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Abstract— This paper focuses on the capability of artificial
evolution to produce tool use behaviors of different complexity
in simulated robotic agents and in the absence of learning or
other lifetime methods. The results show by example that tool
use behaviors of different complexity can evolve and do not
necessarily rely on reasoning abilities.

I. INTRODUCTION

Evolutionary robotics takes advantage of artificial evolution
in order to create autonomous agents. The advantage of using
artificial evolution in the design process is the reduction of
human design bias [1]. One important feature of robotic auton-
omy is the ability to identify environmental objects as potential
tools that can be used by an agent in order to solve its task.
However, in evolutionary robotics the evolution of tool use
behavior has received hardly any attention so far. This might
be due to the assumption that higher-level tool use behavior
requires too complex sequences of fine-granular sub-behaviors.
Artificial evolution develops successful strategies by means
of generalisation and does not incorporate specific one-time
events of short period experience. Robotic tool use has so
far either been pre-programmed, as in industrial robotics, or
developmental lifetime approaches have been applied, such as
learning or object recognition algorithms, see e.g. [2, 3]. Pre-
programmed behaviors provide the precision that is needed
in industrial robots but not the flexibility that is expected of
truly autonomous agents. Developmental approaches on the
other hand make use of sophisticated hardware and software
imposing great demands on lifetime resources and yielding
relatively complex agents in contrast to the idea of simplicity
as promoted by evolutionary robotics. Some researchers go
another way by introduction of ambient intelligence [22] or
artifact intelligence [21]. However, these approaches distribute
the autonomy over several elements as opposed to a single
autonomous agent. The work described in this paper shows
by example that artificial evolution by itself can yield tool
use behavior of different complexity. That means, tool use of
different complexity is achievable without the agent learning or
reasoning about it during its lifetime. While it is true that only
the combination with lifetime methods will finally yield useful
engineering results this paper describes initial investigations of
the limits of artificial evolution regarding tool use complexity.
Another motivaton for investigating tool use it the proposal
of a new research direction for evolutionary robotics that has

been made in [16], the proposal of investigating the possibility
of an agent actively adapting the environment to its needs
instead of only adapting the agent itself to the environment
as this is usually done in evolutionary robotics experiments.
This has earlier been pointed out in [18] from a human
perspective. While [16] described initial experiments based
on stigmergy as observed in insects, in this work detached
tool use, i.e. the use of environmental objects as tools, is
considered as another approach following this direction. There
has been related work within the artificial life community.
In contrast to our investigation they used crudely simplified
grid-world simulations. For example, in [19] stigmergy was
investigated from an information-theoretic perspective and
[20] investigated social learning of tool use behavior. The latter
proposed social learning as an effective alternative to imitation
learning. In contrast to our work [20] applied learning methods
and outlined the combination with an evolutionary dimension
for future work.

II. BACKGROUND

There are no commonly agreed definitions of tools and
tool use because their qualities depend on context rather
than inherent properties. Obviously, there exists a circular
relationship between tools and tool use, i.e. the one is usually
used to define the other. Therefore tool and tool use definitions
are either too narrow (e.g. human-centered) or too general to fit
all possible scenarios. A thorough overview of this problem
and various approaches towards definitions can be found in
[17]. In this paper a tool is an environmental, persistant,
physical object that becomes a tool in the moment that it is
picked up by a tool-using agent. The successful use of the
tool in order to solve the agent’s task is then considered tool
use. It is important to note that objects that are already part
of the agent’s body or attached to its body from the start of
an experiment (e.g. sensors or grippers) are not considered as
tools within this paper, thus a tool must exist as a detached
environmental object prior to use. This is important because
the complexity of identifying an object as a potential tool,
approaching it and using it in a manner that is beneficial to
the user’s task seems to demand a higher level of deductive
analysis, reasoning and planning than using parts of one’s own
morphology. Consumable or non-persistant items such as food
or energy are also not considered as tools within the context
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of this paper. It is also noteworthy that random success must
be excluded from being claimed to be tool use. There needs
to be a significant difference in task efficiency when tools
are used and it must be possible to replicate such results.
A common view on tool use behavior is that complex tool
use behavior can only be learned during an agent’s lifetime
as it requires capabilities to reason about concepts of the
world or exploration facilities such as understanding cause-
effect loops, see e.g. [4]. While some researchers claim that
traits captured by natural evolution might be supportive in
the acquisition of tool use behavior [5] it is questionable
whether natural evolution alone would be able to capture
more complex or fine-granular tool use behavior. This seems
to be obvious considering that the direction of evolutionary
search is dependent on the life-time experience of former
generations, an experience that is abstracted and generalized
by the evolutionary process. However, the limits of purely
evolved tool use as defined in this paper have not been tested
in robotic simulation so far. We consider this study as an
initial test and encourage other researchers to take part in
the detection of these limits. Beside the contribution to the
theoretical body of knowledge regarding the relations between
tool use, evolution and development this might also guide
future engineering approaches that try to combine artificial
evolution and developmental approaches, thereby potentially
off-loading an agent’s long-term and general conceptualizing
efforts of the world to artificial evolution.

