
Sparse Temporal Difference Learning Using LASSO
Manuel Loth

SequeL, INRIA-Futurs
LIFL, CNRS

University of Lille, France
Email: manuel.loth@inria.fr

Manuel Davy
SequeL, INRIA-Futurs

LAGIS, CNRS
Ecole Centrale de Lille, France

Email: manuel.davy@inria.fr

Philippe Preux
SequeL, INRIA-Futurs

LIFL, CNRS
University of Lille, France

Email: philippe.preux@inria.fr

Abstract— We consider the problem of on-line value function
estimation in reinforcement learning. We concentrate on the
function approximator to use. To try to break the curse of
dimensionality, we focus on non parametric function approxi-
mators. We propose to fit the use of kernels into the temporal
difference algorithms by using regression via the LASSO. We
introduce the equi-gradient descent algorithm (EGD) which is
a direct adaptation of the one recently introduced in the LARS
algorithm family for solving the LASSO. We advocate our choice
of the EGD as a judicious algorithm for these tasks. We present
the EGD algorithm in details as well as some experimental results.
We insist on the qualities of the EGD for reinforcement learning.

I. INTRODUCTION

Whether value-function based, or direct policy search based,
the approximation of a real function is a key component
of reinforcement learning algorithms. To this date, various
approaches have dealt with that point which fall into two broad
categories, either parametric, or non parametric. Parametric
means that we aim at approximating a certain function f by
f̂ = g(

∑
i ωiφi) where the φ’s are features given beforehand

(the ω’s are real weights to be adjusted/learned); furthermore,
when g is the identity function, the approximation is said to
be linear; most parametric approximators are linear. In non
parametric approximations, the φ’s are defined on the fly, that
is, while learning is being performed.

Most of the time, parametric approaches have been used:
tiling, CMAC, and radial basis function (RBF) networks [15],
[13], are well-known. Parametric approaches suffer from the
fact that basis functions are set beforehand in the state space
so that there is no guarantee that they are set where they
are really needed; this eventually leads to a large number
of basis functions being used, while only a small number of
them would be enough for a good approximation. One very
attractive property of parametric approaches is that they are
often amenable to a formal analysis of their capabilities, such
as the convergence of the algorithm.

There are also non parametric approaches. [11] is one of
the earliest attempt in the field. More recently, there has been
several efforts in this direction, neural networks [14], [3],
variable resolution grids [9], [10], locally weighted regression
[1], Gaussian processes [5] and sparse distributed memories
[12] are well-known. The possible features are numerous and
the key-point here is to obtain a sparse approximation of the
function; the drawbacks are that we generally lose formal

proofs of convergence, and the choice of features can be a
hard problem.

However, the reinforcement learning (RL) problem is not
a pure regression problem: the data to learn from are not
(observation, response) couples. In RL, the response is the
return following an action and we do not want to learn the
return function. Furthermore, in RL, we have to learn on-line
and we do not expect the set of all “examples” to be available
at once: indeed, the agent has to act and to learn to act while
acting. Another noteworthy point is that there is no lack of
data samples; to the opposite, we typically face millions of
data points to learn from. That leads to serious computational
costs.

In this paper, we are interested in non parametric approx-
imation of the value function, being performed on-line. We
consider non parametric rather than parametric approaches be-
cause we want sparse but still accurate solutions. The method
relies on minimizing a cost operator, the Least Absolute
Shrinkage and Selection Operator (LASSO), which is made of
two terms, the error term (E) and the regularization (reg) term,
the two being combined by way of a regularization constant:
E + λreg. λ lets us tune the importance of sparsity w.r.t.
the error. This minimization was only approximated by costly
heuristics until [4] proposed an algorithm that computes the
entire path of regularization while keeping the computational
cost very reasonable [4]; this algorithm has been initially used
for variable selection, and then for regression [7]. We wish to
use this algorithm as a function approximator in RL problems.

Section 2 presents this algorithm into a renewed guise, in the
framework of regression. We provide a simpler interpretation
and proof of its behavior w.r.t. the LASSO and emphasize the
relations between this algorithm and the classical scheme of
gradient descent.

Section 3 introduces kernel versions of three notorious tem-
poral difference algorithms, namely TD(λ), Least-Squares TD,
and residual-gradient TD. These kernelizations are achieved
by emphasizing the relations between TD(λ) and the gradient
descent scheme, and providing a way to ensure sparsity
through a sequence of independent equi-gradient descents.

Section 4 briefly states the benefits awaited from these
algorithms, and section 5 shows some experimental evidences
of these benefits.

