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Abstract - Previous work has shown that speciation can result 
from the self-organized accumulation of multiple mildly 
underdominant (nearly neutral) loci in a continuous 
population, when mating is spatially localized. In contrast, 
when mating is panmictic, underdominance is quickly 
eliminated and the population always converges on a single 
genotype, as predicted by mean-field approximations. The 
focus of this work is to examine the sensitivity of self-
organizing speciation to the assumption of purely localized 
interactions. We alter the interaction topology from nearest 
neighbor interactions to panmictic interactions in two ways: (i) 
by increasing the size of the contiguous mating neighborhoods 
and (ii) by allowing for long-distance dispersal of individuals 
with increasing probability. Our results show self-organized 
speciation to be robust to mating neighborhood sizes 
significantly larger than nearest neighbor interactions and to 
probabilities of long-distance dispersal that fall well into the 
range of so called “small-world” interaction topologies. 

I.  INTRODUCTION

The manner in which underdominance (heterozygote 
disadvantage) can be introduced and maintained in a 
population has been a topic of interest in the field of 
evolutionary biology for quite some time [1]. In a randomly 
mating population, it is difficult to imagine an 
evolutionarily reasonable mechanism by which such a 
polymorphism could possibly be maintained for any 
significant period of time, or even become established in 
the first place. However, natural populations certainly do 
exhibit a great deal of genetic variation, including 
underdominance (e.g., see [2]). Recently, we have 
demonstrated a simple mechanism by which within-locus 
underdominance can be introduced into a continuous, 
spatially extended population [3]. Assuming that 
underdominance can be introduced into an interbreeding 
population, it has been previously shown to persist for 
extended duration so long as mating is spatially localized 
[3][4][5][6][7][8]. We have shown that the accumulation of 
multiple mildly underdominant loci can lead to the self-
organization of a continuous, locally mating population into 
reproductively isolated subgroups, resulting in speciation 
[3][8].  

We define speciation according to Mayr’s biological 
species concept [9] as a group of actually or potentially 
interbreeding individuals that are reproductively isolated 
from other such groups. Therefore, two groups are 
considered separate species if their hybrid offspring are 
completely inviable. For a review of this concept and other 
population genetics topics considered in this work, the 
reader is referred to [10][11]. 

As the interaction topology of this system changes from 
purely localized interactions to random interactions, the 
expected outcome changes from (i) speciation into two 
reproductively isolated groups to (ii) fixation upon a single 
genotype. Localized mating strategies have been observed 
in many plant [12][13][14][15][16] and animal [17][18][19] 
populations, so spatially localized interactions may indeed 
be a better representation of the mating strategies of some 
biotic communities than are random interactions. However, 
natural populations are not organized on a grid with strict 
nearest neighbor interactions. Furthermore, dispersal has 
been shown to be leptokurtic in many populations [20][21], 
where the majority of interactions are local, but long-
distance interactions also occur with low frequency.  

Previous work on “small-world” networks [22] has shown 
that even when most interactions are spatially localized, 
only a relatively small number of long-distance interactions 
are required to reduce the characteristic path length (λ; the 
shortest path between two individuals, averaged over all 
pairs of individuals) to be almost as low as that of a random 
interaction topology. Thus, in some ways, small-world 
interaction topologies behave like random interaction 
topologies. In a recent work on spatially-extended predator-
prey systems [23], critical thresholds of long-distance 
interactions were empirically determined that led a 
population with primarily localized interactions to behave 
as if the population were well-mixed.  
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Fig. 1. Schematic diagram of representative types of mating 
neighborhoods for a given cell (x). Mating neighborhoods comprised the 
cell itself as well as those shown in black. a) 3×3 local neighborhoods, b-
d) local neighborhoods with increasing relative neighborhood size (δ), 
and e-g) 3×3 local neighborhoods with increasing probability of long-
distance interactions (p). Characteristic path length (λ) decreases from 
left to right. 

