difference with regards to others 
implementations of crop state observer [13], is that in this 
work a digital camera for images acquisition is incorporated 
for estimating the plant state. 

In order to show the practical feasibility and performance of 
the proposed neurocontroller, simulation studies were carried 
out for the tomato-seedling crop development. In addition, 
some experiments were necessary to model the crop 
environment, using the scaled-model greenhouse of Fig. 2. 

II. PROBLEM STATEMENT

The control scheme based on NDP with state observation 
and crop image acquisition used in the experimentation has 
the implementation structure detailed in Fig. 1. 

The manipulation of temperature and CO2 concentration has 
various objectives, among which we may remark the economy 
factors —i.e., to obtain the production ready at a pre-
established date, with the smallest cost and greatest profit 
possible. The set of required characteristics that should 
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complete the representative state variables of the crop defines 
the desired crop practice. Crop features are the average crop’ 
number of leaves and dry weight. Once the final state has been 
reached, the product is prepared for crop, and then new trays 
are introduced for a new process to start the process again. 

A. The control system 

The controller is designed with base on the optimal control 
theory [14] [12], solving the problem by the NDP technique 
[4]. The criterion or costs function is 

(1)

where x is the time-dependant state vector defined as x=[W 
N]T, W is the dry weight in grams, and N is the number of 
leaves; I and v are the performance index and the monetary 
costs vector associated to the control actions, respectively, 
detailed in [12]; [13]; xd=[Wd Nd]

T contains the desired final 
values for the state variables where Wd is the desired final dry 
weigh and Nd is the desired number of leaves, and  is the 
weighting matrix. In addition, the closed-loop system can be 
expressed as follows 

(2)

where u is the control vector defined as u=[a(t) CO2(t)]
T, f(.) is 

the equivalent function of the model which combines the crop 
dynamic model and the greenhouse algebraic model; finally, 
x0 is the initial condition for the nonlinear equation (i.e., initial 
dry weight and number of leaves). The optimal control law or 
optimal policy is denoted by µ, which is a function of the state 
x and the time t. The modeled experimental greenhouse 
available in the Instituto de Automática’s laboratory is shown 
in Fig. 2, in which the experiments were carried out. 

The optimal control problem of the crop growth guidance 
can be formulated as follows. By considering the dynamic 
model of the production system of Eqn. (2), it is desired to 
obtain an optimal control law (which gives the values of 
heater use and window opening and CO2 set points) such that 
the crop growth goes from an arbitrary initial state condition 
to a desired final state by minimizing the cost function of Eqn. 
(1).

B. Crop state measurement 

The typical procedure to measure the process state is to take 
a seedling sample, counting its leaves, dehydrating it in an 
oven at 40°C during 10 hours, and weighing the sample to  
obtain its dry weight. Then, this weight is divided by the 
number of sample’s seedlings to obtain the values of dry 
weight and number of leaves of each seedling. If this 
procedure is would perform on-line, a perturbation will be 
produced to the cultivation that generates a destructive and 
irreversible effect. The reason is that the absence of one 
seedling in a place of the tray cell generates a vacuum 
between the remaining plants —the well known “border 
effect”— given that they regulates its biological variables 
such as evapotranspiration and light catchment in a modified 
fashion. Therefore, after the extraction of one seedling, the 
rate patterns of growth and development for the remaining 
seedlings will not be the same ones. Hence, the direct 
measurement is a destructive procedure not only for one plant 
but for several seedlings of the lab tray. This fact makes the 
direct measurement in the experimentations has to be 
performed at the end of the guidance process. Thus, by 
considering the strong perturbation that introduces in the crop 
growth rate the direct measurement of the state, a state 
observation system must been carried out. 