352

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

II. LASSO

A. Linear function approximation

Linear approximation consists in estimating a function f :
X → R (X being an arbitrary set) as a linear combination of
pseudo-variates:
X is mapped into an m-dimensional space ϕ by a set of m
fixed basis functions {φi : X → R}, and the search space H
for the estimate is restricted to linear functions over ϕ:
f̂(ω, x) =

∑m
i=1 ωiφi(x)

This restriction permits the use of simple and convergent
algorithms. However, ϕ has to be chosen so that the best
choice for f̂ in H is sufficiently close to f , with respect to
both the empirical and real risk. It has been shown (Barron)
that for any choice of m fixed basis functions, the error of

the approximation has a worst-case lower bound in O(
(

1
m

) 1
d)

where d is the dimension of X . This emphasizes the necessity
of using non-parametric methods when X is high-dimensional.

Among them, kernel methods escape this issue by us-
ing the representer theorem: given a kernel function k :
X × X → R, a high (typically infinite)-dimensional space
ϕ is used, corresponding to the following infinitely dense
grid: {φ = k(x, ·), x ∈ X}, and the representer theorem
asserts that the best choice for f̂ w.r.t. the empirical risk,
given samples on {x1, . . . , xn}, uses only the basis functions
k(x1, ·), . . . , k(xn, ·).

Achieving even more sparsity over the basis functions is
useful, not only for computational issues, but especially for
reducing the real risk by avoiding over-fitting. This has been
studied in the regularization theory ([17]). SVM regression
achieves sparsity by means equivalent to adding a regulariza-
tion term to a loss function ([6]). Gaussian process regression
treats sparsity at the same level as the representer theorem:
considering only the sample points, independently of the
sampled values ([5]).

B. LASSO

The Least Absolute Shrinkage and Selection Operator
(LASSO, [16]) aims at characterizing a linear function ϕ → R

that both reduces an empirical risk and is sparse, with respect
to a value λ ∈ R+ that sets the relative importance given to
these two criteria. The basis of ϕ can be fixed arbitrarily, using
the representer set of a kernel, or the union of such sets for
several kernels, or any finite set of features {φi, i ∈ 1, . . . , m}.

Let us note:
• x = (x1, . . . , xn)T the vector of sample points.
• y = (y1, . . . , yn)T the vector of sampled values of f at

these points.
• φ : X → ϕ, φ(x) =

(
φ1(x), . . . , φm(x)

)T
• f̂(ω, x) = φ(x)Tω

• ŷ =
(
f̂(x1), . . . , f̂(x1)

)T = Φω,

with Φ =
(
φ(x1), . . . , φ(xn)

)T
Let us consider the squared-loss function for minimizing

the empirical risk. The sparsity of f̂ can be constrained
by minimizing its pseudo-L1 norm: the L1 norm of ω =∑m

i=1 |ωi| [4].

For a given compromise parameter λ, the problem can be
formalized by the LASSO equation:

ω∗ = arg min
ω

‖y − Φω‖2
2 + λ

m∑
i=1

|ωi| (1)

The weights on each feature are equally penalized: a weight ω
on any feature increases the regularized loss function by λω,
regardless of how much it decreases it through the squared
residual. So, to do a “fair” regularization (without arbitrarily
penalizing some features more than others), the features should
have a similar effect on ‖y − Φω‖2

2, which can be achieved by

scaling each feature φ by
(∑n

i=1 φ(xi)2
)− 1

2 . The scale factors
can also be determined analytically as

∫
X φ(x)2dx.

(1) cannot be solved straightforwardly, mainly because the
regularization term

∑m
i=1 |ωi| is not differentiable. However,

justifications and connections between several heuristic regres-
sion algorithms were studied in [4], and it was shown that a
slight modification of a basis pursuit algorithm could recur-
sively and exactly solve the LASSO. The recursion is done
on λ and computes the Pareto front of this dual optimization
problem, from λ = +∞ to λ = 0. One major benefit is that
the choice for λ does not have to be made a priori, or by some
cross-validation procedure; it is done on the fly, considering
relevant informations like the empirical loss or the number of
features used. This does not come at a high cost, as will be
shown below.

The family of algorithms studied in [4] is known under
the name LARS, for Least Angle Regression Stagewise/laSSo.
In the next subsection, the recursive LASSO procedure is pre-
sented. A demonstration that is simpler and more concise than
the original one is provided. The following subsection exposes
a practical algorithm and considerations on its complexity.

C. Solving the LASSO by a recursion over λ

Let us consider the Pareto front, or regularization path Ω,
that is the set of solutions for all possible values of λ:

Ω = {ωλ = arg min
ω

‖y − Φω‖2
2 + λ

m∑
i=1

|ωi|, λ ∈ R+}

There exists λ0 such that if λ > λ0, the solution of (1)
consists in ω = 0: any weight ωi on any feature φi would
increase the regularization term more than it would reduce the
loss.