The focus of this manuscript is to study the sensitivity of 
self-organizing underdominant barriers to gene flow to the 
relaxation of the assumption of purely localized 
interactions. In particular, we incrementally transition the 
interaction topology from purely localized to random 
interactions in two ways:  (i) by increasing the diameter of 
the contiguous mating neighborhoods and (ii) by allowing 
for long-distance dispersal of individuals with increasing 
probability. In so doing, we hope to elucidate the nature of 
the phase shift from speciation to fixation. 

II.  METHODS

A.  Population Model

Populations of diploid individuals were modeled using 
stochastic cellular automata with non-periodic boundary 
conditions. Each individual in the population could occupy 
at most one cell in a square lattice at any discrete time step 
and the lattice was updated synchronously. The size of the 
lattice was 100×100 cells, unless otherwise noted. In every 
iteration, each cell i was repopulated by the offspring of 
two parents selected from the mating neighborhood of cell i
with probability sel

iP , as follows; 

sel i
i

j
j N

f
P

f
∈

=

∑
  (1) 

where fi is the fitness of the individual located in cell i and 
N denotes the set of individuals in the mating neighborhood 
of cell i. Selfing was not permitted (i.e., individuals were 
not allowed to mate with themselves). The size and shape of 
the mating neighborhoods investigated in this study are 
detailed in the subsequent section.  

B.  Interaction Topologies

Several forms of mating neighborhoods were investigated. 
At one extreme, the mating neighborhood of the cell in 
question comprised the entire population. In this case, 
mating was random with respect to the spatial location of an 
individual. This is commonly referred to as global mating 
or panmixia. At the other extreme, mating could only occur 
within purely localized neighborhoods comprising only the 
cell itself and its eight nearest neighbors. We refer to this 
mating strategy as 3×3 localized mating. 

In order to analyze the robustness of the speciation process 
presented in [3][8] to the assumption of 3×3 localized 
mating, we altered the mating neighborhood in two ways. 
First, we incrementally increased the diameter (d) of square 
d×d mating neighborhoods from d = 3 (3×3 localized 
mating) to d = 100 (global mating). Second, we considered 
3×3 local mating neighborhoods interspersed with limited 
long-distance dispersal. Specifically, between generations, 

we randomly selected individuals for dispersal with 
probability p and subsequently randomly permuted the 
spatial location of these dispersing individuals. A schematic 
diagram of these interaction neighborhoods is provided in 
Figure 1.  

C.  Evaluating Fitness

As in [3][8], individuals comprised L ∈{2,4,6,8,10} bi-
allelic loci, depending upon the experiment in question. 
Alleles are denoted by lower case and capital letters (e.g. 
AaBBcc), where case does not imply dominance, but affects 
the epistatic interaction of alleles, as detailed below. The 
fitness f of an individual i was assessed according to the 
following fitness function: 

max

1

1
i i

i

U E
f

E

− +
=

+

  (2) 

where a perfect fitness of unity is reduced by an 
underdominance penalty (U) and increased by an epistatic 
bonus (E) and then subsequently renormalized such that 
maximal fitness is again unity. Underdominance occurs 
when the heterozygote is less fit than either homozygote, at 
a given locus. The underdominance penalty is computed as 
the proportion of heterozygous loci in an individual’s 
genotype. For example, consider a two-locus system (L = 2) 
and an individual that is heterozygous at a single locus. 
This individual will receive a fitness penalty of U = 1/2. 
Similarly, in a ten locus system (L = 10) an individual 
heterozygous at a single locus will receive a milder fitness 
penalty of U = 1/10. Thus, the degree of underdominance in 
our model is inversely proportional to L. Only those 
individuals heterozygous at all loci were considered 
inviable (e.g. AaBbCc). Epistasis is defined as the nonlinear 
interaction of genotypes at different loci in their overall 
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Fig. 2. Sample instantiation of the fitness function described in 
equation 2 for two loci with ε = 0.1. 
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Fig. 3. The evolutionary dynamics of a representative two-locus 100×100 
cell population initialized in Hardy-Weinberg equilibrium under mild 
disruptive epistasis (fitness table as in Figure 2) with (a) 3×3 local mating 
neighborhoods (relative mating neighborhood size δ = 0.03), (b) 9×9 
local mating neighborhoods (δ = 0.09) and (c) 3×3 local neighborhoods 
following occasional long-range migration events (p = 0.01). Note that 
speciation occurs when all hybrids between viable genotypes are inviable 
(white). 

