
Efficient Learning in Cellular Simultaneous
Recurrent Neural Networks - The Case of Maze

Navigation Problem
Roman Ilin

Department of Mathematical Sciences
The University of Memphis

Memphis, TN 38117
E-mail: rilin@memphis.edu

Robert Kozma
Department of Mathematical Sciences

The University of Memphis
Memphis, TN 38117

E-mail: rkozma@memphis.edu

Paul J. Werbos
Room 675, National Science foundation

Arlington, VA 22230
E-mail: pwerbos@nsf.gov

Abstract— Cellular Simultaneous Recurrent Neural Networks
(SRN) show great promise in solving complex function approxi-
mation problems. In particular, approximate dynamic program-
ming is an important application area where SRNs have sig-
nificant potential advantages compared to other approximation
methods. Learning in SRNs, however, proved to be a notoriously
difficult problem, which prevented their broader use. This paper
introduces an extended Kalman filter approach to train SRNs.
Using the two-dimensional maze navigation problem as a testbed,
we illustrate the operation of the method and demonstrate its
benefits in generalization and testing performance.

I. INTRODUCTION

Modern control techniques are rooted in the concept of
dynamic programming, which allows to plan for the best
course of action in a multistage decision problem [1]. Given
a Markovian decision process with N possible states and the
immediate expected cost of transition between any two states
i and j denoted by c(i, j), the optimal cost-to-go function
for each state satisfies the following Bellman’s optimality
equation:

J∗(i) = minµ(c(i, µ(i)) + γ
N∑

j=1

pij(µ)J∗(j)) (1)

J(i) is the total expected cost from the initial state i, and
γ is the discount factor. The cost J depends on the policy µ,
which is the mapping between the states and actions causing
state transitions. The optimal expected cost results from the
optimal policy µ∗. Finding such policy directly from Eq. 1
is possible using recursive techniques but computationally
expensive as the number of states of the problem grows.
The concept of approximate dynamic programming (ADP)
refers to techniques used to estimate the exact solution to
the Bellman’s optimality equation. Neural networks are a very
useful technique which has been successfully applied to ADP,
see, e.g., [2], [3].

0The opinions expressed in this paper are of the authors and do not
necessarily reflect the views of their employers, in particular that of NSF.

Artificial neural networks, inspired by the enormous ca-
pabilities of living brains, are one of the cornerstones of
today’s field of artificial intelligence. Their applicability to
real world engineering problems has become unquestionable
in the recent decades; see for example . Yet most of the
networks used in the real world applications use the feed-
forward architecture, which is a far cry from the massively
recurrent architecture of the biological brains. The introduction
of recurrent elements makes training more difficult and even
impractical for most non-trivial cases. Nevertheless, the power
of recurrent networks for function approximation has been
proven to exceed the power of feed-forward networks [4],
[5], which means that the attempts to apply the former must
continue.

It is well-known that MLP’s and a variety of kernel-based
networks (like RBF) are universal function approximators.
However, when the function to be approximated does not live
up to the usual concept of smoothness, or when the number
of inputs becomes even larger than what an MLP can readily
handle, it becomes important to use a more general class of
neural network. The J-function that has to be approximated
in order to solve the Maze Navigation problem is extremely
challenging. Previous attempts to solve it using the MLP’s
[4] were unsuccessful thus proving that the Maze problem
and probably the ADP problems in general are beyond the
capabilities of the feed-forward networks.

We introduce Cellular Simultaneous Recurrent Neural Net-
work (SRN) architectures for solving Dynamic Programming
problems. We use the Extended Kalman Filter (EKF) method-
ology for training the net and we obtain very good training
and testing results. This is a novel computationally efficient
training methodology to the complex recurrent network archi-
tecture. Preliminary results have been presented in [6]. Our
results represent a decisive step towards making the powerful
methodology of recurrent networks suitable for numerous
practical applications. We demonstrate the applications of the
introduced method on the 2D maze problem.