Let us divide the path into the largest intervals in which
the solutions have a constant sign: {λ0, . . . , λp = 0} such that⎧⎪⎪⎨⎪⎪⎩

• ∀i ∈ 0, . . . , p − 1,{
λi ≥ λi+1

∀λ, λ′ ∈ (λi, λi+1)2, sgn(ωλ) = sgn(ωλ′)
• p is minimum

(1) being convex w.r.t. both ω and λ, this path of solutions
is continuous: all components of ω are continuous w.r.t. λ.
So contiguous intervals (λi−1, λi) and (λi, λi+1) differ only
on a single component of ω: either it has a non-zero value
in the first interval and is zeroed at λi (and beyond) after a
continuous decrease (de-activation of a feature), or it is zero

353

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

in [λi−1, λi+1] and non-zero in (λi, λi+1) (activation). In the
cases —of probability 0— where activation/de-activation of
several features occur at the same point, the intervals have a
length 0: λi = λi+1.

In these open intervals, the sign vector of ω being known,
one can:

• prune the problem of inactive features (sgn(ωi) = 0): if
they are not involved in the solution, they might as well
have never existed. Notations will remain the same for
the pruned vectors and matrices.

• solve (1), using the fact that
∑ |ωi| is differentiable w.r.t.

the pruned ω in the interval.

One can actually consider the closed intervals, for the function
sgn is still differentiable if it takes a zero value at a bound of
the interval.

The sequence (λi) and the signs of the elements of ω is
recursively determined as follows:

start of the recursion:
[λ0, λ1] involves only one feature φi, which has a weight ωi =
0 at λ0. This weight satisfies

∂ ‖y − Φω‖2
2

∂ωi
+ λ

∂|ωi|
∂ωi

= 0

At λ0, this gives φi
Ty = λ0sgn(ωi).

Note that here, sgn(ωi) is the sign that ωi has in the open
interval: this equation only generalizes what stands in the open
interval to its lower bound.

So λ0 and i are given by

{
λ0 = maxj |φj

Ty|
i = arg maxj |φj

Ty|
recursion:

Let us suppose that λj and s = sgn(ω) in (λj , λj+1) are
known, as well as the solution at λj (ω(λj)). Let us solve (1)
for λ in the interval, using the variables dλ = λ − λj and
dω = ω(λ) − ω(λj):

∂ ‖y − Φω‖2
2

∂ω
+ λ

∂
∑

i |ωi|
∂ω

= 0

ΦT
(
y − Φω(λj) − Φdω

)
= λjs + dλs

ΦT
(
y − Φω(λj)

)
− λjs︸ ︷︷ ︸

0

−ΦTΦdω = −dλs

ω(λ) = ω(λj) + (λ − λj)
(
ΦTΦ

)−1

s︸ ︷︷ ︸
w

This indicates that the solutions in the interval are linear
w.r.t. the decrease of λ. The direction of the change of ω is

w =
(
ΦTΦ

)−1

s and the factor is (λj − λ). This allows to
compute the point λi+1 easily:

It is the first point where whether one weight is zeroed,
and by definition another interval begins, or (1) admits a
solution involving one more feature, in which case the pruning
is not valid anymore and this feature gets activated in the next
interval.

An active feature φi is de-activated if:

dλ =
−ω

(λj)
i

wi

An inactive feature φi is activated if, as well as for the
active features, the gradient of the LASSO loss function w.r.t.
ωi equals 0. Again, the (non-zero) sign of ωi in (λj+1, λj+2)
is considered and generalized to the bound λj+1, at which ωi

is still 0. Let us note this sign si.

φT
i

(
y − Φω(λj) − Φdω

)
= λjsi + dλsi

⇐⇒ φT
i

(
y − Φω(λj)

)
− dλφT

i Φw = λjsi + dλsi

⇐⇒ dλ =
φT

i

(
y − Φω(λj)

)
− siλj

φT
i Φw + s

The objective being to find λj+1 ≤ λj , λj+1 is given by
λj − dλ with dλ being the least positive or zero of the above
quantities:

{if φi active then −ω
(λj)
i

wi

else
φT

i (y−Φω(λj))−sλj

φT
i Φw+s

with s = ±1,

i ∈ 1, . . . , m}
Two restrictions must be made to that set: a feature that has just
been activated at λj must not be considered for de-activation,
and one that has just been de-activated must not be considered
for activation: they would be a candidate for an immediate
change of their status, being at the frontier of two intervals
where they have different status.

This gives both λj+1 and the change of sgn(ω): sgn(ωi)
either becomes 0, or goes from 0 to 1, or from 0 to -1.

D. The equi-gradient descent algorithm

Let us first note the similarities and differences between
the gradient descent method and the method exposed above,
which is therefore baptized here equi-gradient descent.