contributions to fitness.  The epistatic bonus (E) is 
computed as the product of an epistatic coefficient (ε) and 
the maximum of the number of homozygous loci with the 
same case, such that only individuals homozygous at all loci 
receive maximal fitness. This simple fitness function was 
chosen since both the degree of underdominance and the 
degree of epistasis being modeled are directly tunable. For 
example, the degree of underdominance can be decreased 
by simply increasing the number of loci (L) and the degree 
of epistasis can be increased by increasing the epistatic 
coefficient (ε). For the experiments reported here, the 
epistasis coefficient was held constant (ε = 0.1). A sample 
instantiation of this fitness function for a two-locus system 
is provided in Figure 2 (ε = 0.1). 

Offspring were created from selected parents via
independent assortment (uniform recombination). If the 
offspring produced was inviable (fi = 0), then that cell was 
treated as empty in the subsequent generation. For 
simplicity, mutational events were not considered. For all 
runs, the population was initialized in multi-locus Hardy-
Weinberg equilibrium (i.e., all allele values are randomly 
initialized in equal proportions) in order to avoid any initial 
bias in average allelic effects or spatial organization. All 
experiments were performed in Matlab (The Mathworks, 
Natick, MA). Further details of each individual experiment 
are provided in the next section.  

III.  EXPERIMENTS

A.  Self-Organizing Barriers to Gene Flow

We first briefly review our previous results [3][8] regarding 
self-organization in systems with underdominant loci. When 
mating is restricted to 3×3 local neighborhoods, self-
organizing barriers to gene flow repeatedly emerge, and 
when mild disruptive epistasis is present (e.g., fitness as in 
Figure 2), this results in speciation. A graphical depiction of 
a representative two-locus population is provided in Figure 
3a. Initialized in multi-locus Hardy-Weinberg equilibrium, 
the population self-organized into groups of genetically 
compatible individuals separated by hybrid zones, most of 
which were permeable, allowing underdominance to persist 
for extended duration. Over time, underdominance was 
slowly eliminated as the population structure coarsened and 
hybrid zones coalesced to form impermeable barriers to 

gene flow. The time to speciation increased exponentially 
as the number of interacting loci (L) increased (R2 = 0.76, 
Table 1). In contrast, when mating was panmictic, 
underdominance was quickly eliminated and the population 
converged on a single genotype in all trials, as predicted by 
mean-field approximations [7]. Thus, at one extreme (3×3 
local mating) speciation occurs, while at the other extreme 
(panmixia) fixation on a single genotype occurs.  

B.  Absolute vs. Relative Mating Neighborhood Size

In order to determine whether the absolute (d) or the 
relative (δ) mating neighborhood size is the relevant 
governing parameter, the following experiment was 
performed using simulated populations with two 
underdominant loci (L = 2). We varied both the diameter of 
the overall domain (D) and the diameter of the square 
contiguous mating neighborhoods (d). Specifically, D was 
varied in increments of 10 from D = 10 to D = 100. For 
each value of D, the diameter of the mating neighborhood 
was increased starting from nearest neighbor interactions (d
= 3) in increments of two. For each value of d, 25 
independent simulations were performed. In this 
experiment, long-distance dispersal was prohibited (p = 0) 
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Fig. 4. Critical absolute mating neighborhood size (dc) as a function of 
the overall domain diameter (D). The critical absolute mating 
neighborhood size grows linearly in D (R2 = 0.92). 

Table 1. Mean and standard deviation of the time to speciation in a 
3×3 localized interaction topology with ε = 0.1 as a function of the 
number of interacting loci (L). Data summarizes 25 independent 
simulations for each value of L. 

L Mean Generations σσσσ

2 235.1 63.9 

4 319.8 97.8 

6 366.6 80.7 

8 464.5 96.4 

10 819.8 192.8 

and all mating interactions occurred within local d×d
neighborhoods. The population was allowed to evolve until 
one of two events took place: (i) the population separated 
into reproductively isolated subgroups (speciation) or (ii) 
the population converged on a single genotype (fixation). 
The critical diameter (dc(D)) is defined as the smallest 
mating neighborhood size such that a speciation event 
occurred less than 50% of the time for a given value of D.  

