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Abstract— Cell pattern formation has a central role in both
artificial and natural development. This paper provides results
from experiments in which a genetic algorithm (GA) was used to
evolve an artificial regulatory network (ARN) to produce prede-
fined bidimensional cell patterns through the selective activation
of genes. The GA worked by evolving the gene regulatory network
that was used to control cell reproduction. Cellular automata
(CA) were chosen as models for cell patterning. After the final
chromosomes were obtained, a single cell in the middle of the CA
lattice was allowed to reproduce controlled by the ARN found
by the GA, until the desired pattern was formed.

I. INTRODUCTION

Computational Development is a relatively new sub-field
of Evolutionary Computation that studies artificial models of
cellular development, with the objective of understanding how
complex structures and patterns can emerge from a small
group of initial nonspecialized cells [1]. In biological systems,
development is a fascinating and very complex process that
involves following an extremely intricate program coded in
the organism’s genome.

One of the crucial stages of an organism’s development is
that of pattern formation, where the fundamental body plans
of the individual are to be defined. It is now evident that gene
regulatory networks play a central role in the development and
normal functioning of living organisms [2]. It has been found
that the different cell patterns created during the development
of an organism are mainly due to the selective activation and
inhibition of very specific regulatory genes.

Artificial Regulatory Networks (ARNs) are computer mod-
els that seek to imitate the gene regulatory networks found in
nature. ARNs have previously been used to study differential
gene expression either as a computational paradigm or to
solve particular problems [3], [4], [5], [6], [7], [8]. On the
other hand, evolutionary computation techniques have been
extensively used in the past in a wide range of applications,
and in particular they have previously been used to evolve
ARNs to perform specific tasks [9], [10].

In this paper we describe research on using a genetic algo-
rithm (GA) to evolve an ARN to create predefined bidimen-
sional patterns by means of the selective activation of genes.
The ARN used in this work is based on the model presented
in [5]. In order to test the functionality of the ARN found by
the GA, we applied the chromosomes representing the ARN

to a cellular growth model that we have successfully used in
the past to develop simple bidimensional and tridimensional
geometrical shapes [11].

The paper starts with a section describing the cellular
growth model, followed by a section presenting the ARN
model and how it was implemented. The next section describes
the GA used in this work and how it was applied to evolve
the ARN. Results are presented next, followed by a section of
conclusions.

II. CELLULAR GROWTH MODEL

Cellular automata (CA) were chosen as models of cellular
growth, since they provide a simple mathematical model that
can be used to study self-organizing features of complex
systems [12]. CA are characterized by a regular lattice of
N identical cells, an interaction neighborhood template η, a
finite set of cell states Σ, and a space- and time-independent
transition rule φ which is applied to every cell in the lattice
at each time step.

In the cellular growth model presented in this work, a
33×33 regular lattice with non-periodic boundaries was used.
The set of cell states was defined as Σ = {0, 1}, where 0
can be interpreted as an empty cell and 1 as an occupied or
active cell. The interaction template η used was an outer Moore
neighborhood. The CA’s rule φ was defined as a lookup table
that determined, for each local neighborhood, the state (empty
or occupied) of the objective cell at the next time step. For a
binary-state CA, these update states are termed the rule table’s
“output bits”. The lookup table input was defined by the binary
state value of cells in the local interaction neighborhood, where
0 meant an empty cell and 1 meant an occupied cell [13].

In this cellular growth model a cell can become active
only if there is already an active cell in the interaction
neighborhood. Thus, a new active cell can only be derived
(reproduced) from a previously activated cell in the interaction
neighborhood. Starting with an active cell in the middle of
the lattice, the CA algorithm is applied allowing active cells
to reproduce for 100 time steps according to the CA rule
table. During an iteration of the CA algorithm, the order
of reproduction of active cells is randomly selected in order
to avoid artifacts caused by a deterministic order of cell
reproduction.
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As mentioned above, the lattice was defined as a square
of 33 × 33 cells, with the initial active cell at the central
position. This particular lattice size was chosen in this and in
previous work due to the minimum number of steps that the
CA algorithm is required to run before an active cell reaches
one of the lattice boundaries. This minimum number of steps
was chosen originally as 15 because the GA chromosome
coded in binary form the number of iterations that the CA
algorithm was to run in order to generate a shape. This number
was coded in 4 bits to give an upper limit of 24−1 = 15 time
steps [13]. For reasons of reproducibility, it was decided to
use the same lattice size as in previous experiments. Further-
more, considering that cell reproduction normally follows an
exponential trend, with a bigger lattice size the corresponding
simulation times could significantly increase.

