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Abstract— Evolutionary processes have emerged as the defining
feature of “life” in Artificial Life (Alife). When studying the
behavior of a particular Alife form, the question naturally
arises, whether a particular run of an Alife experiment exhibits
evolutionary behavior or not. This paper presents the Observer
Framework, a formal framework for answering this question,
based upon the notion of observations made in the Alife model
at hand. Starting with defining entities and their relationships
observed during the runs, the framework prescribes a series of
definitions (decisions) that the observer of the Alife form needs
to make, followed by axioms (conditions) that must be met in
order to establish evolutionary behavior in particular runs. We
use the example of Cellular Automata based Langton Loops to
illustrate the Observer Framework, and suggest directions for
further Alife research, based upon the framework design and
the case study analysis.

I. THE PROBLEM OF OBSERVING ARTIFICIAL LIFE FORMS

Researchers in Artificial Life (Alife) routinely propose
computational environments and experiments that exhibit be-
havior of which life-like properties are claimed. Most of this
work implicitly equates life-like behavior with evolutionary
behavior (a standpoint that is not universally shared outside
of Alife). Following this approach, the first question that
arises when observing a “run” of an Alife experiment is
what are the entities, or artificial “organisms” of which one
may claim to observe evolutionary behavior. The problem
of identifying time-varying entities has been recognized by
Lehaniv and Dautenhahn [1], but is typically kept implicit in
discussions of Alife experiments. Instead, researchers appeal to
their reader’s intuition to identify the entities of evolutionary
behavior, similar to biologists who rarely worry about how
to define the organisms that are the subject of study in a
breeding experiment.1 Problems arising from this informal
approach include ambiguities in Alife research results, and the
impossibility of automating the process of detecting artificial
life in systematic experiments.

The first goal for a framework to precisely identify evo-
lutionary behavior shall therefore be to formally distinguish
the subjects of study, namely the objects of which life-like

1Sometimes, such a discussion is fruitful in biology, such as the view of
mitochondria as organisms, replicating within higher life forms and through
their maternal ancestor lines.

behavior is expected, from other phenomena in the experiment.
Throughout the paper, we emphasize that such distinctions
and deliberations are crucial decisions of the experimenter,
which we call the “observer”. Based on the precise notion
of populations resulting from the identification process, the
observer can attempt to identify the ingredients of evolutionary
processes, including reproduction, heredity, variation due to
mutational changes, and finally reproductive success based on
natural selection [2], [3]. The Observer Framework describes
each of these concepts as mathematical relationships between
organisms, and thereby outlines a formal framework for iden-
tifying evolutionary behavior in Alife studies.

The paper is organized as follows: Section II formally de-
fines the Observer Framework. Section III presents the central
components of evolutionary processes cast as conditions on
entities in the framework. Section IV applies the framework
to a well-known Alife experiment—Langton Loops—as a
case study. The remaining sections describe related work,
limitations and conclusions, including design suggestions for
Alife studies arising from the presented framework.

II. THE OBSERVER FRAMEWORK

We shall see that the way in which the observer looks
at the experiment has a decisive impact on his ability to
identify evolutionary processes. The constructivist nature of
our approach requires the observer to make these deliberations
explicit. To distinguish them from general Definitions, we
call them Observer Decisions. Axioms are used to specify
conditions, which need to be established by the observer. For
each fundamental component of evolution—self-reproduction,
mutation, heredity, and natural selection—the Observer Frame-
work specifies one or more Axioms specifying properties
of the entities and relationships between entities (resulting
from his decisions) that justify the claim of the respective
component.

To illustrate the framework throughout this section, we
shall use a simple example of a binary string based artificial
chemistry, which we call CBS (Chemistry of Binary Strings).
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A. The Formal Structure of the Framework

We assume that the observer gains information on his
Alife experiment by making snapshot-like observations, called
states.

Definition 1: [States] Σ: set of observed states of an Alife
model in a run.

The exact definition of a “state” varies from one Alife exper-
iment to another owing to their irreducible design differences
as well as the level of abstraction at which observations are
being made. For example, in case of CBS, we can consider
an observed state as a multiset of binary strings such as
{00101, 00101, 10101, 010, 0100, 10100}.

Definition 2: [Observed Run] A sequence of states T =
[S1, S2, . . . , Sn], ordered according to the temporal progres-
sion of the corresponding observations, represents one ob-

served run of the experiment. The set of all observed runs
of an experiment is denoted by T .

