
Q-LEARNING WITH CONTINUOUS STATE SPACES AND FINITE DECISION SET

KENGY BARTY, PIERRE GIRARDEAU, JEAN-SÉBASTIEN ROY AND CYRILLE STRUGAREK

EDF R&D
1, avenue du Général de Gaulle
92141 Clamart Cedex, France.

Abstract. This paper aims to present an original
technique in order to compute the optimal pol-
icy of a Markov Decision Problem with contin-
uous state space and discrete decision variables.
We propose an extension of the Q-learning algo-
rithm introduced in 1989 by Watkins for discrete
Markov Decision Problems. Our algorithm relies
on stochastic approximation and functional esti-
mation, and uses kernels to locally update the
Q-functions. We state under mild assumptions a
converge theorem for this algorithm. Finally, we
illustrate our algorithm by solving two classical
problems: the Mountain car Task and the Puddle
World Task.

I. Introduction

In a Markov Decision Problem (MDP), an agent wanders in a
Markovian environment and tries to minimize its expected long-
term reward (or to minimize its long-term cost), by performing
actions that only have to depend on the current state.

Simple examples of MDPs are concerned with leading an agent
moving on a surface to a certain goal in shortest time, when
its trajectory may be affected by some sort of deterministic or
stochastic process (wind for example). More complicated tasks
may be written using the mathematical model of MDPs, such as
controlling an hydro-power plant that has to satisfy a demand
over a certain period of time, while minimizing the cost of the
thermal power production if the hydro-power plant cannot supply
the demand completely.

Dynamic programming is a powerful methodology for dealing
with sequential decision making problems under uncertainty like
MDPs. In the case of a continuous state space, the usual ap-
proach is to discretize the state space and to apply recursively
the Bellman operator. This discretization usually leads to very
large state spaces, and is known as the curse of dimensionality.
An additional complexity arises in the stochastic case, since the

conditional expectation appearing in the Bellman equation must
also be approximated through a discretization of the dynamics.

However, in the MDP setting, reinforcement learning combined
with the theory of dynamic programming led to very efficient al-
gorithms in the case of a discrete state space, via the TD(λ)
algorithm of Sutton [15] and the Q-learning algorithm of Watkins
[18]. Moreover, it is proved that Q-learning (cf. [18, 19, 9]) and
TD(λ) (cf. [17, 8]) algorithms converge with probability one.

Unfortunately, in the case where the state space is continuous,
discretizing can only lead to near-optimal solutions. Ormoneit
and Sen [12] or Glynn [11] recently proposed to estimate the
value functions using non-parametric regression methods, such as
kernel-based methods. They showed that their algorithm could be
applied even when classical algorithms based on discretization of
the state space failed to converge. A major drawback is that the
method is not recursive: it approximates the value function using
estimation points, and when one wants to increase the number of
estimation points, the previous estimate cannot be used to derive
the new one.

We present an algorithm that extends Q-learning to the case
of a continuous state space, by using local updates with kernels to
estimate the value functions. Our method is recursive and non-
parametric. The characteristic of a recursive method is the possi-
bility to increase the accuracy of the approximation by a simple
update of the previous value. It is based on stochastic approxima-
tion (see [13], or [10] for an historical survey of these techniques).
Since we avoid the space discretization, our method leads to the
optimal solution of the original problem. Moreover, it is conve-
nient from a practical point of view since it avoids discretizing the
dynamics.

E-mail address: jean-sebastien.roy@edf.fr, kengy.barty@edf.fr.

346

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

Ormoneit and Sen’s algorithm [12] differs from our since it is not
recursive, therefore it requires to set a priori finite collection of
kernels and then iteratively apply their estimate of the Bellman
operator in order to obtain an approximation. Their main result
ensures that approximation converges in probability to the true
Bellman function as the cardinal of kernels increases. On the con-
trary we do not compute directly from a set of historical outcomes
but we improve our estimate of the Bellman function as new data
are observed.

In section II, we present the Q-learning formulation. Afterward
we introduce the Q-learning algorithm, which is closely related to
our proposed method. In the same section, we present our kernel
method and state a theorem that summarizes the properties of our
algorithm. Then, in section IV, we solve the mountain car task,
compare with Jong’s results [9] and show how the proposed algo-
rithm is efficient in this case. We also address the Puddle World
Task which involve random variables.