For all experiments, the CA were implemented as NetLogo
models. NetLogo is a programmable modeling environment
based on StarLogo that can be used to simulate natural and
social phenomena [14]. It works by giving instructions to
hundreds or thousands of independent “agents” all operating
concurrently. It is well suited to study emergent properties in
complex systems that result from the interaction of simple but
often numerous entities. For each of the cell patterns studied,
a NetLogo model was built.

III. ARTIFICIAL REGULATORY NETWORK

An Artificial Regulatory Network (ARN) is a gene control
model inspired by its biological counterpart. In nature, gene
regulatory networks are widely used to control development
and metabolic functions in living organisms [2]. Biological
gene regulatory networks are a central component of an
organism’s genome, which is coded as one or more chains
of DNA, and that interact with other macromolecules, such
as RNA and proteins. Artificial genomes are usually coded as
strings of discrete data types. The genome used in this work
was implemented as a binary string starting with a series of
regulatory genes, followed by a number of structural genes
(see Fig. 1).

The gene regulatory network implemented is based on the
ARN presented in [5]. However, unlike the ARN developed
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Fig. 1. Genome structure and regulatory gene detail.

by this author, the genome implemented in the present work
does not have promoter sequences and there are no unused
intergene regions. All regulatory genes are adjacent and have
predefined initial and end positions. Furthermore, the number
of regulatory genes is fixed. On the other hand, the structural
genes code for the particular shape grown by the reproducing
cells and they were obtained using the methodology presented
in [13]. Briefly, the cellular growth model described in Section
II was evolved by a GA in order to produce predefined
bidimensional shapes. The GA worked by evolving the CA
rule table’s output bits.

As mentioned above, the ARN used in the present work
consists of a series of regulatory genes, each of which consists
of an inhibition site, an enhancer site and a series of regulatory
protein coding regions (Fig. 1). The latter “translate” the
coding regions into a regulatory protein using the majority
rule, i.e. for each bit position in the protein coding regions, the
number of 1’s and 0’s is counted and the bit that is in majority
is translated into the regulatory protein. The inhibition site,
the enhancer site and the individual protein coding regions all
have the same size in bits. Thus the protein translated from the
corresponding coding regions can be compared bit by bit with
the inhibitor and enhancer sites and the degree of matching can
be measured. As in [5], the comparison was implemented by
an XOR operation, which results in a “1” if the corresponding
bits are complementary.

Each translated protein is compared with the inhibition
and enhancer sites of all the regulatory genes in order to
determine the degree of interaction in the regulatory network.
The influence of a protein on an enhancer or inhibitor site is
exponential with the number of matching bits. The strength of
excitation en or inhibition in for gene i with i = 1, ..., n is
defined as

eni =
1

n

n∑

j=1

cje
β(u+ij−u+max) (1)

ini =
1

n

n∑

j=1

cje
β(u−ij−u−max), (2)

where n is the total number of regulatory genes, cj is the
concentration of protein j, β is a parameter set constant for all
runs, u+ij and u−ij are the number of matches between protein j
and the enhancer and inhibitor sites of gene i, respectively, and
u+max and u−max are the maximum matches achievable between
a protein and an enhancer or inhibition site, respectively [5].

Once the en and in values are obtained for all regulatory
genes, the corresponding change in concentration for protein
i in one time step is found using

dci

dt
= δ (eni − ini) ci, (3)

where δ is a constant that regulates the degree of protein
concentration change.

Protein concentrations are updated and if a new protein con-
centration results in a negative value, the protein concentration
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is set to zero. Protein concentrations are then normalized so
that total protein concentration is always the unity.

As for structural genes, they are always associated to
the corresponding regulatory genes. That is, structural gene
number 1 is associated to regulatory gene number 1 and its
corresponding translated protein, and so on. In the series of
experiments presented in this work, the number of structural
genes is always less than the number of regulatory genes.
Thus, some regulatory proteins both regulate concentration for
other proteins and directly control structural gene expression,
while other proteins only have a regulatory role. Structural
gene expression is visualized in the cellular growth model as
a distinct external color for the cell.