Gradient descent consists in a sequence of steps in which
each weight is modified proportionally to its gradient on the
residual. In the linear regression problem, each step (of rank
i) consists in:

ω ← ω + αiΦT (y − Φω)

If the αi’s are sufficiently small and decreasing, each change
of weights approximates:

ω ← ω + arg min
δω

‖y − Φ(ω + δω)‖2
2 +

1
αi

m∑
i=1

(δωi)2

and the sequence asymptotically minimizes:

‖y − Φω‖2
2 + λ

m∑
i=1

(ωi)2

354

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

with λ0 ≤ λ ≤ limi→∞ 1
αi

, λ0 being the threshold beyond
which

arg min
ω

‖y − Φω‖2
2 + λ

m∑
i=1

(ωi)2 = arg min
ω

‖y − Φω‖2
2

The equi-gradient descent only modifies weights that have
the highest gradient on the residual. This modification is made
in the direction that would lead the closest to the target, in
contrast to its approximation in gradient descent. This direction
has the property to keep the gradients equal, and allows the
analytical computation of the length of the step: it stops at the
point where a new feature has the same –highest– gradient on
the residual as the active ones.

The practical algorithm is exposed in Alg. 1. The complex-
ity of an iteration of the loop is O(nm): the most complex
operation is the arg min of two functions of two dot-products
(O(n)), in the set of inactive features (O(m)); the update of(
ΦTΦ

)−1

is only O(na) where a is the number of active
features.

The number of iterations has been empirically observed to
be O(a2), a being the final number of active features when
stopping the equi-gradient descent. A semi-formal explanation
holds in the following facts:

• L1 regularization being strongly correlated to sparsity, the
number of actives features is quasi-monotonous through-
out the iterations,

• a configuration (the set of active features) can only occur
in a single iteration,

• the number of selected configurations of size p is proba-
bly logarithmic in the number of possible configurations
(2p), and thus O(p), which makes the number of itera-
tions O(

∑a
p=1 p) = O(a2).

III. USING EQUI-GRADIENT DESCENT IN TEMPORAL

DIFFERENCE LEARNING

A. Sparse Least Squares TD

The Least-Squares TD algorithm ([2]) is a policy evaluation
scheme. Its principle is to directly solve the system of Bellman
equations on a set of samples obtained either from trajectories
or in any other way. The system is solved by minimizing the
sum of the squared Bellman residuals:
Let v̂θ be the parametric approximator of the value function
of the policy to be evaluated.
Let s1, . . . , sn be the sampled states and vθ =
(v̂θ(s1), . . . , v̂θ(s1))

T

Let B be the Bellman matrix connecting states related to
each other by a Bellman equation; for example, if states come
from a single trajectory and a fixed discount factor γ is used:

B =

⎡⎢⎣ 1 −γ 0
1 −γ

0
. . .

⎤⎥⎦
The vector of Bellman residuals is r − Bv̂ where r is the
vector of rewards sampled between connected states. LSTD
computes arg minθ ‖r− Bv̂θ‖2

2

Algorithm 1: Equi-gradient descent

for i = 1 to m do φi ← (φi(x1), . . . , φi(xn))T

res ← (y1, . . . , yn)T

s ← (); ω ← (); Φ ← []
φ ← arg maxφi

∣∣∣φi
Tres

∣∣∣
λ ← φTres
s ← sgn(φTres)
todo ← activate φ with sign s
while not stopping criterion and not todo=done do

switch todo do
case activate φ with sign s

Φ ←
[

Φ

∣∣∣∣∣φ
]

s ←

⎛⎜⎝ s

s

⎞⎟⎠
ω ←

⎛⎜⎝ ω

0

⎞⎟⎠
case de-activate j-th active feature

remove j-th element of Φ, ω, s
end

dω ←
(
ΦTΦ

)−1

s ∗

dres ← Φδω
(dλ+, φ+) ← (min, arg min)φ inact.

[
λ−φTres
1−φTdres

]
≥0

† ‡

(dλ−, φ−) ← (min, arg min)φ inact.

[
λ+φTres
1+φTdres

]
≥0

(dλ0, j) ← (min, arg min)j∈1...nb act. features

[−ωj

dωj

]
≥0

dλ ← min(dλ+, dλ−, dλ0)
if dλ undefined † then

todo ← done
dλ ← λ

else if dλ = dλ+ then
todo ← activate φ+ with sign +1

else if dλ = dλ− then
todo ← activate φ− with sign -1

else if dλ = dλ0 then
todo ← de-activate j-th active feature

λ ← λ − dλ
ω ← ω + dλ ∗ dω
res ← res− dλ ∗ dres

end
∗:

`
ΦTΦ

´−1
should not be computed at each iteration of the loop,

but stored and modified iteratively, using block matrix inversion.

†: [expression]≥0 means that only positive values are considered,
which means that arg minx[f(x)]≥0 is undefined if f(x) takes no
positive value.