Fig. 2.  Scale model of the greenhouse used in the experiments, 
located at the INAUT’s Laboratory. 
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Fig. 1.  Control scheme of the crop growth guidance. The feedback of 
the states uses the measurement of the crop environment variables, the 
leaf area index, and the crop’s dynamic model. 
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III. PROPOSED SOLUTION

A. Neurocontroller’s architecture 

Generally the solution for the optimal control problem, 
considering a nonlinear system and an arbitrary cost function 
is the Hamilton-Jacobi-Bellman equation [10], which results -
in most cases- impossible to solve analytically in a closed 
form. The majority of these differential equations, with time 
variants and stochastic systems, and properly quantified on its 
state and control variables, can be computed with the 
algorithm of Dynamic Programming (DP) [1] [5]; [3]. Thus, 
the continuous space of the problem can be replaced by a 
discrete space with a finite number of elements involving a 
finite number of states, decisions, and stages of system’s 
temporal evolution. However, it is well known that in many 
engineering problems, the computational requirements of DP 
are overwhelming, because the number of states and control 
actions is very large (Bellman’s curse of dimensionality). In 
such instances, it is more suitable to consider approximate or 
suboptimal control schemes, such as 

(3)

Where, i is the quantified state, J
~

 is a function that 

approximates J(.) and r is the parameter vector of the 
approximator. Thus, by the approximate policy iteration 
algorithm can be found a table µ containing the optimal 
control policy [4]. Furthermore, this table with the optimal 
control law µ can be approximated by another device through 
a parameter vector s. Therefore, given that the approximator 
devices are neural networks (NNs), the DP comes into Neuro-
Dynamic Programming (NDP) sphere. Then, the NNs that 
approximates the costs function of Eqn. (1) is called the Critic, 
and the NNs that approximates the tabulated version of the 
control law of Eqn. (3) is called the Actor. Here, the three 
networks (one for Critic and two for Action) are all 
implemented by using multilayer feedforward NNs featuring   
two layers of 10 neurons in the hidden layer. The Actor has 
two NNs with 3 inputs, dry weight of the tomato seedling, 
number of leaves, and stage, and two outputs: heater 
use-opening windows a(t) and CO2 concentration. The 
approximation cost-to-go function is the Critic, which has 

same inputs with one output. The Critic network output J
~

,
and the Actor network output u are trained according to the 
procedure presented in [12] [14]. The NNs structures are 
shown in Fig. 3. 

B. Crop image processing 

With the aim of measure the system state in an on-line 
fashion there exists, in general, indirect methods that measure 
variables associated to the crop. Then, once the dynamic 
model has been obtained, the real time state value is estimated. 

The methods can be based on several techniques: artificial 
vision, [6], photosynthesis sensors [11], measurements of the 
environment variables [13], etc. Note that the availability of 
the crop model and the temporal evolution of the associated 
variables are needed. Here, a system was designed for 
measuring the on-line state, which uses direct information of 
the crop, more exactly the superficial appearance of the 
vegetal canopy for the state feedback. 

The leaf area index L used by the crop’s dynamic model [9] 
can be correlated with a crop image, which is obtained in real 
time by a camera installed in a fixed position with reference to 
the crop, as is shown in Fig. 2. The real time state value is 
obtained by using the value of L altogether with the 
environment variables. For the case of the tomato seedling 
crop, the index L ranges from 0 to 2, index L varies from 0 to 
2, a range where it is possible to find values to correlate with 
desired image characteristics. 

The observer scheme is shown in Fig. 1, where the 
acquisition and image processing is performed for estimating 
the value L. Note that the observer still uses the dynamic 
model, although in this case the information related to the crop 
physical appearance is directly used, which describes with 
more precision the system state. The sample period of the 
index L is of one hour. Historical sequences of crop images 
were used for designing the estimator of L. The images were 
captured from the same spot respecting the crop. The 
procedure we chose consisted in the summation of green 
pixels detected by the camera, divided by the total number of 
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Fig. 3.  Actor/Critic scheme of the neurocontroller. 
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image pixels. The procedure applied to images corresponding 
to various development stages allowed obtaining a curve 
similar to that of Fig. 7, although with another scale factor. 
This scale factor was computed using a seedling taken for 
measuring. The processed image is shown below in Fig. 4. 