The size of the critical diameter of the mating neighborhood 
(dc(D)) increased linearly in D (R2 = 0.92, Figure 4); i.e. the 
critical value of the relative mating neighborhood size (δc = 
dc(D)/D) remained approximately constant. This suggests 
that the evolutionary dynamics of the population are 
governed by relative, as opposed to absolute, mating 
neighborhood size in this system. Thus, as long as the ratio 
of the mating neighborhood size to overall domain size is 
held constant, qualitatively similar evolutionary dynamics 
can be expected on different domain sizes. Note that the 
two-locus system considered in this experiment is quite 
robust to large relative mating neighborhood sizes. For 
example, when D = 100, the size of the critical diameter 
was dc = 29, which includes approximately 8% of the 

individuals in the population. While this result may seem 
surprising, it occurs due to the rapid rate at which the 
population speciates in the two-locus case (Table 1). 
Increasing the number of interacting loci (L) increases the 
time to speciation exponentially (Table 1) and therefore can 
be expected to affect the size of the critical relative mating 
neighborhood. 

C.  Varying the Relative Neighborhood Size: Extension to Multiple 

Loci

In order to understand the interaction between relative 
mating neighborhood size and the number of interacting 
loci, the following experiment was performed. Individuals 
comprised L ∈{2,4,6,8,10} interacting loci and each 
population was initialized in multi-locus Hardy-Weinberg 
equilibrium on a square lattice with diameter D = 100. For 
each value of L, the following relative mating neighborhood 
sizes (δ) were tested: δ ∈{0.03 (nearest neighbors), 0.05, 
0.09, 0.17, 0.33, 0.65, 1 (panmixia)}. For each value of δ, 
25 independent simulations were performed in which the 
population was allowed to evolve until either a speciation 
event or fixation event occurred and the number of trials 
that resulted in speciation and fixation were recorded. 
These data were used for interpolation to determine the 
critical relative mating neighborhood size (δc), defined as 
the smallest relative mating neighborhood size such that 
speciation is expected with probability 0.5 as a function of 
L. Figure 1 (a,b,c,d) provides a schematic diagram of the 
way in which the mating neighborhood changes as δ is 
increased.  

As δ increases (i.e. as mating neighborhoods become less 
localized), the size of the self-organizing clusters increases 
more rapidly as the population evolves. Figure 3b depicts 
the evolutionary dynamics of a representative population 
evolving on an interaction topology with δ = .09. Increasing 
the relative neighborhood size increased the width of the 
hybrid boundaries between groups (compare Figure 3b with 
Figure 3a) and decreased the time required to eliminate 
patches of less fit individuals. For example, with δ = 0.09, 
the mean time to speciation was 122.6 generations 
(standard deviation = 72.9), while the mean time to 
speciation in a 3×3 local mating population (δ = 0.03) was 
235.1 generations (standard deviation 63.9). 

The sensitivity of the evolutionary dynamics of the 
population to the relative mating neighborhood size (δ) 
varied as a function of the number of interacting loci (L). 
Figure 5 shows the probability of a speciation event as a 
function of the size of the relative mating neighborhood and 
the number of interacting loci. Speciation became less 
likely as the size of the relative mating neighborhood and/or 

4

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



δ

Speciation 
Expected

Fixation 
Expected

δ

Speciation 
Expected

Fixation 
Expected

Fig. 5. Probability of speciation as a function of the number of 
interacting loci (L) and the relative mating neighborhood size (δ = d/D). 
Each data point denotes the proportion of 25 independent simulations 
that resulted in a speciation event. The critical points (δc) at which the 
probability of speciation vs. fixation is 0.5 are shown as solid squares.