II. Theoretical Framework

II.1. The Q-learning formulation. Let (Ω,F , P) be a proba-
bility space, all random variables are supposed to be defined from
Ω onto another measurable space. If G is a random variable, its
probability distribution is denoted PG. Let us consider an optimal
control problem with a finite set of decision and dates {0, 1, . . . , T}.
The uncertainties W are supposed to be independent random vari-
ables (Wj)1≤j≤T with values in Rm. Let (Xj)1≤j≤T be the con-

trolled random process with values in S ⊆ Rd defined by:

Xj+1 = fj (Xj , γj (Xj) , Wj+1) ,∀j ∈ {0, . . . , T − 1},

with: γj : S → Uad
j the decision rule.

We denote by Lj (Xj , γj (Xj) , Wj+1) the cost at state Xj , when
action γj (Xj) is taken, and uncertainty Wj+1 occurs. We also con-
sider a cost at final time denoted G (XT). Our aim is to minimize
the expected global cost, starting from a state X0 ∈ S, i.e.:

(1)

V ∗
0 (X0) = min

(γj)
E

"
T−1X
j=0

Lj (Xj , γj (Xj) , Wj+1) + G (XT)

˛̨̨̨
˛X0

#
,

with γj : S → Uad
j , ∀j = 0, . . . , T.

Now let us note V ∗
j (x) the expectation of the future cost under

the optimal policy, starting from state x at time j. Equation (1)
can be rewritten as a dynamic programming equation, let x ∈ S:

(2)8>><>>:
V ∗

j (x) = min
u∈Uad

j

E
ˆ
Lj (x, u, Wj+1) + V ∗

j+1 (fj (x, u, Wj+1))
˜
,

V ∗
N (x) = G(x),

We now present the Q-learning counterpart of equation (2). Let
us denote by Q∗

j (x, u) the expectation of the future cost starting
from state x and taking action u at time j. We have the following
relation between Q∗

j and V ∗
j+1 valid for j = 1, . . . , T − 1:

Q∗
j (x, u) = E

ˆ
Lj (x, u, Wj+1) + V ∗

j+1(fj(x, u, Wj+1))
˜
.

Moreover, Q∗
j can be derived from Q∗

j+1 as follows:

Q∗
j (x, u) = E

"
Lj (x, u, Wj+1) + min

v∈Uad
j+1

Q∗
j+1 (fj (x, u, Wj+1) , v)

#
,

Q∗
N (x, u) = G(x), ∀x ∈ S.

Preceding equations can be seen as a fixed point equation on
Q∗ = (Q∗

t)0≤t≤T .

II.2. The Q-learning algorithm. We now consider the feasible
decision sets

`
Uad

j

´
j=0,...,T

to be finite. At this step, the policy

γj at each time j is still a mapping from the state space S onto
the feasible decision set Uad

j . The classical Q-learning approach
[16, 19, 17, 8] applies in the case where the state space S is discrete
and not too large.

In order to estimate Q∗
j (x, u), the Q-learning algorithm uses

the following update rule:

Qk+1
j (x, u) = Qk

j (x, u) + ρk ∆k+1
j (x, u) , ∀ (x, u) ∈ S × Uad

j ,

∆k+1
j (x, u) = Lj

“
x, u, W k+1

j+1

”
+ min

v∈Uad
j+1

Qk
j+1

“
fj

“
x, u, W k+1

j+1

”
, v

”
−Qk

j (x, u) ,

and W k
j is a realization of the process Wj . Note that at each

iteration the update is performed for every state and action (x, u),
and each time step.

Instead of updating Qk
j for every state and action (x, u), Sutton

[15] proposed to randomize this operation by drawing realizations
Xk

j of the random variable Xj .

II.3. Q-learning with kernels. Let (Uad
j ,P(Uad

j), πj) be a prob-
ability space. Henceforth we will suppose we have always
(Uad

j ,P(Uad
j), πj) = (Uad,P(Uad), π). We propose an alterna-

tive approach that is non-parametric and avoids any a priori dis-
cretization of the state space. However, decision space Uad is still
assumed discrete. The finite decision space Uad is randomly ex-
plored along the iterations as well by drawing possible decisions u
according to probability π.