A structural gene was defined as being active if and only if
the regulatory protein translated by the associated regulatory
gene was above a certain concentration threshold. The value
chosen for the threshold was 0.5, since the sum of all protein
concentrations is always 1.0, and there can only be a protein
at a time with a concentration above 0.5. As a result, only one
structural gene can be expressed at a particular time step in a
cell. If a structural gene is active, then the CA lookup table
coded in it is used to control cell reproduction.

Genome size in bits is dependent on the number and size
of its component genes, and it was defined as

GenomeSize = n× [(2 + k)× r] +m× s, (4)

where n is the number of regulatory genes, k is the number of
regulatory protein coding regions, r is the region size in bits,
m is the number of structural genes (m ≤ n), and s is the
structural gene size in bits. For all experiments we used the
following parameter values: n = 10, k = 5, r = 32 and s =
256. The number of structural genes m took values from 1, 2,
3 or 6, depending on the experiment performed, as explained
in section V. The number of regulatory genes n was chosen as
10 because after a series of experiments it was found that this
value gave a desirable behavior for the protein concentrations.
Parameter values for k and s are equal to those used in [5]. The
value of 256 for parameter s results from the use of an outer
Moore neighborhood for the CA lookup table that corresponds
to the structural gene, that is s = 28 = 256 [13].

IV. GENETIC ALGORITHM

Genetic algorithms are search and optimization methods
based on ideas borrowed from natural genetics and evolution
[15]. A GA starts with a population of chromosomes repre-
senting vectors in search space. Each chromosome is evaluated
according to a fitness function and the best individuals are
selected. A new generation of chromosomes is created by
applying genetic operators on selected individuals from the
previous generation. The process is repeated until the desired
number of generations is reached or until the desired individual
is found.

The GA in this paper uses tournament selection as described
in [16] with single-point crossover and mutation as genetic op-
erators. Single-point crossover consists in randomly selecting

two chromosomes with a certain probability called crossover
rate, and then randomly selecting a single bit position in
the chromosome structure. From this point on, the remain-
ing fragments of the two chromosomes are exchanged. The
resulting chromosomes then replace the original ones in the
chromosome population. On the other hand, mutation consists
in randomly flipping one bit in a chromosome from 0 to 1 or
vice versa. The probability of each bit to be flipped is called
the mutation rate.

After several calibration experiments, we settled for the
following parameter values. The initial population consisted
of 1000 binary chromosomes chosen at random. Tournaments
were run with sets of 3 individuals randomly selected from the
population. Crossover and mutation rates were 0.60 and 0.15,
respectively. Finally, the number of generations was set at 50,
since there was no significant improvement after this number
of generations. The crossover rate of 0.60 was chosen equal to
that used in previous work [11], [13], because it was reported
to give the best results when trying to evolve a binary string
representing a CA using a GA [17]. As for the mutation rate,
we decided to use a value one order of magnitude higher than
the one used in the same report, for the reasons that will be
given in Section V.

The fitness function used by the GA was defined as

Fitness =
1

k

k∑

i=1

insi − 12outsi
desi

, (5)

where k is the number of different colored shapes, each
corresponding to an expressed structural gene, insi is the
number of filled cells inside the desired shape i with the
correct color, outsi is the number of filled cells outside the
desired shape i, but with the correct color, and desi is the total
number of cells inside the desired shape i. Thus, a fitness value
of 1 represents a perfect match. This fitness function is an
extension of the one used in [18], where the shape produced by
only one “gene” was considered. To account for the expression
of several structural genes, the combined fitness values of all
structural gene products were introduced in the fitness function
used.

In this work, a GA chromosome corresponds to the ARN
portion of the binary genome. Chromosome size was thus
dependent on the parameter values used. The ARN used in
this work has a size of 2240 bits divided in 10 regulatory
genes, which represents a search space of 22240 ≈ 2 × 10674
vectors. It should be evident that this search space is far
too large for any sort of exhaustive evaluation. Search space
grows exponentially with the number of regulatory genes. But
even for the simplest of ARNs, that consisting of only two
regulatory genes, the search space has a size of 2448 ≈ 7 ×
10134, which is still too large to be explored deterministically.