‡: As explained in II.C, the min− arg min searches must not
consider the feature that has just been [de]activated.

355

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

In the case of linear approximators (including kernel meth-
ods) where v̂ω = Φω, the application of equi-gradient descent
is immediate: it can be used as is on the following LASSO
problem:
minimize arg minθ ‖r − Φ′ω‖2

2 + λ
∑

i ωi with Φ′ = BΦ.
The main benefit is to obtain a sparse solution, which both

saves computational time and avoids over-fitting. One can then
use dense grids or kernel features more easily.

B. Kernel TD(λ)

TD(λ), when used for evaluating a fixed policy, uses the
following scheme: considering an estimation v̂θ of v and a
trajectory s0

r1−→ s1 . . .
rn−→ sn,

v(s0) = r1 + γv(s1)
⇐⇒ v(s0) − v̂θ(s0) = r1 − v̂θ(s0) + γv(s1)

Assuming that v̂θ(s1) v(s1), the residual at s0

(
v(s0) −

v̂θ(s0)
)

is estimated by r1 − v̂θ(s0) + γv̂θ(s1) (principle of
value iteration).
The same reasoning is applied to estimate it by

r1 + γr2 + γ2v̂θ(s2) − v̂θ(s0)
or r1 + γr2 + γ2r3 + γ3v̂θ(s3) − v̂θ(s0)

. . .

These estimates are averaged with coefficients such that the
final estimate is:

v(s0) − v̂θ(s0)
n∑
i

(λγ)i−1 (ri + γv̂θ(si) − v̂θ(si−1))

v(si)− v̂θ(si) are estimated the same way for i ∈ 2 . . . n− 1.
Using a matricial formulation, TD(λ) considers that:

res = v−v̂θ L (r − Bv̂θ) , with L =

⎡⎢⎢⎢⎣
1 λγ (λγ)2 . . .

1 λγ . . .
1 . . .

0
. . .

⎤⎥⎥⎥⎦
and performs the following update:

θ ← θ − α
∂v̂θ

∂θ
L (r − Bv̂θ)

which is equivalent to considering r̂es = L (r− Bv̂θ) as a
(fixed) estimation of the residual at the points sampled from a
trajectory, and performing a gradient descent step to minimize
‖δ̂v̂θ −δv̂θ‖2

2 . The form of r̂es allows to perform the update
sequentially, using the computational trick of eligibility traces.

TD(λ) is used for policy improvement by evaluating a
moving policy – greedy w.r.t. v̂θ . The difference is that
the estimated error is ̂vπ′ − v̂π

θ , using the assumption that
v̂π

θ (s) vπ′
θ (s), where π and π′ are respectively the previous

and current policies.
This algorithm and similar ones like Q-Learning and

SARSA’S have been widely used with linear approximators.
It has also been used with success with neural networks, by
propagating the updates on linear hyper-parameters to the non-
linear ones by back-propagation. The use of kernel methods

seems more problematic, since the non-linear parameters are
not numeric: they consist in the choice of kernel centers
(sampled points). Given the previous consideration on how
TD(λ) relates to regression by gradient descent, an algorithm
is proposed in the following that permits the use of TD(λ)
with a kernel approximator.

The principle of TD(λ) on linear approximators can be sum-
marized the following way: after a sampled trajectory, a piece
of regression is made to approximate the estimated residual
̂v − Φω by a corrective term Φδω. v̂(x) =

∑
i ωiφi(x) is

then updated to v̂′(x) =
∑

i ωiφi(x) +
∑

i δωiφi(x). The
linear parameters (weights) remain the same (in the sense that
they apply to the same feature set) throughout the successive
gradient descent steps.

The key idea is to replace the gradient descent step per-
formed after each trajectory by an equi-gradient descent.

The direct application of this would be to perform after each
trajectory an equi-gradient descent that approximates r̂es =
̂v − Φω by Φ′ω′, the features in Φ′ being a kernel centered

on a selection of p visited states. v̂(x) =
∑m

i=1 ωiφi(x) would
then be updated to v̂′(x) =

∑m
i=1 ωiφi(x)+

∑m+p
i=m+1 ωiφi(x)

(new features being indexed). This scheme could be used with
any kernel method, and more generally any regression method.
The trivial drawback is that although feature selection may be
accurate in each regression, no pertinent selection is made
throughout the whole algorithm: features just add up through
the –possibly very long– sequence of trajectories.

To provide “global” feature selection, the first key is to in-
clude features that occur in the current estimate v̂ in the set of
candidates for approximating the residual. The approximation
of the residual can then use these features (as linear TD(λ)
does) as well as new features centered on visited states. This
can be done straightforwardly with equi-gradient descent, for
it considers any arbitrary set of candidates features.