The fundamental role of state sequences in the Observer
Framework highlights the dynamic nature of evolution, reflect-
ing the importance of weak emergence [4], a salient feature
of most Alife studies. The model assumes that observations
are made in form of snapshot-like states, which is suitable for
many Alife experiments, but may often fail to account for the
incremental nature of observations in organic life on earth.

B. Entities and their Characteristics

The first obligation of the observer is to define of what kinds
of entities life-like behavior may be claimed.

Observer Decision 1: [Entity Set] The observer defines
uniquely identifiable entities in every state. The set of all such
entities is denoted by E.

The criterion to select the set of uniquely identifiable entities
in a given state of the Alife model is entirely dependent on
the observation process defined by the designer of the model.
Thus for the same set of runs of an experiment, there may be
different observed states as well as entities.

For example, in CBS, we might identify individual strings
as entities. In order to make these entities uniquely iden-
tifiable, we would associate with every string an integer
tag i. An entity corresponding to the binary string s can
be represented as [s]i. Thus a possible set of entities
corresponding to the example state given above becomes
{[00101]1, [00101]2, [10101]3, [010]4, [0100]5, [10100]6}. Al-
ternately we may define an entity as a pair of strings
with three identical leftmost bits, which would lead to
{[00101, 00101]1, [10101, 10100]2, [010, 0100]3} as the set of
entities for the same state.

Observer Decision 2: [State Function] Let n be the num-
ber of states in an observed run. The function F : E �→
{1, . . . , n} returns for a given entity e the index i of the state
Si in which e is observed.

The next obligation of the observer is to identify charac-
teristics of entities that are of interest. To this aim, we use a
symbolic character space as follows:

Observer Decision 3: [Character Space] The observer de-
fines a set of characteristics for entities in the model in a

particular state or a sequence of states. Formally, define a
multi-dimensional character space Υ = Char1× . . .×Charn,
where Char i denotes the set of values for ith characteristic
forming one dimension in Υ with zero element 0chari . Each
entity e ∈ E is thus a point in Υ, say e = (v1, v2, . . . vn),
where vi ∈ Char i.

For a vector x = (a1, a2, . . . , ar), ith element (ai) will be
denoted as x[i]. The absence of a characteristic (Chari) in
an entity is represented by special zero element 0chari

. Note
that as a run of an experiment progresses, the dimensionality
of Υ may vary because new entities with novel characteristic
might emerge or entities with particular characteristic might
disappear.

C. Distance Measures

The next component of the Observer Framework is the
dissimilarity measure (D) to define the observable differences
(Diff ) between the characteristics of the entities in a popula-
tion.

Observer Decision 4: [Distance Measure] An observer de-
fines a feasible distance measure D : E × E → Diff ,
where Diff is the set of values to characterize the observable
differences between entities in E.

Each element in the range of the distance measure D, Diff
is a vector of values. Let Diff = diff 0 × diff 1 × . . .× diff n,
such that each element diff i represents the set of differences in
the values for characteristics Char i. The least element 0diff i

is used when there is no observed difference between two
entities for Char i.

Examples include the Hamming distance between strings
in CBS, the set of instructions where two programs may
differ, and functional differences under reaction semantics of
an artificial chemistry [5].

D. Observable Limits on Mutational Changes

Entities may change from state to state. The question arises,
which entities are considered new in a given state, and which
ones are recognized as the “same” as entities observed in a
previous state. In the Observer Framework, the observer needs
to specify the bound vector δmut, under which he recognizes
the persistence of an entity across states.

Reproduction also gives rise to changes in entities. In this
case, an observer has to ascertain whether an entity is a
descendent of another entity, or arises de novo. Thus, we intro-
duce a second bound vector, δrep , for observable reproductive
mutations. This bound is crucial when working with models
where epigenetic development in the entities can be observed.
In such models—including typical examples from organic
life on earth—the “child” entity and the “parent” entities
initially do not resemble each other. The observer has to wait
until the epigenetic developmental process unfolds, and then
compare the entities for similarities in their characteristics. In
less conventional experiments, the bound δrep allows us to
distinguish between parent entities and other “input” entities
involved in the reproductive process, and between child entities
and other “output” entities. Consider, for example, an artificial

24

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



chemistry where entity A reproduces according to reaction
A + B → 2A′ + C, where A′ is a mutant child entity of A.
Implicit in this notation is the observer decision that the pair
A and A′ enjoy sufficiently similarity with respect to their
characteristics to be considered “parent” and “child”, while
the pairs B and A′, and A and C do not. The bounds on
observable differences are formally defined as follows:

Observer Decision 5: [Mutation Bounds] Based upon the
choice of the distance measure D, an observer selects suitable
vectors δmut, δrep ∈ Diff . Each component of δmut and δrep
specifies a threshold on the recognizable mutational changes
for the corresponding characteristic.