III. EXPERIMENTS

This paper focuses on initial investigations of limits of
evolved tool use behavior and presents only those setups
and results of a series of experiments that are relevant to
this question. The target of the experiments was to show by
example that evolved tool use behavior of different complexity
is possible, even if no lifetime learning is applied. The
experiments can be considered as initial steps towards a better
understanding of the interplay of evolutionary and learning
mechanisms adapting tool use behavior. Obviously, there are
countless possible variations of the experiments and many
different tools and tool use scenarios that can be thought
of. However, our initial experiments were designed with
simplicity in mind in order to achieve both comparable results
for analysis and examples of evolved tool use behavior that
indicate that artificial evolution alone could indeed produce
more complex behavior than commonly expected.

A. Experimental setup: The experiments have been per-
formed using the simulator YAKS that allows the simulation
of multiple Khepera robots [7]. Simulations never perfectly
reflect the real world due to different factors, such as hid-
den implementation bias, the availability of perfectly precise
sensors and other factors such as environmental influences
that the researcher might not be aware of (e.g. dynamic light
conditions) (cf. e.g. [1, 8, 9]). Therefore simulated experiments
usually need to be validated in real-world experiments. Choos-
ing YAKS is regarded as a compromise given the costs and
efforts that real-world experiments have because it implements

sampled measurements taken on real Khepera robots [10].
The experimental framework was inspired by experiments of
Búason (cf. [12, 10, 11]) who investigated pursuit problems
in co-evolutionary experiments. In his experiments a predator
agent had to catch an evasive prey agent. In the experiments
described in this paper the co-evolutionary aspect was not part
of the investigation, but the pursuit problem was considered
a suitable task for an initial setup in order to test tool use
behavior as it resembles the survival task of predators and
preys in nature. Basing the framework on Búason’s work
allowed the verification of the basic implementation in YAKS.
The environment is a square with a side-length of 468 mm (cf.
Figure 1) which allows the camera with a range of 500 mm and
a view angle of 360 degrees to cover the whole environment.
The diameter of the robotic agents is 55 mm and their infrared
proximity sensors have a range of 40 mm.

Fig. 1. Experimental environment. The thick lines represent the walls (that
can be detected by the agents, visually and by the infrared proximity sensors).
The black and white circles represent the predator and the prey, respectively.
Arrows indicate possible start directions. The white zones are the fixed starting
zones for the predator (left) and prey (right). The small circles with crosses in
represent the tools that can be placed on one of the other zones (gray). Only
one tool can be placed per zone (the picture shows one possible placement
of the tools). The thin lines show the division into nine logical zones (not
visible to the robot; only shown for illustration purposes).