Global sparsity would still not be satisfyingly ensured,
because new features would remain more attractive than the
others, as they are centered on the considered states. Again, the
flexibility of equi-gradient descent provides a solution: since it
penalizes the use of features through the sum of their weights,
one can penalize the new features more than the others by
including coefficients in the penalization term. The LASSO
problem is rewritten as:

ω∗ = arg min
ω

‖y − Φω‖2
2 + λ

m∑
i=1

αi|ωi|

The change induced in the equi-gradient algorithm is just to
replace the signs s = ±1 by αis.

The last point is that when the equi-gradient descent gets
the final weight of a feature already occurring in v̂ to zero, it
should be taken into account by explicitly de-activating it.

Concerning the stopping criterion, performing only one step
does not seem interesting, as it would just select one feature
each time. One natural possibility is to stop when the residual
has been reduced by a given ratio. Empirically, a ratio of 0.8,
ie. |L(r−BΦω)−Φ′ω′| < 0.8|L(r−BΦω)|, seems to ensure

356

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

good and stable performances. Further studies are needed on
this point.

A kernel TD(λ) algorithm is summarized in Alg. 2. It could
be used with any kernel method as long as it allows to include
the kernel centered on arbitrary points as additional candidates
and to penalize them less than the “natural” ones.

Algorithm 2: Equi-gradient kernel TD(λ)

/* v̂ is defined by a set of weighted
features {(ωi, φi)} */

v̂ ← {}
repeat

perform a trajectory s0
r1−→ s1 . . . sn using a greedy

policy
perform an equi-gradient descent with

• target L(r − Bv̂)
• candidate features the ones used in v̂ (penalized

with α < 1) and {k(si, ·)} penalized with α = 1
• stopping criterion: the reduction of the residual

by a given ratio

include the result in v̂

• remove features with weight taken to 0
• modify weights of features used in the previous

estimate and modified by the descent
• add new weighted features

until v̂ stationary

C. Kernel residual-gradient TD

As reminded above, TD(λ) uses averages of temporal dif-
ferences to estimate a fixed residual. The Bellman equations
relating sampled states are used to estimate independent targets
on each state and then forgotten. One can see this as an
empirical way to mix all 2n Bellman correlations between
states in order to estimate v (as opposed to value iteration
which only focuses on correlations between states and their
successor).

An alternate way is to directly aim at solving the system
of Bellman equations, which expresses all correlations. This is
the scheme used in LSTD and in residual-gradient TD ([8]), as
opposed to the original value-gradient TD(λ). Let us consider
a simple example, with a 3 states trajectory. The Bellman
system is: {

r1 + v0 − γv1 = 0
r2 + v1 − γv2 = 0

Value iteration (TD(0)) approximately solves this by{
r1 + v0 − γv̂1 = 0
r2 + v1 − γv̂2 = 0

TD(λ) adds the combined equation:⎧⎨⎩ r1 + v0 − γv1 = 0
r1 + γr2 + v0 − γ2v2 = 0
r2 + v1 − γv2 = 0

It then approximates the system by⎧⎨⎩
r1 + v0 − γv̂1 = 0
r1 + γr2 + v0 − γ2v̂2 = 0
r2 + v1 − γv̂2 = 0

and finally estimates v0 as a linear combination of the solutions
of the first two equations.

The residual-gradient TD aims at solving the system di-
rectly. The problem of its incompleteness, which is somehow
the motivation for the TD(λ) scheme, is escaped by the implicit
regularization in gradient descent, which implicitly treats the
current estimate v̂ as a Bayesian prior for the next.

The practical difference is that, as one attempts to directly
minimize ‖r − Bv̂θ‖2

2, the gradient descent steps consists in
θ ← θ′ = θ −α∂Bv̂θ

∂θ (r−Bv̂θ). A possible drawback is that
this being an approximation of

θ′ = θ − α
∂Bv̂θ′

∂θ′ (r − Bv̂θ′)

it may be less accurate than the one made in TD(λ) because
the Bellman operator increases the variance.

Using the same principle as in kernel TD(λ), one can
perform after each episode an equi-gradient descent on the
following LASSO:

minimize ‖r− B(Φω + Φ′ω′)‖2
2 + λ

∑
i

αi|ω′
i|

where Φ′ includes both the features in Φ and the new ones
centered on sampled states, and the αi’s penalize new features
more than the other ones.

IV. BENEFITS

The most obvious benefits of the algorithms exposed above
are the ones associated with kernel methods: they provide ad-
vantages of linear approximators while being non-parametric,
thus less subject to the curse of dimensionality. Other benefits
appear that are related to the genericity of the LASSO for-
mulation and the precision of its resolution by equi-gradient
descent.