Our algorithm reads as follows:

Algorithm II.1. Initialize Q0
j to 0 for all j ∈ {0, . . . , T − 1},

Step k ≥ 0:

• Draw Xk
0 according to X0 independently from the past

samples,
• draw

`
W k

j

´
1≤j≤T

according to the probability distribution

of the random variable (W1, . . . , WT) independently from
the past samples,

• draw Uk =
`
Uk

j

´
0≤j≤T−1

according to the probability dis-

tribution π⊗T independently from the past samples,
• finally compute Xk =

`
Xk

j

´
1≤j≤T

according to:

Xk
j+1 = fj

“
Xk

j , Uk
j , W k

j+1

”
.

347

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

• Update the value functions Qk
j :8>>>>>>><>>>>>>>:

Qk
T (x, u) = G(x), ∀x, u,

...

Qk
j (·, ·) = Qk−1

j (·, ·) + ρk−1 ∆k
j Kk−1

j (Xk
j , Uk

j , ·, ·),
...

Qk
0(·, ·) = Qk−1

0 (·, ·) + ρk−1 ∆k
0 Kk−1

0 (Xk
0 , Uk

0 , ·, ·),

where, for all j = 0, . . . , T − 1, ∆k
j = ∆k

j (Xk
j , Uk

j).

Functions Kk
j are kernels, a typical choice for these mappings

is the Gaussian kernel:

(3) Kk
j (x, u, x′, u′) =

8<: e
−

‚‚‚‚ x−x′

ηk

‚‚‚‚2

if u = u′,
0 otherwise.

where ηk → 0 when k → +∞.
Since we draw the decision u independently from the number

of iterations k, Xj follows a law of probability that is independent
of k. Thus, we can define the following inner products and norms
where µj = PXj ⊗ π and µj = PWj ⊗ PXj ⊗ π:

〈g, h〉µj
= E

264card(Uad
j)X

i=1

πuig (Xj , ui) h (Xj , ui)

375 ,

‖e‖2
νj

= E
h
〈e (fj−1 (·, ·, Wj)) , e (fj−1 (·, ·, Wj))〉µj−1

i
,

Moreover, we introduce:

vk
j (x) ∈ arg min

v∈Uad
Qk

j (x, v) ,

and:

rk
j (x, u) = Ek

h
∆k+1

j (x, u)
i
.

Finally, we denote by V k
j (x) = min

u∈Uad
Qk

j (x, u) the k-th approx-

imation of the Bellman function on x.

Theorem II.1. If minu∈Uad π(u) > 0 and if for all j ∈ {0, . . . , T},
there exists bj ∈ R such that:

(4)‚‚‚‚rk
j (·, ·)− Ek

»
rk

j (Xk+1
j , Uk+1

j)
1

εk
Kk

“
Xk+1

j , Uk+1
j , ·, ·

”–‚‚‚‚
µj

≤

bjε
k(1 + ‖rk

j ‖µj),

(5) Ek

»‚‚‚Kk
“
Xk+1

j , Uk+1
j , ·, ·

”‚‚‚2

µj

–
< εk,

(6)
X
k∈N

(ρk)2εk < ∞,
X
k∈N

ρk(εk)2 < +∞,
X
k∈N

ρkεk = +∞,

where εk = (ηk)d and ηk is the bandwidth of the kernel. Then
Q-functions Qk

j defined by Algorithm II.1 converge a.s., when
k → +∞, to the solution.

The proof of the theorem II.1 can be found in [2] and follows
from the general result published in [4]. Indeed, the algorithm
II.1 is a perturbed sub-gradient algorithm and can be written as
follows:

Qk+1 = Qk + ρkεk(sk + wk),

where sk
j = rk

j and wk is defined by:

wk
j = ∆k

j
1

εk
Kk(Xk

j , Uk
j , ·, ·)− rk

j .