324

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

II. SIMULTANEOUS RECURRENT NEURAL NETWORKS

Simultaneous recurrent neural networks are widely used in
the literature. Here the main features are summarized [2], [5].
SRN’s can be used for static functional mapping, similarly to
the MLP’s. It has been shown experimentally that an arbitrary
function generated by a MLP can always be learned by an
SRN. However the opposite was not true, as not all functions
given by a SRN could be learned by a MLP. These results
support the idea that the recurrent networks are essential in
harnessing the power of brain-like computing.

SRNs are different from more widely known time lagged
recurrent networks (TLRN) in that the input is applied over
many time steps and the output is read after the initial
transitions have died out and the network is in equilibrium
state. The concept is illustrated in Fig. 1.

0 5 10 15 20
−2

−1

0

1

n

y nt

GMLP

xt y
n
t

y
n−1
t

Fig. 1. SRN is a recurrent neural network used for static functional mapping.
The superscript t refers to the current training or testing epoch, and the
subscript n refers to the current iteration of the SRN. The network input xt

is applied over many network iterations. The output yt
n gradually converges

to a steady value which is taken to be the output of the network. An example
of the yt

n sequence is given on the graph below. Note that the core of the
SRN can be any feedforward network. In our case, it is a generalized MLP
[2].

.
Many real life problems require to process patterns that

form a 2D grid. Such problems arise in image processing,
for example, or in playing a game of chess. In such cases, the
structure of the neural network should also become a 2D grid.
The idea of cellular network is to utilize the symmetry of the
problem. If we make all the elements of the grid identical,
the resulting cellular neural network benefits from greatly
reduced number of independent parameters. The combination
of cellular structure with SRN provides a potentially very
powerful function approximator.

Training of recurrent networks can be done using back-
propagation through time. BPTT extends the classical back
propagation by ”unfolding” the recurrent network. Imagine
that instead of recurring back to themselves, the recurrent
links of the network feed forward into a copy of the same
network. Let us keep making many copies like this for 10, 20

iterations. If the network comes to steady state, the outputs
will stop changing after finite number of iterations; and so we
can stop replicating the network and say that our multilayered
feed forward network is equivalent to the original recurrent
network. It can now be trained using regular back propagation.
The only problem is that the weights in each ”layer” must
stay the same, we cannot adjust each weight independently
as we would in a MLP. Usually, weight adjustment is done
by summing up all the derivatives and making one change
corresponding to the sum. In the case of cellular SRN, the
derivatives also have to be summed over each cell of the
maze. Such summations impair the efficiency of learning.
As it was mentioned above, BPTT was successfully applied
to the maze navigation but the learning was slow [4]. We
apply Extended Kalman Filter to overcome this adaptation
convergence bottleneck.

III. EXTENDED KALMAN FILTER LEARNING METHOD

The initial idea of the improved implementation of EKF for
training SRN is given in [6]. Details of the applied method-
ology are given in a forthcoming publication. An excellent
treatment of training the neural networks with Kalman filters is
given in [7]. Important overview of neurocontrol applications
are given in [8]. Kalman filters present a computational
technique which allows to estimate the hidden state of a system
based on observable measurements. The estimation is done
iteratively, with the state estimate improved with each new
measurement. In the case of a neural network, the set of
weights becomes the state vector, and the network outputs
become the measurement vector. The EKF operates with the
following two equations.

�wt+1 = �wt + �ωt (2)

�yt = F (�wt, �ut) + �νt (3)

Equation 2 is known as the process equation. It describes
our hypothesis about how the state of the system changes
over time. In our case the ”true” weights do not change.
ωt is the process noise. Equation 3 is the measurement
equation. It represents our hypothesis about the dependency
between the hidden state of the system �wt and the observable
measurements �yt. In case of neural network, the measurements
are the outputs of the network. �νt is the measurement noise.

Neural network training using EKF results in finding the
minimum mean-squared error estimate of the state �wt using
measurements observed prior to the time t. The following
equations (4 - 7) describe the recursive algorithm.