The choice of δmut and δrep critically affects further infer-
ences. For example, large values for both bounds would result
in the lack of identification of variability in the characteristics,
which would result in difficulties to establish natural selection.
Small values for δmut would lead to a failure to recognize
persistence of an entity across states under changes, and
small values for δrep make it hard to establish a reproductive
relationship among entities, leading to a failure of establishing
sufficient levels of fecundity.

E. Recognition and Causality

With these bounds in place, we can now formally define
persistence of entities across states.

Definition 3: [Recognition Relation] An observer estab-
lishes persistence of entities across states of the model with
(or without) mutations by defining the partial function Rec:
E ↪→ E.

The relation Rec must satisfy the following axioms:
Axiom 1: ∀e, e′ ∈ E . Rec(e) = e′ ⇒ F (e′) = F (e) + 1.
Informally, the axiom states that the entities to be recognized

as same under mutational changes need to be observed in
successive states. This is to avoid the cases where observed
entities temporarily get out of the observations for certain
states and then again reappear later, which might lead to
unsound conclusions pertaining to persistence of entities. Note
that in situations where the information available on each state
is incomplete, such as typical observations on organic life on
earth, this axiom would need to be weakened.

Axiom 2: ∀e1, e2 in Si. �∃e′ in Si+1 such that Rec(e1, e
′) ∧

Rec(e2, e
′).

This means that no two different entities in one state can
be recognized as the same in the next state.

Axiom 3: ∀e, e′. if Rec(e, e′) then Diff(e, e′) ≤ δmut.
Informally, if an entity in a state is recognized as being

the same as another entity in the following state, then the
difference between them must be below the mutation bound.

We aim to define reproduction from first principles, by
reducing it to a causal relationship that satisfies a number of
conditions.

Observer Decision 6: [Observed Causality] C ⊆ E × E
If C(e, e′) holds, we say that e causes e′ or e gives rise to

e′. The relation C must satisfy the following axiom:
Axiom 4: [Causality] If C(e, e′) for some entities e, e′,

then F (e′) = F (e) + 1 and � ∃e′′ ∈ F (e).Rec(e′′, e′).

Informally, if an entity e is causally connected to another
entity e′, then the observer must observe e′ in the next state
of e and never before.

Notice that in order to establish a causal relation between
entities, the observer need not refer to the underlying reaction
semantics or “inner workings” of the experiment. Instead, the
observer is free to claim causality, subject to the causality
axiom above, as well as further conditions pertaining to the
resulting notion of reproduction. This may—in some cases—
lead to problematic conclusions as further discussed in Sec-
tion VI.

F. Observation Process

All observer decisions combined make up the Observation

Process for a given Alife model Γ = (Σ, T ).
Definition 4: [Observation Process] An observation pro-

cess Obs is defined as a computable transformation from the
underlying universe of Alife model Γ to observer decisions
Π = (E, F , Υ, D, δmut, δrep , C) and represented as
Γ �→Obs Π.

The condition of computability ensures that the framework
is feasible [6], which means the observation process only
involves steps that can be algorithmically programmed by the
designer of the model, and infeasible observations defined in
terms of non-verifiable claims (e.g. claims based on ‘meta-
information’) can be avoided.

III. COMPONENTS OF EVOLUTION

Having defined the observation process, we proceed now
with observer decisions pertaining to the components of evo-
lutionary processes.

A. Reproduction

Before we can stipulate the properties required for claiming
the presence of reproduction in an Alife experiment, we need
an auxiliary relation Δ to determine that the differences due
to the reproductive mutations are bounded by δrep .

Definition 5: Δ ⊆ E × E such that for (e, e′) to be in Δ,
their differences for each single characteristic Chari must be
bounded by δrep [i], that is, ∀Char i ∈ Υ . D(e, e′)[i] �i δrep [i]

Based on the thus established notion of causal relationships
between entities and Δ, we define AncestorOf relation,
which connects entities for which an observer can establish
descendence relationship across generations.