Two different simple tools have been implemented that
can only be collected and used by the predator. Both take
immediate effect upon collection and are physically present
cylinders that can be detected by proximity infrared sensors
and cameras. In addition both tools are light sources that
can be distinctively detected by two different light sensors
that are implemented on the predator. Upon collection of the
motor tool, the predator gets a maximum speed equal to the
prey’s top speed. Prior to collection the predator’s maximum
speed is only half of the prey’s maximum motor speed. Upon
collection of the camera tool, the camera of the predator is
activated (produces null values prior to the collection of the
camera tool). Two simplifications should be noted in particular.
First, the perception is simplified by the fact that the two
different tools can be distinctively detected by two different
light sensors which makes it unnecessary for the agent to
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classify data coming from one sensor with respect to the two
tools. Secondly, the pick up procedure of the tool is regarded
as a reflex as proposed in [13] for tool use experiments, thus
the pick up procedure was not physically modelled, i.e. if the
experiments were to be transferred onto real robots one would
need to design these reflexes.

Both agents have six infrared proximity sensors on the front
and two on the back. The predator has a light sensor with a
resolution of eight digits in the one-tool experiments (i.e. in
the experiments where only one of the tools is present in the
environment) and an additional one in the two-tool experi-
ments(i.e. in the experiments where both tools are present in
the environment). The predator’s camera that can be activated
upon collection of the camera tool has a resolution of 5 digits,
a view range of 500 mm and a view angle of 360 degrees. The
network of the prey is a simple feed-forward network that
maps the inputs from its eight inputs fed by the eight standard
Khepera proximity sensors directly to two motor output nodes.
For the predator three different simple modular feed-forward
network with two, three and four modules have been used in
different experiments, respectively. Fig. 2 presents a schematic
overview of the network with three modules. A modular
network was chosen due to the assumption that tool use
behavior can be regarded as a sequence of sub-behaviors. For
example, using the camera to solve the pursuit task implies
the sub-behavior of detecting the camera tool, collecting the
camera tool, using it to track and finally approach the prey.

Fig. 2. Schematic view of modular network with three modules.

In the experiments the network weights of the predator have
been evolved. Based on the example of natural settings and
Búason’s experiments [ [11], [10]] the fitness function has
been designed as a simple time-to-catch function.

f(x) =
(stepmax + 1) − stepend

stepmax + 1
, in case of a catch. (1)

In (1) stepmax is the maximum number of time steps for
an experiment and stepend is the number of time steps that
have passed to catch the prey, normalized to a range between
0 and 1. However, 1 is a theoretical maximum that can never
be achieved due to the startup distance between the predator

and the prey. If there is no catch there is no reward given, i.e.
f(x) = 0.

Four sets of experiments have been performed that resem-
bled incremental tool use complexities. The first with only the
motor tool present, the second with only the camera present,
the third with both tools present and the last with both tools
present while only the first tool that was picked up had an
effect. Thus, when both tools where present combined tool
use was possible while tool selection had to be performed in
the fourth set of experiments.

In the first two experiments (with one tool present) the
lifetime was set to a maximum of 1000 time steps. In the
two-tool experiments the maximum lifetime was set to 1500
time-steps. Búason used 500 steps in his experiments but
in this work the tool use complication consumes additional
time. Each population consists of 100 individuals that are
evolved over 100 generations. After each generation elitism
and tournament selection was used for the reproduction of the
best 20 individuals in combination (thus preventing premature
convergence of the populations to a local maximum fitness
that might otherwise be achieved by a dominant, sub-optimal
strategy). Mutation was applied. These values are inspired
by [10,11] in order to achieve some level of comparability
(pure elitism was used in his experiments). Different startup
scenarios (further called epochs) were used to test the different
starting angles of the predator and all permutations of tool
placement, concluding in 56 epochs for the experiments with
one tool (8 starting angles, 7 tool positions) and 336 epochs for
the experiments with two tools (8 starting angles, 42 possible
tool position combinations). The prey has been pre-trained
in a setting without tools or co-evolution. The prey’s fitness
function was set to zero if it evaded successfully and to 1000
if it was caught. This allowed the prey to evolve a network
that encodes a relatively successful evasion strategy. In the
final experiments the network weights of the prey remained
static and it was simply used as a target object in a pursuit
task. However, in this training a defensive strategy evolved
that was not limited by human designer bias and therefore
presumably more flexible that a pre-programmed strategy.