The vector sk is a descent direction for the Lyapunov function
L(Q) = 1

2

PT
j=1 ‖Qj−Q∗

j‖2
µj

. We then need that the perturbation

wk satisfies some statistical assumptions in order to guarantee the
convergence of the algorithm. When the state space is finite the
perturbation is generally assumed to be a martingale difference, so
its conditional expectation with respect to the past perturbations
is equal to zero. Since we suppose that the state space could be
continuous we can only make the assumption that wk is asymp-
totically a martingale difference. This hypothesis is translated
into the theorem II.1 by assumption (4). Assumption (5) on the
second order moment of the kernel function prevent the perturba-
tion wk to disturb to much the descent direction estimation. The
stepsize relations (6) are quite classical in stochastic optimization.
Remember that εk is directly linked with the bandwidth of the
kernel, and ρk is the size of the step performed by the algorithm
in the estimated descent direction. The stepsize relations express
that:

• the sequence (ρk)k∈N locally satisfies the properties re-
quired for classical open-loop stochastic gradient algo-
rithm [5],

• the sequence (εk)k∈N converges to zero, so that our kernels
approximation converges to the true Bellman function.

We have considered a finite horizon problem therefore we don’t
need to rely on the existence of an invariant probability distribu-
tion of the state variable X in order to prove either the existence
of a solution for the dynamic equation or to implement our algo-
rithm. Nevertheless, under similar assumptions, our methodology
can also be applied to infinite horizon or free terminal time prob-
lems. Concerning the drawings of the different random variables
the only restriction is to compute or to observe Xk

j+1 according

to its conditional probability distribution knowing state Xk
j and

action Uk
j .

III. Practical discussion and implementation details

In this section, we discuss the techniques useful for a practical
implementation of our algorithm.

III.1. Numerical complexity. At each step of algorithm II.1,
the Qk

j functions are weighted sums of kernels, and therefore are

completely characterized by the centers (Xk+1
j , Uk+1

j), the band-

widths, and the weights ρk
j ∆k+1

j of the kernels, i.e.:

Qk+1
j (·, ·) =

kX
l=0

ρl∆l+1
j Kl

j(X
l+1
j , U l+1

j , ·, ·).

348

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

The numerical complexity of the algorithm is therefore determined
by the number of operations required to evaluate and update the
functions Qk

j .
While the algorithm can be easily implemented by storing the

required coefficients as a list, the computational complexity would
be quadratic in the number of iterations, since the number of ker-
nels grows linearly with the number of iterations. In practice, the
use of the Fast Gauss Transform techniques of [7], enables us to
compute and update the Qk

j functions in almost constant time, so
that the numerical complexity of the algorithm is effectively lin-
ear in the number of iterations. The amount of storage required
by Fast Gauss Transform is also only a function of the required
precision. Nevertheless, even recent improvements of these tech-
niques (see, e.g, [20]) do not scale well with the dimension, so that
the naive implementation might be the most efficient for a limited
amounts of iterations, and a number of dimensions greater than,
say, 5.

Remark also that the complexity is difficult to compare in itself
with other, non-recursive learning algorithms. Contrarily to most
regression based learning algorithms, the coefficients of the ker-
nel sum are not globally optimized: each kernel is added without
updating the weights of the previous kernels.

III.2. On-policy control drawings. For the efficient use of this
algorithm, a question remains open: how to draw policies effi-
ciently ? The only condition we need for convergence is that every
possible policy shall be selected infinitely often. In the conver-
gence proof this condition is written as minu∈Uad π(u) > 0. There
are two classical approaches to ensure this, which are often called
on-policy methods and off-policy methods.

Off-policy methods do not take into account the growth of our
knowledge of the Q-functions along the iterations. They typically
consist in choosing a priori distribution of the policies to be tested
all along the iterations.

On the contrary, on-policy methods aim at selecting more and
more policies that seem relevant according to our knowledge of
the Q-functions at the current iteration. However, to ensure con-
vergence, we shall still sometimes test policies at random. This is
what practitioners call soft on-policy control methods.

We choose to test policies in a α-greedy way, which is an exam-
ple of soft on-policy method [16, section 5.4]. In most cases (with
probability 1− α), we choose the optimal policy according to our
estimate of the Q-functions at the current step, i.e. we choose
u ∈ arg minv∈Uad

j
Qk

j (x, v). However, to ensure the convergence of

the algorithm, we draw random policies with probability α.
This technique allows the algorithm to explore the areas where

policies seem to be optimal more often.