Speciation
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Fig. 6. Critical value of the relative mating neighborhood size (δc) as a 
function of the number of interacting loci (L). Empirical values 
correspond to the black squares in Fig. 5. 

the number of interacting loci increased. This occurred 
because the time to speciation increases exponentially in L
(Table 1) and therefore populations with more interacting 
loci are more vulnerable to the disruptive effects of a larger 
relative mating neighborhood size. The critical size of the 
relative mating neighborhood (δc) decreased linearly in L
(R2 = 0.95, Figure 6).  Note that the smallest critical value 
of the relative mating neighborhood size found in these 
experiments (δc = 0.13, L = 10) is over four times as large 
as the relative mating neighborhood size corresponding to 
3×3 localized interactions (δ = .03). This finding implies 
that this speciation process is not restricted to purely 3×3 
local mating neighborhoods, but can also occur with larger 
contiguous mating neighborhoods. 

D.  Evolutionary Dynamics in Locally Mating Populations with 

Limited Long-Distance Dispersal

The next series of tests was designed to analyze the 
sensitivity of the evolutionary dynamics of this system to 
long-distance dispersal. Once again, individuals comprised 
L ∈{2,4,6,8,10} interacting loci and each population was 
initialized in multi-locus Hardy-Weinberg equilibrium on a 
square lattice with diameter D = 100. The mating 
neighborhoods of every individual were 3×3 local 
neighborhoods, but at every generation individuals were 
randomly selected for dispersal with probability p and the 
spatial locations of these dispersers were randomly 
permuted. This process is similar to the random rewiring 
algorithm used to generate small-world networks [22] with 
the exception that the arity of each cell in the lattice remains 
constant in our model. Purely localized mating interactions 
thus correspond to p = 0 and random mating interactions 
correspond to p = 1. In this model, small-world interactions 
[22] are found in the range p ∈(0.005, 0.1) where the 

characteristic path length (λ) is almost as short as that of a 
random interaction topology, despite a preponderance of 
local interactions. 

For each value of L, the probability of randomly changing 
the spatial location of an individual was varied from p = 
0.0001 to p = 1 in 20 logarithmically spaced increments. 
For each value of p, 25 independent simulations were 
performed in which the population was allowed to evolve 
until either speciation or fixation occurred and the number 
of speciation and fixation events was recorded. These data 
were used for interpolation in order to determine the critical 
probability of long-distance interactions (pc) as a function 
of L. The critical probability of long-distance interactions is 
defined as the p such that speciation is expected with 
probability 0.5. Figure 1 (a,e,f,g) provides a schematic 
diagram showing how the mating neighborhood changes as 
p is increased. 

The effect of including limited long-distance dispersal on 
evolutionary dynamics is depicted graphically for a 
representative two-locus population in Figure 3c with p = 
0.01. Despite the presence of long-distance interactions, the 
evolutionary dynamics of the population are qualitatively 
similar to those of a purely 3×3 locally mating population in 
this case; the population self-organizes into groups of 
similar individuals with mild boundaries to gene flow 
between them. As the population structure continues to 
coarsen over time, these boundaries coalesce and begin to 
form complete boundaries between subgroups, resulting in 
speciation. As the speciation process proceeds, long-
distance mating interactions between individuals from 
different groups results in patches of inviable offspring, but 
this does not significantly alter the overall population 
structure or disrupt the speciation process. 
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Fig. 7. Probability of speciation as a function of the number of 
interacting loci (L) and the probability of long-distance interactions (p). 
Each data point denotes the proportion of 25 independent simulations 
that resulted in a speciation event. The critical points (pc) at which the 
probability of speciation vs. fixation is 0.5 are shown as solid squares. 
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Fig. 8. Critical value of the probability of long-distance interactions (pc) 
as a function of the number of interacting loci (L). The shaded region 
encapsulated by the dashed horizontal lines denotes the range of p such 
that the interaction topology possesses a characteristic path length (λ) 
typically associated with a small-world network (see text). The solid line 
delineates between the range of p in which speciation is the expected 
outcome and the range of p in which fixation on a single genotype is the 
expected outcome. Empirical values correspond to the black squares in 
Fig. 7. 