More details on the experimental setup can be found in [14].

IV. RESULTS

This section presents only the most significant results from
the final generations of the experiments with three modules
in the network. The experiments with two and four modules
yielded similar results and have been omitted for brevity. The
results for all networks can be found in [14], including the
progress development over the generations and module use
investigations.

A. Success: The one-tool experiments were run for 100
generations, 56 epochs and 30 replications, totaling to 1680
single runs per generation. Table I shows the average results
of generation 100 for each experiment rounded to full per-
centages. In the baseline experiment one tool was present and
could be collected by the predator but did not have any effect.
In the motor tool experiment the motor tool could be collected
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and had the effect of doubling the predator’s maximum motor
speeds. In the camera tool experiments the camera of the
predator was activated upon collection.

TABLE I
RESULTS OF ONE-TOOL EXPERIMENTS.

Baseline Camera tool Motor tool

20% 55% 59%

Table I shows that the success rate in the final generation
was almost tripled in comparison to the baseline experiments
with either tool present while displaying a slight advantage
for the motor tool experiments. The latter can be explained
by the fact that the camera allows the predator to detect
the prey from a distance but does not have a positive effect
automatically, i.e. using the camera is a more complex sub-
task. Moreover, in both experiments with effective tools the
tools have been picked up in over 90% of the successful runs
of the final generation. In the baseline experiment the tool
was only picked up in 34% of the successful runs of the
final generation. These results clearly indicate that tool use
evolved in both cases. Fig. 3 shows the development of the
catch rate over the generations for both one-tool experiments
(with the camera tool and the motor tool present in the
environment, respectively) and the baseline experiment where
the tool had no effect. It is noteworthy that it is not until
after approximately 30 generations that the camera tool use
displays better success than the baseline experiment while the
motor tool use experiment displays better efficiency right from
the start. This supports the observation that artificial evolution
needs more training to evolve effective camera use due to the
greater complexity of exploiting the camera. In addition it can
be observed that the catch rate does not seem to stabilize but
is still increasing in the final generations of all experiments. It
might therefore be possible that the camera catch rate would
outrun the motor tool catch rate if the experiments were
conducted for more generations, i.e. that after a certain number
of generations the complexities of camera tool use might be
captured better by artificial evolution. It would therefore be
desirable to test this in future work by simply evolving the
same experiments over more generations. An initial replication
with only 150 generations showed that the catch rate of the
camera experiments came already very close to the catch rate
of the motor tool experiments in the final generation. However,
this could not be validated by more replications due to the time
restrictions.

Fig. 4 shows the development of the tool success rates
for all one-tool experiments. The tool success rate shows the
percentage of success after collection of the respective tool,
i.e. the average results for runs where the tool was actually
picked up are shown. Also in this case it the development
of the camera success rate is delayed by some generations as
opposed to the motor tool success rate development. However,
both experiments with effective tools display high success

Fig. 3. Catch rate development over generations. Comparison of one-tool
experiments with motor tool, camera tool and non-effective tool, respectively.
The picture shows average catch rate on the y-axis and the generations on the
x-axis. The average results of 30 replications and 56 runs per generation are
shown.

rates after few generations and both experiments achieve
a success rate of over 90% in the final generations. This
clearly indicates that the tools are actually used efficiently
once they are collected, i.e. there is clear separation from the
random success rates displayed in the baseline experiments.
The initial improvement of the baseline experiment success
rate can be easily explained because the agent learns to quickly
move through the environment in the first generations, thereby
increasing the chance of a random catch by covering as much
area as possible in time.

Fig. 4. Tool success rate development over generations. Comparison of
one-tool experiments with motor tool, camera tool and non-effective tool,
respectively. The picture shows average tool success rate on the y-axis and
the generations on the x-axis. The average results of 30 replications and 56
runs per generation are shown.

The two-tool experiments were run for 100 generations, 336
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epochs and 30 replications, totaling to 10080 single runs per
generation. Table II shows the average results of generation
100 for each experiment, rounded to full percentages. Fig. 5
shows the development of the catch rate over the generations
of the two-tool experiments. In the baseline experiment two
tools were present and collectible by the predator but did not
have any effect. In the tool combination experiment both tools
could be collected and effective as described above. In the tool
selection experiment both tools were collectible but only the
tool that was collected first became effective.