III.3. On-policy step-sizes. Another way to improve the com-
putational abilities of our approach is to develop adequate pro-
cedures to fit the stepsizes. It is worth noting that stochastic
algorithms are very sensitive to their choice. In [3], the authors
propose a heuristic to fit, at iteration k +1, the steps εk and ρk

j in

as a function of the current state Xk+1
j and decision Uk+1

j . The
idea is the following. The Qj function will be updated around

(Xk+1
j , Uk+1

j), in a neighborhood defined by εk, and with an in-

tensity ρk
j . The next time we fall in this neighborhood, we may

want to have a new neighborhood and a new intensity only slightly
lower than the preceding ones, since the samples between those
two steps did not contribute to the Qj function in this neighbor-
hood. We hence propose an adaptive way to fit the stepsizes to
the state-decision pair. Let us use sequences defined separately
for each j ∈ {0, . . . , T}, i.e., (εk

j) and (ρk
j). εk

j and ρk
j will be used

to update the Qj function. Using these sequences, let us define
iteratively for all k ∈ N and all j ∈ {0, . . . , T}, the mappings
fk

j : S × Uad
j → R by:

fk
j (·, ·) =

k−1X
l=0

1

εl
j

Kl
j(X

l+1
j , U l+1

j , ·, ·).

Hence, for all k ∈ N and all j ∈ {0, . . . , T}, fk
j /k can be consid-

ered as an approximation of the density function of the drawings
(Xj , Uj). Let us now define for all k ∈ N and all j ∈ {0, . . . , T},
gk

j = bfk
j (Xk+1

j , Uk+1
j)c. The larger is gk

j , the more the neighbor-

hood of (Xk+1
j , Uk+1

j) has been explored in the past steps. Then,

one can choose the next stepsizes ρk
j and εk

j accordingly. Practi-

cally, one chooses two nonnegative sequences (θk
ρ) and (θk

ε) which
satisfy assumption (6), and one defines iteratively:

∀k ∈ N, ∀j ∈ {0, . . . , T}, εk
j = θ

gk
j

ε , and, ρk
j = θ

gk
j

ρ .

In many cases, (εk
j) and (ρk

j) will satisfy assumption (6), but since

εk
j and ρk

j depend on (Xk+1
j , Uk+1

j), i.e., are, in one sense, antici-
pative, we fail to prove that this heuristic leads to the convergence
of algorithm II.1.

To sum up, our idea is to ensure that the stepsizes decrease
according to the frequency each neighborhood has been explored.
Therefore, rarely explored regions should have a slower decreasing
speed for the corresponding window sizes and depths, and vice
versa for frequently visited regions.

III.4. On the curse of dimensionality. Beside the computa-
tion time limitations, we can also have a look at the dimensional
limitations of our approach. Intuitively, our algorithm will take
longer when the dimension of the state space will increase. As-
sumption (4) links the bandwidth of the kernel with the step size
εk. In the case of Gaussian kernels (see eq. (3)) of bandwidth

ηk, assumption (4) typically implies that εk ≈
`
ηk

´d
, where d is

the dimension of the state space. Therefore, in a high dimensional
setting, the bandwidth will be required to decrease very slowly
to ensure enough exploration of the state space by the drawings,
before finer details of the Q functions are estimated using kernels
of small bandwidths.

IV. Numerical applications

In this section we consider two classical numerical applications
of our algorithm, one, the Mountain Car Task [16, example 8.2],
being deterministic, and the other, the Puddle World Task [14],
being slightly stochastic. Numerical applications of this algorithm
on highly stochastic option pricing problems are discussed by the
authors in [1].

349

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Numerical applications follow the framework described in [6] so
that results can be directly compared with, e.g., those published
in [9].

IV.1. The Mountain Car Task. Consider the task of driving
an underpowered car up a steep mountain road [16, example 8.2].
The difficulty is that gravity is stronger than the car’s engine, and
even at full throttle the car cannot accelerate up the steep slope.
The car has to move away from the goal until it has enough inertia
to carry it up forward the steep slope even though it is slowing
down the whole way. This is a simple example of a continuous con-
trol task where things have to get worse in a sense (farther from
the goal) before they can get better. Many control methodologies
have great difficulties with tasks of this kind unless explicitly aided
by a human designer.