Definition 6: AncestorOf = ( (C ∪ Rec)+ ∩ Δ)+

In this definition the (inner) transitive closure of C ∪
Rec captures the observed causality C across multiple states
even in cases when parent entities might undergo mutational
changes (Rec) before child entities complete their epigenetic
development with possible reproductive mutations. Intersec-
tion with Δ ensures that causally related parent and child
entities are not too different from each other, i.e. reproductive
mutational changes remain below the bound δrep . The outer
transitive closure ensures that all entities in an ancestor lineage
are considered ancestors themselves.

When for two entities e, e′ ∈ E, (e, e′) ∈ AncestorOf ,
we say that e is observed as an ancestor of e′.
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Fig. 1. Graphical view of the relationships between entities in successive
states. Recognition relation Rδmut

, Causal relation C, and AncestorOf .

Figure 1 depicts graphically the relationships between en-
tities in successive states. Vertical lines represent the states
(S0, S1, S2, S3, S4). Various kinds of arrows represent differ-
ent relationships: recognition relation Rδmut , causal relation
C, and AncestorOf . The end points of the arrows on state
lines represent entities.

This definition formally captures the recognition of repro-
ductive relationships under parental mutations together with
reproductive mutations in the child entities along with their
epigenetic developments, which was believed to be difficult to
formalize before [7]. The formalism also captures the case of
multi-parent reproduction (without resorting to the concept of
species) since a child entity can have several ancestors that
are not ancestor of each other.

Using the AncestorOf relation, we now consider repro-

duction. For a given run of an experiment, the observer defines
the following Parentδ relation:

Definition 7: Parentδ = { (p, c) ∈ AncestorOf | there
is no intermediate ancestor of c before p}.

The condition in defining Parentδ is used to ensure that p
is the immediate parent of c. Using the Parentδ relation, in
order for the observer to establish reproduction in the model,
the following axiom must hold.

Axiom 5: [Reproduction] There exists an observed run
T ∈ T of the model, where at least one instance of repro-
duction is observed, that is, Parentδ �= ∅.

B. Fecundity

Though entity-level reproduction is essential, more signif-
icant for natural selection is the population-level collective
reproductive behavior. The observer needs to establish that
there is no perpetual decline in the size of the population, and
thus there is a statistically sufficient number of generations that
exhibit non-negative population growth. Formally we require
the observer to establish fecundity by satisfying the following
axiom:

Axiom 6: [Fecundity] There are statistically significantly
many generations of entities G1, G2, . . . , Gm such that
(∀Gi ⊆ E)(∃Gj>i ⊆ E) . |Gj | ≥ |Gi| where Gj = {c ∈
E | ∃a ∈ Gi . (a, c) ∈ AncestorOf}.

Here, the operator |.| denotes the cardinality of a set. We
can now formulate another important axiom from evolutionary
perspective, which asserts that reproduction in the model
should not cease because of harmful mutations.

Axiom 7: [Continuity of Reproduction under Mutations]
Some mutations preserve reproduction. In other words, there
exists entities e ∈ E that reproduce (with mutations) and one
of the (mutant) children of e also reproduces.

C. Heredity

Heredity requires mechanisms to prevent the reversal of
mutations in future generations by new mutations. To establish
heredity in Alife models, sufficiently many generations of
reproducing entities need to be observed to determine that
the number of parent-child pairs, where certain characteristics
were inherited by child entities without further mutations, is
statistically significant. We can express this condition by the
following axiom:

Axiom 8: [Heredity] Let Ω be a statistically large observed
subsequence of a run T , and let Parentall be the set of
all parent-child pairs observed in Ω. Then, there exists a
characteristic i such that the set of entities in Ω, where the
ith characteristics were inherited without (further) mutation is
statistically significant.

The axiom of heredity together with the axiom of continu-
ity of reproduction under mutation ensures that reproductive
variation is maintained and propagated across generations.

D. Natural Selection

There are several notions of selection in the literature on
evolutionary theory [8], [9], [10], [3]. In the spirit of the
Observer Framework, we choose to define natural selection as
a statistical inference of average reproductive success, which
needs to be established over an evolutionary time scale i.e.,
over a statistically large number of states in a state sequence.
Detailed notions of selection using fitness or adaptedness
relative to the specific abstraction of “common environment”
shared by entities and “the environment-entity interactions” are
beyond the scope of this work. Here, we define the following
(necessary) axioms for the natural selection:

Axiom 9: [Significant Observations] The observer must
observe a statistically significant population of different re-
producing entities, say Λ (|Λ| � 1), for a statistically large
number of states in a state sequence T ∈ T .