TABLE II
RESULTS OF TWO-TOOL EXPERIMENTS

Baseline Combination Selection

50% 80% 72%

Fig. 5. Catch rate development over generations. Comparison of two-tool
experiments with combined tool use, selective tool use and non-effective
tools, respectively. The picture shows average catch rate on the y-axis and
the generations on the x-axis. The average results of 30 replications and 336
runs per generation are shown.

It is noticeable that the results of the baseline experiment are
significantly higher compared to the baseline experiment of the
one-tool experiments. This can be explained by two factors.
First, the number of epochs was sixfold (due to the possible
tool position combinations) and therefore each generation had
significantly more lifetime experience. Secondly, uncollected
tools were obstacles for the prey. With two tools present,
the chance that the prey got trapped by an uncollected tool,
and thus easier to catch, was higher in the two-tool exper-
iments. However, both two-tool experiments with effective
tools yielded significantly higher success rates (cf. Table I).
It is obvious that the success rate of the tool combination
experiment is higher than the success rate of the tool selection
experiment.

Another noticeable discovery was that in the successful runs
of the tool combination experiment the motor tool was picked

up in 72% of the cases but the camera tool was only picked up
in under 40% of the cases. The latter is nearly in line with the
pick up rate of both tools in successful runs. Therefore it can
be concluded that the camera tool was rarely picked up alone
and there is a clear preference for the motor tool. This can also
be observed in Fig. 6 where the development of the camera
pick up rate is shown for the different experiments. Thus, a
selective tool use behavior evolved even though combined tool
use was possible. However, in cases where only the camera
was picked up in the tool combination experiment the agent
was still successful, explaining the slight advantage over the
baseline results. The results for the tool selection experiments
show that the camera pick up rate dropped towards a low
number of random pick ups after the preference for the motor
tool evolves around generation 13. The preference for the
motor tool can be explained by the fact that the motor tool
is much easier to use. The agent does not need to change
its strategy but simply gets an advantage by becoming faster.
The camera tool on the other hand is more complex to use
as the sensor data needs to be interpreted by the network in
order to track the prey. The typical behaviors of the agents are
described in Section B.

Fig. 6. Camera pick up rate development over generations. Comparison
of two-tool experiments with combined tool use, selective tool use and non-
effective tools, respectively. The picture shows average camera picks on the
y-axis and the generations on the x-axis. The average results of 30 replications
and 336 runs per generation are shown.

However, the success rate in the tool combination exper-
iment was higher than the rate yielded in the tool selection
experiment, which can be explained by the cases in which
both tools were picked up and used successfully. This implies
that the artificial evolution of efficient combined tool use is
possible. This is also indicated by Fig. 7 that shows the rate at
which both tools were picked up in the two-tool experiments.
While the baseline results show the rate for the case in which
both tools are picked up due to randomness the pick up rate for
both tools is significantly higher in the late generations of the
tool combination experiments. The importance of picking the
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camera might increase if remote detection was more important,
e.g. in a larger environment. In the tool selection experiment
the motor tool was picked up in approximately 83% of the
successful runs in the final generations while the camera tool
was only picked up in less than 20% of the cases which in
the same range with the pick up rate that can be observed in
the baseline experiment, i.e. can be explained by accidental
picks while moving through the environment. The preference
for the motor tool that was already indicated by the results of
the tool combination experiment becomes even clearer in the
tool selection experiment.

Fig. 7. Pick up rate development for both tools over generations. Comparison
of two-tool experiments with combined tool use, selective tool use and non-
effective tools, respectively. The picture shows average pick up rate of both
tools on the y-axis and the generations on the x-axis. The average results of
30 replications and 336 runs per generation are shown.

Fig. 8 shows that the efficiency improvement of solving the
task with tools is not only manifested by the higher catch
rates but also by time-to-catch values in the late generations
of the tool combination and tool selection experiments that are
considerably lower than in the baseline experiments.