The original image was captured by using as background a 
standard grid sheet, which allows perform the leaf area 
compute corresponding to the cultivation at its final stage. The 
procedure was to find the correlation from mm2 to pixels, 
where it was obtained that 25mm2 are equivalent to 324 
pixels. Thus, the detected pixels quantity that belongs to the 
seedling is 34349 pixels, which belongs to 2650mm2 as well. 
This value, expressed in the MKS system is 0.00265 m2 [leaf].
This procedure was performed for a ten-seedlings sample at 
the final stage during a laboratory experimentation, obtaining 
a mean value of the leaf area equal to 0.00245m2 [leaf]. In 
order to meet the value of L in m2[leaf]m-2[soil], it is 
necessary to set the plant’s density in [plant]m-2. In this case, 
the used trays size was 0.1917m2 with a storage capacity of 
160 plants. Finally, the value of the leaf area index is 
2.05m2[leaf]m-2[soil]. The evolution of the leaf area index 
estimated by means of this procedure for three experiments, 
which is based on the acquisition and image processing is 
shown in the Fig. 7. 

IV. EXPERIMENTATION DESCRIPTION AND RESULTS

Based on the proposed methodology, the neurocontroller for 
guiding the development of the tomato seedling crop in 
greenhouse under laboratory’s climatic conditions is designed. 
The greenhouse scale model is shown in Fig. 2, where the 
used sensors and actuators are detailed. The on-line 
measurement of the system’s state is crucial with regards to 
the neurocontroller implementation. The state of the system is 
described by the dry weight and the number of leaves, as 
defines Eqns. (1)-(2). 

A. Computing the neurocontroller 

In order to design the controller for the crop-greenhouse 
system, the methodology detailed in [12] and [14] was used. 
The greenhouse environment conditions were modeled with 
the same criterion that the used in other experimentations [7]; 
[13]. Each NNs have 10 neurons at the hidden layer of 
hyperbolic tangent activation and one output neuron with 
linear activation. Namely, the approximated control law 
denoted by s,~  has the parameter vector s composed by 

WaT and WaC. The computation of the control law and the 
approximated cost-to-go function is performed by using the 
algorithm “approximate policy iteration” [4] [12] [14]. This 
algorithm tunes the coefficients of vector s and r, in the 
direction of minimizes the costs function of Eqn. (1). Once the 
calculation procedure have completed, the actions that are 
obtained by means of control law s,~  are shown in Fig. 5, 

where the internal and external greenhouse temperatures are 
also shown. Note that the CO2(t) action remains in 350ppm for 
all time. This can be explained by the disadvantageous fact 
that the windows are opened in such a way that the enrichment 
cost becomes inadequate, according to the criterion proposed 
by the cost function in the optimal control problem 
formulation [12] [14]. 

If the environment conditions shown in Fig. 5 are applied to 
the crop, its evolution will be the one that appears in Fig. 6. 
This one is an evolution in the state space, and is the expected 
system’s evolution for the experimentation. The aim of the 
experiment is that the evolution of the observed state variables 
of the cultivation be equal to that shown in Fig. 6, mainly with 
regard to the final values. The observed variables are values a 
attainable by means of the states observation system. 
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Fig. 5. Left, top: external greenhouse temperature; bottom: 
resultant evolution of the internal greenhouse temperature. Right: 
CO2 enrichment value and evolution of the control actions a(t) (if 
a(t)>0, then the action is the heater use and, if a(t)<0 then the 
action is the percentage of window opening). 