Axiom 10: [Sorting] The entities in Λ should be different
with respect to their characteristics and there should exist
differential rate of reproduction among these reproducing
entities. The rate of reproduction for an entity is the number
of child entities it reproduces before it undergoes mutations
beyond δmut, or gets eliminated from the population.

The following axioms are aimed at establishing a distinction
between natural selection and neutral selection [3].

Axiom 11: [Heritable Variation] There must be variation
in heritable mutations in population of Λ. Formally, let
Childmut be the set of child entities carrying reproductive
mutations. Let VarChildmut ⊆ Childmut be the subset of
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those child entities having mutations different from other
entities. We require that |VarChildmut| � 1.

This axiom implies that the number of child entities carrying
different mutations is statistically significant.

Axiom 12: [Correlation] There must be a non-zero cor-
relation between heritable variation and differential rate of
reproduction. In other words as the value of characteristics
inherited by the child entity changes, the rate of reproduc-
tion also consistently changes. Based upon the environmental
pressures with respect to a particular characteristic, the rate of
reproduction might either increase or decrease owing to the
change in characteristic.

These two axioms state that a significant variation with
respect to their characteristics is observed in a population of
entities, which must be maintained for evolutionarily signif-
icant periods, that this variation is caused by differences in
inherited characteristics, and that this variation directly affects
the rate of reproduction.

IV. CASE STUDY: LANGTON LOOPS

Having formalized the components of evolutionary pro-
cesses to be observed in an experiment, we illustrate the
Observer Framework the following section using Langton
Loops as a case study.

A. General Considerations

In general, for a given Alife model, we suggest the following
steps to instantiate the framework: The observation process
works on runs of Alife experiments, which iteratively change
the underlying states based upon the application of the updat-
ing rules. The observation process starts with the identification
of states of the experiment (Σ) and state sequences (T ) during
runs.

For every state in the state sequence, the observer needs to
identify a set of well-defined entities with suitable tagging
for individual identification (E). These entities need to be
described in terms of their measurable characteristics (Υ). The
next important task is to define the limits on the observable
mutational changes in individual characteristics of the entities
(δmut, δrep), which will in turn define the recognition relation
(Rδmut ) to determine entities persisting across states as well
to determine whether two entities might be considered for
descendent relationship.

Once the sets of entities in various successive states of the
Alife model as well as their characteristics are known, we turn
our attention to the evolutionary relationships between them.
These relationships depend upon the intermediate causal rela-
tion (C) between the entities as observed under the mechanism
of observation process. Using the limits on mutational changes
as well as causal relationship between entities, we proceed
to define the ancestor (AncestorOf ) and the parent sets
(ParentΔ). These sets determine whether there are entities
which might be potentially reproducing in the model, even
with observable differences between parent and child entities
(Δ).

The next stage of the observation process is to ascertain
the level of effectiveness of evolution in the model. Using the
long term observations on the model for a statistically large
number of generations, one can infer some statistical patterns
for degrees of heredity and variation.

This process establishes the validity of all or some axioms
of the framework for the given Alife model, which provides
clues to the degree in which evolutionary processes might be
at work for the Alife experiment at hand.

The case study on Langton Loops [11], based on Cellular
Automata, will illustrate this process in detail. Alife models
based on cellular automata offer a good example for an
approach that emphasizes the observation process, since in
such models replicating structures and their variations can
be observed only with respect to a specific high level of
abstraction.

B. Entities and Abstractions

We consider the case of two dimensional CA lattice based
model. An observation is defined on the CA model by as-
suming an underlying coordinate system such that each cell
in a two dimensional cellular automata (CA) lattice can be
associated with unique coordinates (represented as (x, y).) A
cell is then completely represented as 〈(x, y), s〉, where s ∈
[0..7] is the state of the cell. When a cell is in state 0, it is also
known as a quiescent cell. For a given cell 〈(x, y), s〉 ∈ Cell,
we access its coordinates as follows: cox(〈(x, y), s〉) = x,
coy(〈(x, y), s〉) = y, which can be extended to the set of cells:
∀Z ⊆ Cell, co+

x (Z) =
⋃

c∈Z cox(c), co+
y (Z) =

⋃
c∈Z coy(c).

