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Abstract— Networks that abstractly model natural Genetic
Regulatory Networks (GRNs) are evolved to show a range of
dynamical behaviors. Specifically one group was evolved to show
differentiation, i.e. to be able to perform an additional behavior
as compared to the original, single target behavior. These GRNs
are then analyzed and compared with measures used in the
biological sciences. Having huge numbers of GRNs available for
not only analysis but also “metabolic” inspection, we find that
evolutionary niches (target functions) do not necessarily mold
network structure uniquely. Our results suggest that variability
operators can have a stronger influence on network topolo-
gies than selection pressures, especially when many topologies
can create similar dynamics. Furthermore, damaging the most
significantly represented motif (whether in differentiating or
non-differentiating GRNs) is found not to have a significantly
bigger impact on function than random lesions, suggesting that
particular motifs are not as important in the robust functioning
of networks as might perhaps be expected.

I. INTRODUCTION

In biological Genetic Regulatory Networks (GRNs), genes
encode proteins and proteins in turn regulate the expression
(activation) level of genes. These connections can conveniently
be depicted as networks, with the genes being nodes and
the regulating proteins the directed edges. The dynamics of
these interactions not only play a key role in development
[1] but also in the ongoing metabolism of all cells during
their lifetime [2]. Understanding GRN dynamics is still a hard
task and so methods of breaking their complexity down have
been proposed. Very influential has been the static structural
analysis method of searching for subgraph patterns — network
motifs “are those patterns for which the probability P of
appearing in a randomized network an equal or greater number
of times than in the real network is lower than a cutoff value”
[3].

The main research questions motivating our analysis were: Are
there significant patterns that arise in the course of evolution
in GRNSs necessary for controlling the realization of particular
functionality? Are some motifs more prevalent than others
in evolution for particular functions? How unique are the
networks that realize particular functionalities and how robust
are they?

These questions render the use of current biological GRN data
insufficient as many networks are needed that are evolved for
particular functionalities and currently data is only available
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for networks in a few organisms. In addition metabolic anal-
yses from observing GRN interactions in vivo is very difficult
and techniques are still in their infancy. The model we use has
been shown to exhibit some characteristics of natural GRNs
[4]-[6] and has the substantial advantage that all variables
can be controlled, also the GRNs are open to “metabolic”
inspection.

This work is related to [7] which also employs a GRN model
and analyzes static network topology. However the networks
included in that analysis were randomly created (focusing
on duplication) without being exposed to evolution under
selective pressure — and therefore could not be lesioned to
check for impact on function.

II. METHODS

At first we describe the topological measure used on net-
works, then our GRN model follows. A description of the
evolutionary algorithm and the two evolutionary settings we
compare follows.

A. Network motifs

Motifs are the subgraph patterns that are found in networks
in statistically significant numbers as compared to random
networks [3]. Although they are a local, structural measure,
the “basic idea is that patterns that occur in the real network
much more often than in randomized networks must have been
preserved over evolutionary timescales against mutations that
randomly change edges” [8].

However one has to keep in mind that mutation is not the only
variability operator, in nature (and many models) crossover
and duplication of genome parts may take place. Instead of
the randomization methods usually used (see [8]) we have
the advantage of being able to create even better random
networks. “Even better” as we do not only have to work
with the data of one or two biological networks, due to the
difficulty of determining GRN structure in natural systems,
but can create as many networks as needed under conditions
we want. So we can generate our random networks using the
same creation process, i.e. using the same variability operators
on them, only without selecting for any function (whereas
the use of a randomization procedure starting from a given
network of interest might itself bias results). This is termed
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random evolution in the following, i.e. normal variability but
no selective pressure over the same number of generations.
From every such run only one randomly created network
was used for analysis to avoid sampling biases and to make
sure that their developments over evolutionary time were
independent.

For analysis, all subgraphs of a network are enumerated,
their connection matrix brought into a canonical form and
occurrences of each unique pattern counted. To keep analysis
concise, in this paper we report only results for subgraphs
of three nodes, as these are most commonly found in the
literature. Additional results and Java code are available at
http://panmental.de/GRNmotifs/. In the literature the pattern
count within a single known network from biology is generally
compared against the pattern distribution (average number and
standard deviations) from a larger number of randomly evolved
networks. As we have a lot of networks evolved for function
we can additionally compare many against many.

B. GRN Model

The GRN model we use was first described in [4]. It allows
for locally smooth regulatory and evolutionary dynamics, with
environmental interaction being explicitly considered. Consid-
eration of environmental interaction is not very surprising as
the model is inspired by Biosys, described in [9], where
GRNs were used as embodied control systems. As there we
model a single cell, consisting of proteins and a genome
with a fixed number of genes. Gene activation is controlled
by regulatory regions organized into cis-modules and these
in turn contain — possibly — several binding sites. In every
discrete time step, free proteins can attach to binding sites.
Spatiality is not considered, but the attachment of proteins to
binding sites is restricted by the match of site and protein
type. For simplicity in the regulatory dynamics we currently
use template matching, i.e. a perfect match of binding site
and the corresponding protein is required, unlike real bio-
logical systems or other approaches (e.g. [10], [11]), where
looser matchings are possible. Depending on the attachment
of matching proteins to the binding sites the corresponding
cis-modules positively or negatively influence the production
of (not necessarily different) proteins.