There are three possible actions: full throttle forward (+1),
full throttle reverse (−1), and zero throttle (0). The car moves
according to a simplified physics. Its position, xt, and velocity, ẋt,
are updated by

xt+1 = bound [xt + ẋt+1] ,(7)

ẋt+1 = bound [ẋt+1 + 0.001at − 0.0025 cos (3xt)] ,(8)

where the bound enforces −1.2 ≤ xt+1 ≤ 0.5 and −0.07 ≤ ẋt+1 ≤
0.07. When xt+1 reaches the left bound, ẋt+1 is reset to zero.
When it reaches the right bound, the goal is reached and the
episode is terminated. Each episode starts from a random po-
sition and velocity uniformly chosen from its feasibility ranges.

To clarify, let us introduce the state variable st = (xt, ẋt). The
problem can thus be written as a minimization problem:8>>>>><>>>>>:

min
T∈N,(at)t≤T∈{−1,0,1}T+1

T

st+1 = f (st, at) ,
s0 = s,
sT = S∗,

where T denotes the arrival time, S∗ denotes the goal area and f
denotes the transportation equations (7). Then we introduce the
mapping Q defined by:

Q (s, a) =

(
1 + min

a′
Q

`
f (s, a) , a′

´
if s /∈ S∗,

0 if s ∈ S∗.

Then the update in the algorithm can be summed up as follows:

Qk+1 (·, ·) = Qk (·, ·) + ρk
j ∆k+1Kk

j

“
sk+1, ak+1, ·, ·

”
,

with:

∆k+1 =

8>><>>:
»
1 + min

a′
Qk

“
f

“
sk+1, ak+1

”
, a′

”–
−Qk

`
sk+1, ak+1

´
if sk+1 /∈ S∗,

0−Qk
`
sk+1, ak+1

´
otherwise.

The algorithm randomly tries all possible strategies and up-
dates the expected time left to the goal by being at state sk and
applying control ak.

Our implementation makes use of the on-policy drawings and
stepsizes described in subsections III.2 and III.3. Greediness is

fixed at α = 0.1. The sequences (εk
j) and (ρk

j) (or in the case

of the on-policy stepsizes (θk
ρ) and (θk

ε)), are chosen to be of the
form:

ρk
j =

1

aρ + bρk−cρ
, εk

j =
1

aε + bεk−cε
,

with aρ, bρ, cρ, aε, bε and cε appropriately chosen constants to sat-
isfy assumption (6). The constants are chosen empirically using
independent trials. Each episode is limited to at most 300 steps.

We reproduce the benchmarks used in Jong and Stone [9]. The
first curve on the left on figure 1 represents the number of steps re-
quired to reach the goal, averaged over 50 starting points (random
position, and zero velocity) defined at the beginning of the algo-
rithm and used cyclically for each episode. The second curve on
the left represents the number of steps required to reach the goal,
averaged of 50 independent trials, for which the episodes start us-
ing a random position and a zero velocity. We observe that after
about 50 episodes, the strategy is nearly optimal.

The performance of our algorithm and the one presented by
Jong and Stone in [9] seem similar.

IV.2. The Puddle World Task. In the Puddle World Task de-
scribed in [14], an agent starting randomly in a square has to reach
one of the corners while avoiding two oval puddles. The state of
the agent is represented by its coordinates (x, y) ∈ [0, 1]2. There
are four possible actions: up, down, right, and left, which moves
the agent 0.05 in the corresponding direction, with independent
Gaussian noises of standard deviation 0.01 added to both x and
y. The reward is -1 for each step, plus a penalty if either or both
of the two puddles are entered, equal to -400 times the distance
into the puddle, i.e., the distance to the nearest edge. The pud-
dles extend with radius 0.1 from two line segments: (0.1, 0.75) to
(0.45, 0.75) and (0.45, 0.4) to (0.45, 0.8). The goal region is defined
by x + y ≥ 2× 0.95.

Similarly to the previous example, the first curve on the right
on figure 2 represents the number of steps required to reach the
goal, averaged over 50 starting points (random position) defined
at the beginning of the algorithm and used cyclically for each
episode. The second curve on the right represents the number of
steps required to reach the goal, averaged of 50 independent trials,
for which the episodes start using a random position. We observe
that after about 25 episodes, the strategy is nearly optimal. As
for the mountain car task, the performance of our algorithm and
the one presented by Jong and Stone in [9] seem similar.