B. Behaviors: This section describes the typical behavior
of the prey and predators in successful runs of the final gen-
erations and applies to all experiments. The typical behavior
of the prey was to stay close to its starting point and spin
round. This increases the chance to detect an approaching
predator in a timely manner because it offers the best sen-
sory coverage relying exclusively on the near-range infrared
proximity sensors. When a predator approaches the prey fled
in the opposite direction and continued its spinning strategy in
another place if not followed by the predator. If it was followed
by the predator the typical situation was a chain of small
circles in which the agents followed each other. If the prey
could not escape the predator this finally ended with a catch
in a situation where the prey got obstructed by approaching a
wall or a tool in most cases. The strategy that the predator
evolved without effective tools present in the environment
was to move through the environment in large semi-circles,

Fig. 8. Time step development for successful runs over generations.
Comparison of two-tool experiments with combined tool use, selective tool
use and non-effective tools, respectively. The picture shows average steps to a
successful catch on the y-axis and the generations on the x-axis. The average
results of 30 replications and 336 runs per generation are shown.

changing the direction only when approaching a wall. This
semi-circular trajectory remained the same during the whole
run because one motor was always at full speed while the other
controlled the direction. This is a clever strategy in order to
reduce the complexity of synchronizing the motor speeds for
navigation and most effective, considering that the predator
is blind on long distances. This strategy allows the agent to
cover as much area as possible and therefore it increases the
chance to find the prey within a certain time. When the prey
came into the range of the proximity sensors the predator
followed the prey which ended up in the trajectory of small
circles as described above or, if the prey reacted in a timely
manner, the predator lost track of the prey and continued its
strategy of a movement in large semi-circles while the prey
began spinning around in its new position. When the camera
was collected the predator was able to detect the prey from
everywhere within the environment. Hence, it could approach
the prey in relatively direct manner from a distance. It did not
approach in a straight line because one motor still remained
at full speed so that it needed to spin around one time in the
worst case and approached the prey in a slight semi-circle.
When coming close to the prey the strategy was as described
before but with the ability to re-track the prey efficiently when
it managed to escape out of the close range.

Fig. 9 shows the schematic view of a typical run in which
both tools could be used in combination. In line with the gen-
eral observations described above it can be observed that the
predator moves in semi-circles exclusively. However, instead
of executing a wide semi-circular movement it approaches the
motor tool in a relatively direct manner. Upon collection of
the motor tool the predator speeds up (as indicated by the
distance between the black oval marks) and continues with
the strategy of a wide semi-circular trajectory. Notably, it does
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not approach the camera, although it is able to detect it in the
same way as it detected the motor tool before with its light
sensors. It gets near the prey at around 180 time steps but not
close enough to detect it. Therefore the predator continues to
move in wide semi-circles until it comes close to the camera
tool after approximately 230 time steps. Now the predator
approaches the camera, i.e. a sharp turn occurs instead of a
continuation of the wide-circle strategy. Upon collection of
the camera it can now detect the prey from a distance and
approach it. The prey is still spinning around close to its
starting point B. When the predator is approaching the prey
tries to escape but is followed by the predator. Finally, the
predator manages to catch the prey in point C.

Fig. 9. Combined tool use example. The thick black lines depict the walls
of the environment. The filled black circle represents the motor tool in the
position it holds from startup of the round until collection (when it is removed
from the environment). The filled gray circle represents the camera tool in the
same way. The dotted line depicts the trajectory of the predator. Oval black
marks demarcate points where the predator was located with the respective
number of steps given beside it. The gray line shows the trajectory of the
prey. The circle with a dotted frame and the circle with the gray frame show
the predator and the prey in the moment of the successful catch, respectively.
A and B the starting points of the predator and prey, respectively. The final
catch occurs in point C.