A CA-based model is initialized by setting a finite number
of selected cells to non-quiescent states. At each step, the state
of every cell of the model is changed synchronously as per the
state transition rules. We define the state of the Langton model
as the set of all non quiescent cells, Σ as the set of all possible
states, and T as the set of state sequences obtained starting
from some specific configuration. In the following discussion
we will consider a fixed run given as T ∈ T , starting with a
specific initial state given in Figure 2 (Time 0).

a) Entities: We define entities as pairs consisting of two
values: X , a connected set of non-quiescent cells, and an
associated pivot. Two cells are connected only if there exists a
consecutive sequence of neighboring non-quiescent cells join-
ing them in the lattice. The pivot of such a set are coordinates
of a cell uniquely associated with an entity in CA lattice in a
particular state. To define a pivot function, an observer may
choose the coordinates of the top left corner cell of an entity.
Formally pivot(Z) = (min{co+

x (Z)},max{co+
y (Z)})This

gives an obvious characterization for a two-dimensional char-
acter space Υ = Char1 × Char2 with Char1 being the set
of all non-quiescent connected sets of cells and Char2 being
the set of corresponding pivots, which can also be used to
distinguish identical entities in the model.

b) Distance function: D : E × E → {0, 1} × {0, 1} is
defined such that ∀e, e′ ∈ E . D(e, e′) = (d1, d2), where d1

and d2 are defined as follows: d1 = 0 if both entities have same
number of cells arranged in same geometric arrangement, and
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d1 = 1 otherwise; d2 = 0 when the pivot for both the entities
are the same and 1 otherwise.

c) Limits on Observable Mutations: The observer next
selects δmut = [1, 0], which means that observer can recognize
an entity in future states even with mutations (changes in the
states, number, and the arrangement of cells comprising the
entity) provided that the pivot remains the same. In contrast,
the observer chooses δrep = [0, 1] which implies that for repro-
duction, the observer demands identical geometrical structure
of the parent and child entities, although they may have
different pivots—this is essential to capture exact replication
of the loops.

d) Recognition relation: Rec : E → E is defined as
follows: ∀e, e′ ∈ E,Rec(e) = e′ ⇔ [F (e′) = F (e) + 1] ∧
[D(e, e′) ≤ δmut]

Informally this means two entities in consecutive states are
recognized same only if they have the same pivots. This also
means that the observer can recognize an entity even with
changes in the number, state, and geometrical arrangement in
the cells of an entity across states provided that entity does
not shift in the CA lattice (which would result in the change
of the pivot).

Lemma 1: Rec satisfies Axiom 1, Axiom 2, and Axiom 3.
Proof: Axiom 1 and Axiom 3 are satisfied by definition.

Axiom 2, which states that Rec is an injective function holds
because no two entities in the same state share the same pivot.
This is because pivot as defined above is connected to all other
cells of the entity and all the non-quiescent cells which are
connected in any state are taken together as one entity. Thus
two different entities in the same state always consist of cells
such that cells in one entity are not connected with the cells
of second entity, and hence always have different pivots.

e) Causal relation: The relation C between entities in
consecutive states is defined as follows: C ⊆ E × E such
that ∀ e, e′ ∈ E where e = [Ze, pivot(Ze)] and e′ =
[Ze′ , pivot(Ze′)] we require

(e, e′) ∈ C ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

1. co+
x (Ze) ⊃ co+

x (Ze′)
2. co+

y (Ze) ⊃ co+
y (Ze′)

3. pivot(Ze) �= pivot(Ze′)
4. F (e′) = F (e) + 1

Intuitively what we demand with above definition of causal
relation C is that child entity breaks off from the parent entity
at certain state, as can be seen in Figure 2 at time step 127.

Lemma 2: The causal relation C defined above satisfies the
Causality Axiom.

Proof: Condition F (e′) = F (e)+1 insures that e and e′

are not observed in the same state. To establish that e′ is not
the result of mutations in some other entity e′′ observed in past
(i.e., [F (e′′) = F (e)] ∧ [Rec(e′′) = e′]) we note that because
of the definition of Rec, e′′ and e′ would otherwise have the
same pivots, which means pivot of e′′ will be included in the
set of cells in e (since [co+

x (Ze) ⊃ co+
x (Ze′)] ∧ [co+

y (Ze) ⊃
co+

y (Ze′)]), which is not possible because e and e′′ being
different entities in the same state cannot have cells in common

Fig. 2. Self-Reproduction in Langton loops (images generated using
Bachmutsky’s Java implementation [12])

including pivot as argued above in the proof of previous
lemma.