A. Precision

Gradient descent minimizes

‖y − Φω‖2
2 + λ

m∑
i=1

(ωi)2

by means of numerous small steps where the derivative of
the loss function is considered constant. The learning rate of
gradient descent has to be sufficiently small (and decreasing)
to ensure that the stationarity assumption on the gradient
approximately stands. In TD(λ), only one step is performed
per trajectory or, turning this another way, the residual is
witnessed on new points after each step. This explains the
so-called “waste of samples” in this algorithm.

In equi-gradient descent, the exact gradient is used, bene-
fiting from its piecewise linearity, and the length of the steps
are fixed exactly. This allows to go further in the updates in
a safe way, and is especially appealing when using residual
gradient.

357

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

B. Genericity

Unlike traditional kernel regression methods, equi-gradient
descent does not rely on the Mercer or positive-definiteness
properties of a single kernel. It just considers an arbitrary
finite set ϕ of candidate features. This does not mean it misses
some properties of such a kernel: when used on the feature
set {k(x0, ·), . . . , k(xn, ·)}, it performs the same task: find a
suitable compromise between data-fitting and sparsity, this task
being achieved in very similar ways.

This allows the use of multiple kernels, typically Gaussian
kernels with various bandwidths. One can also use kernels on
projections of the state space on some of its dimensions: if
s = (s(x), s(y))T ∈ R2, ϕ can include k(s(x)

0 , ·), k(s(y)
0 , ·),

Another interesting possibility is to use kernels that exploits
the symmetry in the dynamics and value function of the MDP:
if the state space S = Rd and it is known that ∀s, v(s) =
v(−s), a kernel ksym(x, x′) = k(x, x′) + k(x,−x′) extends
the neighborhood of a point w.r.t. the approximated function to
the neighborhood of its opposite. Such a kernel causes serious
perturbations around 0 in a grid-based TD(λ) or in Gaussian
Process TD, which is not the case with equi-gradient TD.
Note that there is no other satisfying way of exploiting such a
symmetry; projecting on half the state space does not preserve
continuity across the separating hyper-plan.

V. EXPERIMENTS

Experiments were run on the inverted pendulum problem,
as described in [3]. 100 independent learning sessions of 300
trajectories were run each time, the trajectories consisting in
40 transitions of 0.1s. The same initial states were used for
each experiment. The evolution of the quality of the value
function was estimated by running 100 trajectories starting
from a fixed set of states and following the learned policy, and
accumulating rewards. The over-optimal policy that would get
the pendulum instantaneously to the balanced position would
get a cumulated reward of 40 000. The results are presented
in Fig.’s 1-5, and are detailed below.

A. Kernel-TD(λ)

Influence of the penalization coefficient α: we first used a
Gaussian kernel of variance 0.15 (the state space being normal-
ized), and compared choices for the penalization coefficient α
of features already used in the previous estimate. It has the
expected influence on the number of actives features: as α
decreases, the number of active features naturally decreases,
which is helpful to tune the computation time.

The convergence speed and quality are overall similar, but
it should be noted that the quality is slightly better with α =
0.77, see Fig. 1.

Multi kernels: we then used 3 Gaussian kernels of variances
0.15, 0.17 and 0.2. Convergence is a bit faster, and the number
of active features does not change, see Fig. 2.

Symmetry: we then exploited the central symmetry of the
problem

(
V (x) = V (−x)

)
by using symmetric features:

Instead of φi(x) = k(xi, x), we set φi(x) = k(xi, x) +
k(xi,−x). This trick is not applicable in either TD(λ) with

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300
 0

 100

 200

 300

 400

 500

 600

 700

 800

cu
m

ul
at

ed
 r

ew
ar

ds

ac
tiv

e
fe

at
ur

es

episode #

1 0.77 0.625

Fig. 1. Influence of α on the number of active features (3 thick lines), and
on the accumulated reward (3 thin lines), for three values of α. We use a
single Gaussian kernel of variance 0.15.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300
 0

 100

 200

 300

 400

 500

 600

 700

 800

cu
m

ul
at

ed
 r

ew
ar

ds

ac
tiv

e
fe

at
ur

es

episode #

0.15 0.15 0.17 0.2

Fig. 2. This plot compares the performance of kernel-TD(λ) using a single
kernel function (in red), and using 3 kernel functions (in green). All kernels
are Gaussian; they differ from their variance.

gradient descent nor Gaussian Process TD, as it creates diver-
gences around 0. With Equi-gradient TD, some momentaneous
divergences appear when using multi kernels, but it is robust
with a single kernel. The benefits are a faster convergence and
the use of less features, as can be seen in Fig. 3.

Comparison with TD(λ) on a grid: we compared the results
obtained by the following algorithms:

• parametric TD(λ) with gradient descent on a 15×15 grid
of Gaussian bases.

• Equi-gradient kernel TD(λ) with the same single kernel
and use of symmetry.