Γt = CtKtC
T
t + Rt (4)

Gt = KtC
T
t Γ−1

t (5)

�wt+1 = �wt + Gt�αt (6)

325

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Kt+1 = Kt − GtCtKt + Qt (7)

Matrix C is the Jacobian matrix of the measurement equa-
tion 3, which is a linearized function F . K is the error
covariance matrix. It is recursively updated by equation 7. K
encodes the second derivative information. R is the process
noise covariance matrix. Q is the measurement noise covari-
ance matrix. They are the tunable parameters of the algorithm.
G is the Kalman gain matrix. α is the error vector, �αt =�̄yt−�yt.
Here,�̄yt is the desired network output.

The original Kalman filter is an exact technique for linear
systems with Gaussian process and measurement noise. The
extended Kalman filter, applied to the non-linear systems, is
already an approximation to the exact technique. The applica-
tion of the EKF to the cellular SRN introduces another level
of approximation due to the summations of the derivatives
over space dimension, similarly to BPTT. However, unlike
the direct summation in BPTT, the derivatives in the space
dimension are weighted by the matrix K.

The tunable parameters of the system are the process noise
matrix, the measurement noise matrix, and the initial error
covariance matrix. The latter is initialized to be a diagonal
matrix with diagonal elements between 0 and 0.00001. The
process noise is zero. The measurement noise matrix R has to
be annealed as the learning progresses. It turned out that the
way the measurement noise is annealed has significant effect
on the rate of convergence. After experimenting with different
functional forms we stopped on the following formula:

Rt = 0.001 ∗ log(0.001 ∗ �α2
t + 1)I (8)

Here I is the identity matrix, and �α2
t is the squared error at

time t. Making the measurement noise a function of squared
error results in fast and reliable learning. There are further
practical issues related to the implementation of EKF which
are not addressed here, Interested readers are referred to [6].

IV. EXPERIMENTAL RESULTS USING THE 2D NAVIGATION

PROBLEM

The goal of the generalized maze navigation is to find the
optimal path from any initial cell position to the goal in a 2D
grid world. An example of such a world is given in Fig. 2.
One version of an algorithm for solving this problem will take
a representation of the maze as its input and return the length
of path from each clear cell to the goal. So, for a 5 by 5 maze,
the output will consist of 25 numbers. Knowing the numbers,
it is very easy to find the optimal path from any cell by simply
following the minimum among the neighbors.

Previous results of training the Cellular SRN’s showed slow
convergence [4]. Those experiments used back-propagation
with adaptive learning rate (ALR). The network consisted of 5
recurrent nodes in each cell and was trained on up to 6 mazes.
The initial results demonstrated the ability of the network to
learn the mazes.

The introduction of EKF significantly speeded up the train-
ing of the Cellular SRN. In the case of single maze, the

X

Fig. 2. An example of a 5 by 5 maze. X is the goal. Black cells are obstacles
and white cells are clear. The walls around the maze make its size 7 by 7.

network reliably converges within 10-20 epochs. In compar-
ison, Back-propagation through time with adaptive learning
rate (ALR) takes between 500 and 1000 iterations and it is
sensitively dependent on the initial network weights [4]. We
found that increasing the number of recurrent nodes from 5
to 15 allows to speed up both EKF and ALR training in case
of multiple mazes. Still, EKF has a clear advantage as will be
described below.

We introduce the measure of goodness of navigation
achieved with the trained network. The gradient of the J
function gives the direction of the next move. As an example,
Fig. 3 shows the J function computed by a network and the true
J function. We count the number of correct gradient directions.
The ratio of the number of correct gradients to the total number
of gradients is our goodness ratio G that can vary from 0 to 1.
Following this definition, a randomly generated network will
result in G ≈ 0.5, i.e., there is 50% chance of the correct
direction between two neighboring cells. If we use G = 0.5
as the base line, the ratio R = (G − 0.5)/0.5 indicates the
improvement of the solution over the base line.