While the case depicted in Figure 3c shows that the 
evolutionary dynamics of the population are robust to some 
long-distance interactions, this result is dependent upon the 
number of interacting loci (L) and the probability (p) that 
these long-distance interactions occur. Figure 7 depicts the 
probability of a speciation event, which is the expected 
outcome when p = 0, as a function of both p and L. As p
increases, a phase shift occurs from speciation to fixation 
on a single genotype as a critical number of long-distance 
interactions are reached. The critical p at which this phase 
shift occurs is dependent upon the number of interacting 
loci. This occurs as increasing L increases the time required 
for the completion of a speciation event exponentially 
(Table 1), rendering systems with more interacting loci 
more susceptible to the disruptive effects of sporadic long-
distance mating interactions.  

The critical value of long-distance interactions (pc) at which 
the phase shift occurs decreases exponentially in L (R2 = 
0.89, Figure 8). As p increases beyond a critical threshold, 
the population begins to behave as if mating is random; 
genetic diversity is quickly lost and the population 
converges on a single genotype. However, the characteristic 
path length (λ) of the interaction topology resembles that of 
a small-world network at approximately p = 0.005, which is 
almost an order of magnitude smaller than the lowest 
critical value obtained (L = 10, pc  = 0.022). Thus, self-
organizing speciation is robust to a large subset of the range 
in which the interaction topology is considered to be small-
world. 

IV.  DISCUSSION AND CONCLUSIONS

Even in biotic communities where mating strategies are 
primarily localized, it is expected that interactions may 
occasionally occur between previously spatially distant 
individuals. The focus of this study was on the relaxation of 
the assumption of purely localized interactions, and how 
this affects the evolutionary dynamics of self-organized 
speciation due to multiple underdominant loci [3][8]. We 
found that the speciation process was robust to contiguous 
mating neighborhood sizes that could be significantly larger 
than strict nearest neighbors and that the relative (δ), as 
opposed to absolute (d), mating neighborhood size was the 
more relevant governing parameter. This implies that 
qualitatively similar evolutionary dynamics can be expected 
on domain sizes larger than those considered herein, so 
long as δ remains approximately constant. We also found 
that the speciation process was robust to probabilities of 
long-distance dispersal (p) that fell well into the range of 
so-called small-world networks. However, increasing either 
of these parameters (δ or p) beyond a critical threshold 
caused a phase transition to behavior similar to that of 
random mixing, resulting in fixation upon a single 
genotype. Thus, the structural characteristics of the 
interaction topology have a pronounced effect upon the 
evolutionary dynamics of a population. 

One metric of particular interest is the characteristic path 
length (λ) of the potential interaction topology. Spatially 
localized interaction topologies have a very high 
characteristic path length, which results in the slow 

6

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



dissemination of genetic information throughout an 
evolving population. In contrast, random interaction 
topologies have a very low characteristic path length and 
genetic information is able to spread quite rapidly.  
Analysis of “small-world” networks [22] has shown that it 
only takes relatively few long distance interactions for the 
characteristic path length of a primarily localized 
interaction topology to approach that of a random 
interaction topology. Preliminary experimentation indicates 
that the critical values of the relative mating neighborhood 
size (δc) and the probability (pc) of long-distance 
interactions found in this study correspond to quantitatively 
comparable characteristic path lengths. This relation will be 
studied more rigorously in future work. We also plan to 
investigate how these governing parameters affect the 
structural characteristics of the emergent mating topologies 
[24] of this system, which can differ significantly from the 
potential interaction topologies studied here. Further, future 
research will analyze the combined effects of relative 
mating neighborhood size and probabilities of long-distance 
dispersal, and focus on other forms of interactions including 
sex-specific migration. 

The results presented herein explore the sensitivity of the 
evolutionary dynamics of spatially extended populations to 
the relative size of the interaction neighborhood and to 
limited long-distance interaction events. These results 
emphasize the importance of both (i) collecting sufficient 
data to properly determine the true nature of the spatial 
interactions of the system being studied and (ii) building a 
model that respects the relevant aspects of the interaction 
topology observed. While such data collection is certainly 
nontrivial [20][21], the results of this study suggest that 
these system parameters may play a critical role in 
governing the dynamics of the population. Interaction 
topologies commonly employed in models of evolutionary 
dynamics, such as nearest neighbor interactions, panmictic 
interactions, or metapopulation structures may be too 
general and overly simplified to accurately reflect the 
dynamics of the population one is attempting to model.  
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