Fig. 4.  Negative of the crop’s processed image used for 
computing the leaf area index. 
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B. Obtained results 

When the guidance process has finished, the leaf area index 
evolution of the vegetal canopy is available. This data was 
measured by the system based on acquisition and image 
processing. Fig. 7 shows the time evolution of this variable, 
where —with intention of facilitate the comparison— are 
superposed the trajectories obtained by three 
experimentations. Note that it is very different to the obtained 
by previous experimentations. In Fig. 8 is the evolution of the 
crop’s appearance, whose images were processed by the 
system to obtain the values of the corresponding L. The 
relative position of the camera with respect to the cultivation 
is fixed, and the hour of the day is the same one for each 
image. 

The first characteristic that arises is the different slopes that 
exhibit the trajectories for each experiment. In the first case, 
indicated by the label “Case 1”, the slope of evolution is 
constant for all time. The cause is that the control actions were 
also constant and did not change during its evolution. 

In the second case, labeled “Case 2” in Fig. 8, the slope shows 
a change in variable evolution; given that initially it is one, 
and from approximately t=240Hr its slope decreases little, 
compared with the rate of the control action. As regards “Case 
3” –the one presented here- the evolution slope of leaf area 
index changes permanently for each sampling time. In the first 
part of the process, the slope is small. Along the process 
evolution the controller increases it until arriving to the 
desired corresponding value. This behavior for the leaf area 
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([13Pucheta et al., 2006a). 

Fig. 8.  Sequence of the appearance of the cultivation during the 
evolution of the guidance process. Top to bottom: days 5, 15 and 
20. 
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index can be explained by analyzing the greenhouse 
environment conditions, with external temperatures lower than 
expected ones, according to the model, as shown in Figure 5. 
This factor depends only on the conditions set in the 
laboratory. Physically speaking, it is essentially the action of 
turning on or off the conditioned air system that will regulate 
such conditions, depending on the decisions made by the 
personnel. Therefore, the controller tends towards correcting 
the control actions in the sense that the observed trajectories 
of the state variables tend to be match the expected 
trajectories, as in Fig. 6. 

CO2 concentration was maintained in low levels, but 
readings grater that 350 ppm were mainly caused in the 
periods when the laboratory air was not cooled. Besides, CO2

concentration increased because of human consumption of 
oxygen. By observing the used control scheme in Fig. 1, it can 
be noted that the control actions, by means of the control law, 
depend on the present state of the crop; and the controller 
generates control actions to the greenhouse actuators by mean 
of the variable a(t) of Eqn. (2). 

Note that for t=80Hr approximately, there exists a small 
disturbance in the observation, since the variables W and N 
diminish. The cause is that a power shutdown in the system 
was caused intentionally, and remained in open-loop during 
hours. Thus, the states observation system generated values 
considering the same conditions of surroundings previous to 
the cut until it was arrived at the new value corresponding to 
the present time. Thus, from t=90Hr in ahead, did not exist 
significant cuts in the electrical provision and the system was 
operated normally. 

V. CONCLUSIONS

In this paper an approximate optimal control policy was 
presented to guide the development of tomato seedlings from 
an initial to a desired state by controlling the greenhouse’s 
microclimate. In addition an indirect measuring of the 
seedlings growth state using artificial vision was presented. 
The good operation of the state observer was a fundamental 
factor to make the system really evolve in feedback operation. 
In experimentations where indirect information of the crop 
was used, —as the environment variables CO2 temperature, 
concentration and PAR radiation— there is a vulnerability of 
lose information of the states. A situation is when a strong 
disturbance arises, as it is the cut of long electrical provision, 
event that existed in the present experimentation. The observer 
in this work was introduced to supply for the lack of it noted 
in previous experiences [13]. This fact allows concluding that, 
when the information handled by the observer system is 
obtained more directly from the crop, more accurare is the 
state estimation and, consequently, the crop development 
guidance is greatly improved. Predictive control [2] could be a 
better candidate for designing the controller, which can then 

be updated by the suggested ADP technique to handle 
modeling uncertainties. 
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