C. The role of modularity: The module use investigations in
[14] indicate that only up to two modules were frequently used
in the majority of the successful runs that were investigated.
Fig. 10 shows an example where one module is used nearly
all the time except for one time step. We selected an example
with three modules in order to show that the third module is,
contrary to our expectations, not used at all. This also explains
the similarity of the results of the different networks. It might
also indicate that the assumption that modularity is beneficent
for evolving tool use behavior is not strongly supported.
However, we believe instead that benefits of modularity and
more complex module use patterns might evolve when the
experiments would be run over more generations, possibly
allowing more effective straight line movements. The success
rates described had still an increasing tendency when the
experiments were stopped an more complex networks usually
need more training. To support the assumption that modularity

plays a significant role even if only two modules are used
frequently the experiments could be repeated with a non-
modular network.

Fig. 10. Module use diagram. This diagram shows the activations of sensor
input nodes, actuator output nodes and module activation nodes over time.
The time steps are shown along the x-axis and activations along the y-axis
(with a minumum of 0 and a maximum of 1). IF and IB refers to front and
rear infrared sensor input node activations, respectively. L1 and L2 refers to
light sensor 1 and 2 input node activations, respectively. Ca refers to camera
input nodes. M1, M2 and M3 refer to activations of modules 1, 2 and 3,
respectively. Mo refers to the motor output activation (the lowermost Mo
refers to the left motor. All sensor activations are normalized between 0 and
1. Module activation is shown by a black bar whereas no activation is shown
by a white bar. Only one module is active at one time. The motor activation
is normalized between 0 and 1 where 0.5 means no activation, 1 means full-
forward activation and 0 means full backwards activation. The diagram shows
the readings for the example run shown in Fig. 9.

V. DISCUSSION AND CONCLUSIONS

The results of the experiments illustrate that tool use behav-
ior of different complexity can indeed be evolved. These initial
experiments have been kept simple. Certainly, more investi-
gations would be desirable, including a much larger variety
of setups and parameter settings, different environments, tasks
and tools, the implementation of non-distinctive sensors and of
pick up procedures, three-dimensional simulation, higher-level
tool use and many more. The aim of those experiments should
be the establishment of a body of knowledge regarding evolved
robotic tool use. Only then one can think of the combination
of evolved and learned tool use.

Once we understand evolved tool use behavior and come
closer to define the limits of artificial evolution with respect to
tool use behavior the next question would be how to combine
artificial evolution approaches to autonomous tool use with
lifetime approaches such as learning. In order to benefit from
this combination we need to find out how to off-load demands
on computation power and memory to off-line evolution. This
makes it necessary to identify ways that allow to handle
long-term and general concepts with artificial evolution while
handling the conceptualization of world features that change
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quickly and unexpected (and can thus not be experienced
and captured by evolution) by the application of lifetime
methods. In particular we have to solve the question of how
to separate these concepts so that lifetime methods ignore
the concepts that artificial evolution is meant to take care
of. Of course, off-loading an agent’s lifetime demands to
artificial evolution comes at a cost. Artificial evolution is a
time-consuming process and in order to speed this process up
simulations are necessary that model the world of the target
application sufficiently well in order to produce results that
are transferable to real robots.

From a theoretical perspective the experiments are of in-
terest as well. Tool use has been regarded as a hallmark of
human-level intelligence, see e.g. [3, 15]. This view has been
modified several times in scientific history when examples of
animal tool use and even animal tool manipulation and tool
manufacture have been observed. As of today, the distinction
of human-level and animal intelligence is often claimed to
be displayed by higher-level human tool use [6]. One might
say that higher level-tool use includes specifially ordered
sequences of sub-behaviors, for instance. However, this is quite
a blurry distinction and some researchers hypothesized that
higher-level tool use in this sense might more be a hallmark
of opportunity and necessity than intelligence, a fact that is
supported by comparative studies of captive and wild animals
where captive animals, that are exposed to more sophisticated
objects than can usually be found in the wild, display more
complex tool use behaviors.

In this work evolved tool use of different complexity was
shown. The paper shows that the limits of evolved tool
use complexity are worth investigating. The results of our
simulated experiments indicate that they might be pushed
towards higher levels of complexity than widely expected. In
future a great variety of similar investigations should be carried
out in order to clarify those limits.
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