As we increase the number of training mazes, the gener-
alization capability of our network improves. The following
figures (Fig. 4, 5, 6) show the goodness percentage G during
the first 100 training steps, where training is done on 5,10,
and 20 mazes. We can see that with few mazes the EKF
training reaches high level of G very fast however the testing
G remains low indicating that the network does not generalize
well. As the number of mazes increases, the testing G begins
to improve. For comparison, the training and testing results of
ALR are shown on the same graph.

We noticed that we have to use between 25 and 30 training
mazes in order to have the testing error close to the train-
ing error indicating good generalization. Accordingly we ran
experiments with 25 through 30 training mazes. For each
experiment we generated random mazes with 6 obstacles.
We randomly initialized the SRN. Then we train the same

326

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

5.2376 4.4369 24.9115 0.20941 3.9083

25.0116 4.225 24.7395 3.0374 25.0179

4.7032 3.8508 3.9237 3.9972 4.4999

4.9287 24.9163 4.1263 4.2225 5.5747

5.9735 24.9271 4.4993 4.8302 5.7986

1 2 3 4 5 6
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

7 6 25 0 1

25 5 25 1 25

5 4 3 2 3

6 25 4 3 4

7 25 5 4 5

Fig. 3. Comparison of the solution given by the network and the true solution. The dotted arrows point in the wrong direction. Not all arrows are shown to
avoid overcrowding.

0 10 20 30 40 50 60 70 80
35

40

45

50

55

60

65

70

75

80

Training Step

G
oo

dn
es

s
of

 N
av

ig
at

io
n,

 %

Fig. 4. Goodness of navigation ratio during the first 100 training steps.
Training is on 5 mazes and testing is also on 5 mazes. Solid line - EKF
training , dotted - EKF testing , dashed - ALR training , dash-dotted - ALR
testing.

network with EKF and with ALR for 100 epochs. The results
of experiments follow a similar pattern shown in Fig. 7 and
8.

The Kalman filter achieves good level of G very fast. The
ALR is learning slowly and there is practically no improve-
ment during the 100 steps. Notice that the testing error in the
given example is smaller that the training error. This means
that at this level of training error the solution is not meaningful
at all. Not so with EKF which achieves the level of error
identifiable with good solution.

The version of EKF used in these experiments is prone to
divergence. After achieving good level of G the solution may
deteriorate.Such phenomenon should be avoided in the future
by use of more advanced EKF techniques. Nevertheless, even
our straightforward implementation of EKF shows great im-
provement over ALR. The average values of R for 25 through
30 mazes are plotted in Fig. 9. We can see that the EKF
consistently solves the problem to a certain meaningful level

0 20 40 60 80 100
25

30

35

40

45

50

55

60

65

70

75

Training Step

G
oo

dn
es

s
of

 N
av

ig
at

io
n,

 %

Fig. 5. Goodness of navigation ratio during the first 100 training steps.
Training is on 10 mazes and testing is also on 10 mazes. Solid line - EKF
training , dotted - EKF testing , dashed - ALR training , dash-dotted - ALR
testing.

as opposed to ALR consistently solving the maze problems
typically not much higher than the chance level.

V. CONCLUSIONS AND FUTURE RESEARCH

We use Extended Kalman Filters for training cellular SRNs.
We obtain good training and testing results which are typically
much better than alternative methods, i.e., as backpropagation
with adaptive learning rate. Training with EKF quickly ap-
proaches 80% correct performance rate after less than 100
iteration steps. The same network trained with ALR usually
does not achieve correctness larger than 0.6 in 100 iterations,
and may take 10 times as long training or more to achive
the preformance level of EKF. Moreover, ARL training is
often stuck stuck in a local minimum. Our results represent a
significant step towards establishing the powerful methodology
of simultaneous recurrent networks suitable for numerous
practical applications. This may help the proliferation of SRN
method to new application areas in the future.

327

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

0 20 40 60 80 100
10

20

30

40

50

60

70

80
G

oo
dn

es
s

of
 N

av
ig

at
io

n,
 %

Training Step

Fig. 6. Goodness of navigation ratio during the first 100 training steps.
Training is on 20 mazes and testing is also on 20 mazes. Solid line - EKF
training , dotted - EKF testing , dashed - ALR training , dash-dotted - ALR
testing.