350

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

S
te

p
s

p
er

 e
p
is

o
d
e

Episodes

Average over 50 episodes

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

S
te

p
s

p
er

 e
p
is

o
d
e

Episodes

Average over 50 independent trials

Figure 1. Learning curves for Mountain Car

References

[1] K. Barty, P. Girardeau, J.-S. Roy, and C. Strugarek. Application of
kernel-based stochastic gradient algorithms to option pricing. submitted
to Monte Carlo Methods and Applications, 2005.

[2] K. Barty, P. Girardeau, J.-S. Roy, and C. Strugarek. A Q-learning al-
gorithm with continuous state space. submitted to Journal of Machine
Learning Reasearch, 2006.

[3] K. Barty, J.-S. Roy, and C. Strugarek. A stochastic gradient type algo-
rithm for closed loop problems. submitted to Mathematical Program-
ming, 2005.

[4] K. Barty, J.-S. Roy, and C. Strugarek. Hilbert-valued perturbed subgra-
dient algorithms. 2006. accepted for publication in Math of Operation
Research.

[5] D.P. Bertsekas and J.N. Tsitsiklis. Gradient convergence in gradient
methods. SIAM J. Optim., 10(3):627–642, 2000.

[6] A. Dutech, T. Edmunds, J. Kok, M. G. Lagoudakis, M. Littman,
M. Riedmiller, B. Russell, B. Scherrer, R. Sutton, S. Timmer, N. Vlas-
sis, A. White, and S. Whiteson, editors. Reinforcement learning bench-
marks and bake-offs II, 2005.

[7] L. Greengard and J. Strain. The fast gauss transform. SIAM Journal
on Scientific and Statistical Computing, 12(1):79–94, 1991.

[8] T. Jaakkola, M.I. Jordan, and S.P. Singh. Convergence of stochastic
iterative dynamic programming algorithms. In Jack D. Cowan, Gerald
Tesauro, and Joshua Alspector, editors, Advances in Neural Informa-
tion Processing Systems, volume 6, pages 703–710. Morgan Kaufmann
Publishers, Inc., 1994.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800 900 1000

S
te

p
s

p
er

 e
p
is

o
d
e

Episodes

Average over 50 episodes

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450 500

S
te

p
s

p
er

 e
p
is

o
d
e

Episodes

Average over 50 independent trials

Figure 2. Learning curves for Puddle World

[9] N.K. Jong and P. Stone. Kernel-based models for reinforcement learn-
ing. The ICML-2006 Workshop on Kernel Methods in Reinforcement
Learning, June 2006.

[10] T.L. Lai. Stochastic Approximation. Ann. Stat., 31(2):391–406, 2003.
[11] D. Ormoneit and P. Glynn. Kernel-based reinforcement learning in

average-cost problems: An application to optimal portfolio choice. In
NIPS, pages 1068–1074, 2000.

[12] D. Ormoneit and S. Sen. Kernel-based reinforcement learning. Technical
Report TR 1999-8, Statistics, Stanford University, 1999.

[13] H. Robbins and S. Monro. A stochastic approximation method. Annals
of Mathematical Statistics, 22:400–407, 1951.

[14] R. S. Sutton. Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In David S. Touretzky, Michael C.
Mozer, and Michael E. Hasselmo, editors, Advances in Neural Informa-
tion Processing Systems, volume 8, pages 1038–1044. The MIT Press,
1996.

[15] R.S. Sutton. Learning to predict by the method of temporal difference.
IEEE Trans. Autom. Control, 37:332–341, 1988.

[16] R.S. Sutton and A.G. Barto. Reinforcement Learning, an Introduction.
MIT press Cambridge, 1998.

[17] J.N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning.
Machine Learning, 16:185–202, 1993.

[18] C. Watkins. Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, 1989.

[19] C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279–292,
1992.

[20] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis. Improved fast
gauss transform and efficient kernel density estimation. IEEE Interna-
tional Conference on Computer Vision, pages 464–471, 2003.

351

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