C. Reproduction and Fecundity

Lemma 3: Axiom of Reproduction and the Axiom of
Fecundity are satisfied by the entities and abstractions on
Langton Loops described above.

Proof: These two axioms can be established by the
observer in a specific state sequence as exemplified in Figure 2
and Figure 3 by repeatedly applying the recognition relation
Rec when entities are changing in number and states of cells
(retaining the pivots) and applying the causal relation when a
parent entity splits (e.g. at Time=127). The relation Δ connects
the initial parent entity and the child entity at Time=151.

With respect to Figure 2, an entity is identified at Time=0
with associated pivot. Between time steps [1 . . . 126] entity
changes in number and states of its cells but the pivot remains
the same, hence as per the definition of Rec, the observer can
recognize the entity in these successive states. At Time=127,
the (parent) entity is observed to be splitting into two identical
copies. One of these is again recognized as the original parent
entity because of its pivot and the second entity would be
claimed to be causally related with the parent entity as per
the definition of C. To see this, notice that the parent entity at
Time=126 contains all the cells of the child entity appearing
at Time=127, which satisfies the definition of C. Between
time steps 128 and 151 both parent and child entities undergo
changes in the number and states of their cells but their pivots
remain fixed. Hence they can again be recognized. Finally at
Time=151 the child entity becomes identical to the original
parent entity, therefore the parent entity at Time=0 and the
child entity at Time=151 are related using Δ. The transitive
closure finally give us the final descendence relationship
between the parent and the child entity.

D. Mutations, Inheritance, and Natural Selection

Langton loops, though self-replicating, do not exhibit be-
havior that can be interpreted as reproductive and inheritable
mutations. This can be attributed to the choice of the un-
derlying state transitions defined for the cells in the model.
Evoloops, Samaya’s extension of Langton loops represent
an attempt of adding inheritable mutations to this style of
Alife experiments [13]. In his model, the loops differ in the
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Fig. 3. Fecundity across generation in a population of Self Replicating Lang-
ton Loops (image generated using Bachmutsky’s Java implementation [12])

number and geometrical arrangement of cells. The population
witnesses variations of different kinds such that different
reproducing loops are scattered on the lattice, forming irregular
colonies. Evoloops and their evolution can be analyzed in the
Observer Framework by suitably modifying the definition of
the distance measure D to measure the differences between
the entities in the number and geometric arrangement of cells
and by changing limit δrep such that the observer is able to
establish a descendence relationship even when the parent and
the child entities are not identical.

V. RELATED WORK

Not much work focussing on the observation process for
Alife studies has been reported in literature. The framework
presented here, however, can be seen in contrast to other
proposals to define numerical parameters or statistics [6] to
recognize life in a model. We are not sure whether there can
be simple numerical definitions capturing the essence of life
in arbitrary models and even if so does not seem to be the
case with the current proposals. The difficulty arises out of
intricate nature of selection inevitably involving non trivial
identification of the population of evolving entities.

Langton defined a quantitative metric, called lambda pa-
rameter, to detect life in any generic one-dimensional cellular
automata model based on transition rules [14]. Bedau et al.
discuss a classification of long-term adaptive evolutionary dy-
namics in natural and artificially evolving systems by defining
activity statistics for the components, which quantifies their
adaptive value [15]. [10] presents a set theoretic logical
framework to formalize evolutionary dynamics for organic life
on earth.

Self-reproduction, which has a long history of research
starting from the late 1950s [16] has evaded precise formal
definition applicable to a wide range of models [1]. In some of
the discussions related to self-replication in cellular automata
models [13], [17], formalizations of reproducing structures
are presented, but they do not attempt to provide a general
framework for observing reproduction or other components of
evolutionary processes. The existing attempts at formalizing
reproduction are reminiscent of our definition of entities
(loops) as discussed in Section IV.

In other work [18], we proposed a multi-set theoretic frame-
work to formalize self reproduction (possibly with mutations)
in dynamical hierarchies in terms of hierarchal multi-sets and
corresponding inductively defined meta-reactions. In the sprit
of the Observer Framework the “self” in “self-reproduction”
is defined there in terms of observed equivalences between
entities. We also introduced constraints to distinguish a simple
“collection” of reacting entities from genuine cases of “emer-
gent” organizational structures consisting of semantically cou-

pled multi-set of entities.