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Training Step

S
um

 S
qu

ar
ed

 E
rr

or

Fig. 7. Sum Squared error during the first 100 training steps. Training is on
29 mazes and testing is also on 29 mazes. Solid line - EKF training error,
dotted - EKF testing error, dashed - ALR training error, dash-dotted - ALR
testing error.

The biological plausibility of the Cellular SRN can be
further improved by the introduction of spatial and temporal
discount functions. Currently only the direct neighbors provide
input to a node. Spatial discount means the introduction of
long range neighboring connections with discounting factor
depending on the distance between the neighbors. Temporal
discount means introducing the discounting factor into the
summation of back propagation derivatives.

Spatio-temporal discount functions will likely play an im-
portant role of the solution of mixed forwards-backwards
stochastic differential equations. Such models are useful in
optimal control, time series prediction, and other fields. They
may match or exceed the capabilities of Dual Heuristic pro-
gramming related to the Pontryagin equation [2], [9], [10],
[3]. These issues are the topic of ongoing studies and will be

0 10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

70

75

80

Training Step

G
oo

dn
es

s
of

 N
av

ig
at

io
n,

 %

Fig. 8. Goodness of navigation ratio during the first 100 training steps.
Training is on 29 mazes and testing is also on 29 mazes. Solid line - EKF
training , dotted - EKF testing , dashed - ALR training , dash-dotted - ALR
testing.

25 26 27 28 29 3030
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Training Mazes

A
ve

ra
ge

 G
oo

dn
es

s
of

 N
av

ig
at

io
n

Fig. 9. Comparison of average improvement ratio R of EKF and ALR
training of Cellular SRN over the first 100 training steps. Each point is the
average of 5 experiments. Plus is EKF and diamond is ALR.

introduced in future reports.

VI. ACKNOWLEDGEMENTS

Valuable discussions with Danil Prokhorov are greatly ap-
preciated.

REFERENCES

[1] S. Haykin, Neural Networks, A Comprehensive Foundation, Pearson
Education, Inc., 1999.

[2] D.A. White and D.A. Sofge, Handbook of Intelligent Control Neural,
Fuzzy, and Adaptive Approaches, ch. 3, Van Nostrand Reinhold, 1992.

[3] D. Prokhorov and D. Wunsch, “Adaptive critic designs,” IEEE Trans.
on Neural Networks, vol.8, pp.997–1007, 1997.

[4] P.J. Werbos and X. Pang, “Generalized maze navigation: Srn critics
solve what feedforward or hebbian cannot,” Proc. Conf. Systems, Man,
Cybernetics, 1996.

328

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

[5] G.K. Venayagamoorthy and G. Singhal, “Quantum-inspired evolutionary
algorithms and binary particle swarm optimization for training mlp
and srn neural networks,” Journal of Computational and Theoretical
Nanoscience, vol.2, pp.1–8, 2005.

[6] R. Ilin, R. Kozma, and P.J. Werbos, “Cellular srn trained by extended
kalman filter shows promise for adp,” Proc. World Congress on Com-
putational Intelligence WCCI06, 2006.

[7] S. Haykin, ed., Kalman Filtering and Neural networks, John Wiley and
Sons, Inc., 2001.

[8] D. Prokhorov, R. Santiago, and D. Wunsch, “Adaptive critic designs: A
case study for neurocontrol,” Neural Networks, vol.8(9), pp.1367–1372,
1995.

[9] P.J. Werbos, Origins: Brain and Self-Organization, ch. Self-organization:
re-examining the basics and an alternative to big bang, Erlbaum, 1994.

[10] W.J. Freeman, R. Kozma, and P. Werbos, “Biocomplexity: adaptive
behavior in complex stochastic dynamical systems,” BioSystems, vol.59,
pp.109–123, 2001.

329

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