During the course of a GA experiment, each chromo-
some produced in a generation was fed to the corresponding
NetLogo model, where the structural genes were attached
and the cells were allowed to reproduce controlled by the
ARN found by the GA. Fitness was evaluated after the model
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Fig. 2. Two-color square.

stopped and a colored shape was formed. This process con-
tinued until the maximum number of generations was reached
and the best individual was obtained.

V. RESULTS

In all cases, the GA described in Section IV was used
to evolve the ARN for the desired colored shapes. After an
ARN was obtained, an initial active cell in the middle of the
CA lattice was allowed to reproduce (sprout an active cell
from a previously active cell) controlled by the gene activation
sequence found by the GA. In the desired shapes studied, each
color represents a different structural gene being expressed. In
order to achieve the desired shape with a predefined color for
each cell, the genes in the ARN had to evolve to be activated
in a precise sequence and for a specific number of iterations.

As a first step, in order to find the appropriate values
for parameters β and δ used in the ARN, a series of GA
experiments was performed. The tests consisted in finding an
ARN to grow a 21 × 21 square in the cellular growth model
in at most 10 generations, using 10 regulatory genes and one
structural gene that coded for the square. The other parameters
values for the GA and the ARN were set as described in the
preceding sections.

Being a factor to an exponent, parameter β could not be
varied widely. Thus, a range of 0.5 to 5.0 in increments of
0.5 units was tried. For parameter δ, a range of 1.0 × 100 to
1.0 × 1020 with exponent increments of one unit was used.
Surprisingly, parameter δ was found to be very flexible in the
range of values that could successfully find the desired shape.
For a β value of 1.0, runs with parameter δ in the range from
1.0 × 106 to 1.0 × 1020 found the correct shape under the
conditions described. At the end, the values for β and δ were
set to 1.0 and 1.0× 106, respectively.

Once the appropriate parameter values were found, several
series of experiments were performed in order to evolve ARNs
for various colored shapes. Not all GA experiments rendered
an ARN capable of forming the desired shape. Furthermore,
for some desired shapes involving the expression of more
than three structural genes, no appropriate ARN could be
evolved. The graphs presented next correspond to some of
those experiments where ARNs with fitness function values
equal to 1.0 were found by the GA.

Fig. 2 shows a two-color 21 × 21 square built by the
expression of two structural genes, both coding for a square.
The graph corresponding to the expression of the regulatory
proteins of the evolved ARN is presented in Fig. 3. For some
of the graphs shown, only the first 60 time steps are presented,
as there is no significant change in these graphs after this point
and until the end of the 100-step run.

When trying to create a three-color square expressing three
identical structural genes each coding for a square, it proved
difficult to synchronize the expression of the three regulatory
genes in a specific sequence. In order to increase the likelihood
for the GA to find an appropriate ARN, instead of using a
series of three structural genes coding for a square, a tandem
of two series of three structural genes was used, for a total
of six structural genes. In that manner, for creating the inner
square, the ARN could express either structural gene number
1 or gene number 4, for the middle square it could use genes
2 or 5, and finally for the outer square it could make use of
structural genes 3 or 6. Thus, the probability of finding an
ARN that could express a three-color square with a particular
color order was substantially increased. Using an ARN with
this configuration of structural genes, the three-color 25× 25
square shown in Fig. 4 was obtained. The graph representing
the expression of the proteins for the corresponding ARN is
shown in Fig. 5. Note the order in which the structural genes
were expressed, starting with the first gene from the second
series of structural genes, followed by the second gene from
the first series, and ending with the third gene from the second
series of structural genes.

These shapes were chosen so that the different structural
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Fig. 3. Graph for the protein concentrations from an ARN expressing the
two-color square.
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Fig. 4. Three-color square.

genes were expressed for the same number of time steps in
the cellular growth model. For the two-color square, each
structural gene is expressed for five time steps, whereas for
the three-color square, each of the three genes involved is
activated for exactly four time steps.

In order to explore the result of combining different struc-
tural genes that are expressed for a different number of time
steps, three different genes were used to grow a French flag.
One gene drove the creation of the central white square, while
the other two genes extended the central square to the left and
to the right, expressing the blue and the red color, respectively.
The last two structural genes do not code specifically for a
square, instead they extend a vertical line of cells to the left
or to the right for as many time steps as they are activated.
The problem of generating a French flag pattern was first
introduced by Wolpert in the late 1960s [19] while trying
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Fig. 5. Graph for the protein concentrations from an ARN expressing the
three-color square.