The latter shows both fast convergence and better policies. See
Fig. 4

B. Kernel residual gradient TD(λ)

Experiments were run to compare kernel TD(λ) with the
recently developed kernel residual gradient TD. Three obser-
vations are noteworthy:

• the convergence on the pendulum problem is even faster,
• the stopping ratio is best set around 0.9 to avoid some

momentaneaous divergences in the policy,

358

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300
 0

 100

 200

 300

 400

 500

 600

 700

 800

cu
m

ul
at

ed
 r

ew
ar

ds

ac
tiv

e
fe

at
ur

es

episode #

no symmetry symmetry

Fig. 3. This plots exhibits the difference that is observed when one uses
the symmetry of the problem (in green), or not (in red). The algorithm uses
a single Gaussian kernel function of variance 0.15.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250 300

cu
m

ul
at

ed
 r

ew
ar

ds

episode #

TD EGTD

Fig. 4. Accumulated rewards of grid-based TD(λ) and kernel-TD(λ).

• contrary to the value-gradient version, the evolution of
the number of features shows a fine asymptotic shape
when running a large number of trajectories, as shown in
Fig. 5.

VI. SUMMARY AND FUTURE WORK

We have formulated variants of TD algorithms in which
the gradient descents are replaced by what we called an
equi-gradient descent. The first takes an approximately good
direction on all parameters, whereas the second takes a succes-
sion of optimal directions on the most correlated parameters,
including more and more of them on the way. This allows to
use TD on a non-parametric basis function network, where
bases are smartly selected in a large set of candidates, with
various centers, shapes and ranges of effect.

Good results in terms of quality, fast convergence, and
computation complexity have been obtained on the inverted
pendulum problem.

Future work will focus on ways to adapt these algorithms
to high-dimensional problems, including

• the use of kernels defined on all possible selections of the
original variables/dimensions. This means an exponential

 0

 50

 100

 150

 200

 250

 300

 350

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

value-gradient TD
residual-gradient TD

Fig. 5. Evolution of the number of features throughout the learning
trajectories in both kernel TD(0.5) and kernel residual-gradient TD.

growth of the number of candidate features, which may
be handled by a possible stochastic version of the EGD
algorithm.

• the definition of fine exploration schemes. Exploration
may be improved by following the evolution of the policy
throughout the equi-gradient steps.

ACKNOWLEDGMENTS

The first author gratefully acknowledges the support from
INRIA-Futurs and Region Nord - Pas-de-Calais.

REFERENCES

[1] Chris Atkeson, Andrew Moore, and Stefan Schaal. Locally weighted
learning for control. AI Review, 11:75–113, April 1997.

[2] J. Boyan. Least-squares temporal difference learning. In Proc. ICML
1999.

[3] R. Coulom. Reinforcement Learning Using Neural Networks, with
Applications to Motor Control. PhD thesis, INP Grenoble, 2002.

[4] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least-angle
regression. Annals of statistics, 32(2):407–499, 2004.

[5] Y. Engel. Algorithms and Representations for Reinforcement Learning.
PhD thesis, Hebrew University, April 2005.

[6] F. Girosi. An equivalence between sparse approximation and support
vector machines. Neural computation, 10(6):1455–1480, 1998.

[7] V. Guigue. Méthodes à noyaux pour la représentation et la discrimi-
nation de signaux non-stationnaires. PhD thesis, Institut National des
Sciences Appliquées de Rouen, 2005.

[8] Leemon C. Baird III. Residual algorithms: Reinforcement learning
with function approximation. In International Conference on Machine
Learning, pages 30–37, 1995.

[9] Andrew Moore and Chris Atkeson. The parti-game algorithm for
variable resolution reinforcement learning in multidimensional state-
spaces. Machine Learning, 21, 1995.

[10] Remi Munos and Andrew Moore. Variable resolution discretizations for
high-accuracy solutions of optimal control problems. In Proc. IJCAI,
pages 1348–1355, 1999.

[11] J. Platt. A resource-allocating network for function interpolation. Neural
Computation, (2):213–225, 1992.

[12] B. Ratitch and D. Precup. Sparse distributed memories for on-line value-
based reinforcement learning. In Proc. ECML 2004.

[13] R. Sutton. Generalization in reinforcement learning: successful examples
using sparse coarse coding. In Proc. NIPS, pages 1038–1044, 1996.

[14] G. Tesauro. Temporal difference learning and TD-Gammon. Comm. of
the ACM, 38:58–68, 1995.

[15] C.K. Tham. Modular on-line function approximation for scaling up
reinforcement learning. PhD thesis, Cambridge University, 1994.

[16] R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal
Statistics, 58(1):267–288, 1996.

[17] A. Tikhonov and V. Arsénin. Solutions of ill-posed problems. W.H.
Winston, Washington D.C., 1977.

359

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