VI. LIMITATIONS

The decision to equate life with evolutionary processes
excludes for the scope of this work interesting processes
that in our view lie outside the set of essential ingredi-
ents of evolutionary processes, including metabolism [19],
self-organization [20], and autonomous and autopoitic pro-
cesses [21].

The framework does not place direct emphasis on the
notion of emergence. In our current setting, the notion of
strong emergence is only implicitly present and indeed the
element of surprise [22] often associated with emergence
is not represented in the framework. Similarly the the el-

ement of autonomy of emergent processes with respect to
the underlying micro-level dynamics is not addressed in the
framework. Nonetheless the idea of weak emergence [23],
which emphasizes the importance of experimental simulation
for the emergence of high level macro-states, is fundamental
to the framework.

Like any other generic specification framework, the Ob-
server Framework also suffers from the weakness of admin-
istering false positives. False positive refers to a situation
where observations and consequent inferences on a model
result in a claim of the presence of a certain property in
the model which actually does not exist. The problem of
false positives is due to the necessarily domain-independent
definition of causality, which cannot account for actual causal
relationships within the underlying micro-level dynamics of
the experiment. The generic nature of causality might give
rise to false claims on the presence of evolution in the model.
For example, an observer might decide to “ignore” entities
in some states in the beginning and then choose later on to
observe them in some other states so that to use them for
establishing (false) evolutionary relationships, which would
not have been possible had he not preferred to ignore them
earlier. The problem of selectively observing entities in various
states requires additional constraints in the framework.

VII. CONCLUSION

A. General Remarks

We have formalized an implicit underlying component of
Alife studies, namely the observation process, by which en-
tities are identified and their evolution is observed in par-
ticular runs. Under the assumption that the essence of life-
like phenomena is their evolutionary behavior, we developed
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a framework to formally capture basic components of evolu-
tionary phenomena. The observation process as specified in the
framework may be carried out manually or can be automated
and integrated within the model.

The Observer Framework defines aspects of life including
recognition of reproductive relationships under parental muta-
tions as well as reproductive mutations in children along with
their epigenetic developments, which were previously believed
to be difficult to formalize [1], [7]. The framework also cap-
tures the case of multi-parent reproduction (without resorting
to the concept of species), and the case of reproduction without
overall growth of the population [1].

The framework design and the case study analysis provides
the following clues for Alife experiment design to improve the
ability to witness evolutionary phenomena in runs.

B. Design Suggestions for Alife Research

1) Sufficient Reproduction with Variation: Alife experi-
ments should be designed such that there exist a potentially
large set of reproducing entities, which are semantically re-
lated and have significant variation in their characteristics.
Semantic relatedness means that sufficiently many variations
of reproducing entities should be reproducing themselves,
since otherwise most of the reproducing entities would have
to appear de novo during experiment runs, which will make it
difficult to meet the axiom of Heritable Variation (Axiom 11).

2) Measurable Rates of Reproduction: Alife experiments
should be designed such that it is possible to impose measures
for determining the rates of reactions which can be used to
estimate variation in the rates of reproduction in a population.
This measurement of reproduction rates should be independent
of the algorithm that selects entities for reaction. It can be
argued that in Alife experiments, where all (reproductive)
reactions take place in a single step, natural selection—which
can be observed only when different entities reproduce at
different rates—may be difficult to observe.

C. Further Work

The Observer Framework can be extended in several inter-
esting directions, including the following:

• The essence of strong emergence could be captured
by considering several observation processes at different
organizational levels.

• Conditions for overlapping evolutionary processes—
examples from real life include co-evolution, and sexual
selection versus environmental selection—could be for-
mulated within the framework.

• Stricter axioms may be able to partially overcome the
problem of false positives, such that false claims of
causality are bound to give rise to insurmountable dif-
ficulties in meeting other constraints.

• Additional concepts and axioms may lead to distinction
between genotype and phenotype, and a definition of
Darwinian and Lamarckian evolution within the Observer
Framework [3]. This distinction may then lead to a
precise definition of sexual reproduction [24].

• Further insights shall be gained by applying the frame-
work to novel classes of Alife experiments to refine the
framework.
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