Fig. 6. French flag (21× 7).

to formulate the problem of cell pattern development and
regulation in living organisms, and it has been used since then
by some authors to illustrate the problem of artificial pattern
development [20].

Unlike the two- and three-color squares, where each gene
had to be activated in a precise sequence, to create the flag the
central square could be extended to the left or to the right in
any of the two orders, that is, first extend to the left and then
to the right, or vice versa. This allowed more flexibility for
the GA to find an appropriate ARN. Figure 6 shows a 21× 7
French flag grown from the expression of the three structural
genes mentioned above. The graph of the corresponding ARN
protein concentration pattern is shown in Fig. 7. After the
white central square is formed, the left blue square is grown,
followed by the right red square.

To illustrate a different sequence of gene activation, the 27×
9 French flag shown in Fig. 8 was created. The corresponding
protein concentration graph is presented in Fig. 9. Note that
in this case, the right red square is formed before the left blue
one.

When the shapes generated do not require strictly sequential
gene activation, structural genes do not necessarily have to
complete one shape before forming another shape. Take as
example the case of the French flag shape, where some
structural genes can interrupt their expression and then resume
activation at a later time after the expression of another
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Fig. 7. Graph for the protein concentrations from an ARN expressing the
21× 7 French flag.
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Fig. 8. French flag (27× 9).

gene. One of the genes that extend cells to one side can be
interrupted to allow the gene that extends cells to the opposite
side to be activated, and then resume its activation to finish the
shape. Fig. 10 shows the protein concentration graph of one of
these cases, where a 27×9 French flag is generated. After the
white central square is formed, the gene that extends the red
cells to the right is activated for only 5 time steps generating
a 5 × 9 red rectangle. Then the gene that extends the blue
cells to the left is activated for 9 time steps until completion
of the left blue square. Finally, the gene that extends cells to
the right becomes activated again for another 4 time steps to
finish the generation of the red right square.

One point worth noting regarding the GA parameters is
that a relatively high mutation rate was used. This choice
was made since it was found that single bits could have
a considerable influence in the final behavior of the ARN.
As an example, consider the two graphs shown in Fig. 11
from an experiment where a two-color square was grown.
The corresponding ARNs for these graphs differ only in the
value of bit position 952 on the enhancer site of regulatory
gene number 5. While the upper graph of Fig. 11 corresponds
to a chromosome with fitness value of 0.50, the lower graph
corresponds to a chromosome with a fitness value of 0.93. In
fact, further mutation of this latter chromosome on bit 599 in
regulatory gene number 3, gets the ARN to achieve a fitness
value of 1.00.
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Fig. 9. Graph for the protein concentrations from an ARN expressing the
27× 9 French flag.
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Fig. 10. Graph for the protein concentrations from an ARN expressing the
27× 9 French flag built from the alternating activation of structural genes.

VI. CONCLUSION

The experiments presented in this paper show that a GA
can give reproducible results in evolving an ARN to grow
predefined bidimensional cell patterns starting with a single
cell. In particular, it was found that using this ARN model it
is feasible to synchronize reliably up to three genes, although
some problems were found when trying to synchronize the
activation of more than three genes in a precise sequence.

In general, the framework used proved to be suitable for ob-
taining simple patterns involving the activation of two or three
genes, but more work is needed to explore pattern formation
of more complex forms, both in 2D and 3D. It is also desirable
to search for an ARN model that can reliably synchronize the
activation of more than three genes. Furthermore, in order to
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Fig. 11. Effect of a single different bit in the ARN. (a) Fitness 0.50; (b)
Fitness 0.93
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build a more accurate model of the cell patterning process,
interaction with the environment and other artificial entities
may be necessary.

To the authors’ knowledge, this is the first report of the use
of a GA to evolve a specific behavior in an ARN to grow an
artificial cell pattern. Previous attempts at evolving ARNs have
been made using other evolutionary computation techniques.
A simple GA was chosen in this work for evolving the
ARN due to the discrete and fixed-size nature of the artificial
genome used. Moreover, it was considered that the GA was the
evolutionary computation paradigm that resembled the most
the actual evolutionary mechanism seen in nature.

The long-term goal of this work is to study the emergent
properties of the artificial development process. It can be envi-
sioned that one day it will be feasible to build highly complex
structures arising mainly from the interaction of myriads of
simpler entities controlled by a development program.
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