Molecular biology terms proteins acting in such a way
Transcription Factors (TFs). In our model all proteins are
potentially regulatory. The main extension compared to the
Biosys model is that a cell can have any number of cis-
modules per gene and every cis-module can have any number
of protein binding sites. So there are two levels of protein
regulation, 1) interaction of binding sites within a cis-module
and 2) among cis-modules (for details see the description in
section II-B.2 below). Effects of protein regulation on gene
expression are often assumed to be only additive, however it
is known to molecular biologists that TFs might interact with
each other and thereby change their influence non-linearly, i.e.,
as [12, see also references therein] puts it: “[T]here is often
significant synergism — defined as deviation from additive
behavior — in the effect of multiple TFs on the expression of a
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Fig. 1. Activation Types. Every gene produces its proteins according the
cumulative activation level of its cis-modules and its activation type: either
even when no activation is present (“default on” - left) or only with positive
activation (“default off” - right).

single gene.” This second level of regulation has previously not
been taken into account by other similar GRN models [10],
[13]-[15]. The additional control logic level might facilitate
the advent of “master control genes”, i.e. active genes at the
top of a hierarchy that might start a cascade, turning on a huge
number of other genes. For example [16] found that ectopic
eyes (out-of-place eye production) in the fruit fly Drosophila
can be triggered by a single signal. Such activities can be
thought of as choosing a particular pathway for the cell and
are assumed to be involved in cell differentiation as well as
developmental modularity. In another study [6] we show that
GRNs using this model are able to differentiate in principle.
For details on the genetic control of development see [1],
[17]. Summarizing, our approach facilitates the evolution of
complex dynamics, coming a little closer to nature, where “5-
10 regulatory sites are the rule that might even be occupied
by complexes of proteins” [10].

1) Genetic Representation and Genotype-Phenotype map-

ping: Every GRN’s genotype is a string of integers, encoding
a fixed number of genes and some global parameters of the
corresponding phenotype’s network. Digits 0 and 1 are coding
digits that may be involved in regulation or protein coding. To
differentiate between such a coding bit, a cis-module boundary
and a gene boundary the genetic alphabet was increased to four
digits, with digit 2 delimiting the end of a cis-module and digit
3 delimiting the end of a gene. In the version of the model
used here there are eight different proteins, i.e. three bits are
sufficient to code for the protein type.
After compartmentalizing the genome into genes, the last four
coding digits of every gene determine its output behavior.
Three bits for the protein produced and the last bit for the
gene’s activation type, which can be constituitive (“default
on”) or induced (‘“default off”), see fig. 1. The first coding
bit of a cis-module determines its influence on the gene’s
activation level (inhibitory/activatory) and every following
three coding digits are considered a protein binding site.

Note that, due to evolutionary operators explained below,
there might be additional digits that are not meaningful. We
refer to such digits which are neither translated nor regulatory
as junk. See fig. 2 for an example gene representation.
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Fig. 2. Example gene representation. The gene 010111021101020011113
will produce protein 7 (111) and is “off by default” (last bit is 1). It has two
cis-modules, the first inhibitory (starting with 0) binding a combination of
proteins 5 (101) and 6 (110), and an activatory cis-module (starting with 1)
to which protein 5 (101) will bind. The last zero of the cis-module 110102
as well as the following two zeros are all ignored, they are “junk”.

The genome also encodes several evolvable variables global
to the cell. These are 1) the protein-specific decay rates, four
bits for each of the eight protein types, indexing into a fixed
lookup table of values, 2) the global binding proportion, also
four bits indexing into a lookup table, but identical for all
proteins, and finally 3) the global saturation value, three bits
indexing to look up table, same for all proteins. Look up table
values can be found online at http://panmental.de/GRNmotifs/.

2) Regulatory Logic: A GRN is run over a series of discrete
time steps, its lifetime. In every time step initially a fraction of
the free proteins, determined by the global binding proportion
parameter, are bound to matching sites. Should there be more
than one binding site competing for the same protein type
the fraction is equally distributed between all matching sites'.
In this process all protein binding sites are treated equally,
regardless of the cis-module to which they belong. Let b;
be the number of all binding sites matching protein ¢ (there
can be several for the same protein within and between cis-
modules) and ¢! denote the number of instances of protein i
being available for binding at time ¢. Then the amount pfjm of
protein ¢ bound at time ¢ to a given binding site in cis-module
j of gene m and matching protein i is:

t < t—1
— _t -
Pijm = 3 + Pijm>
T
where pf;i is the amount of protein ¢ at the binding site in the

previous timestep after saturation and protein-specific decay
have been taken into account. Initially there are no proteins,
ie. ¢ =0 and pf;,, = 0.

The activation level a,, of gene m with k cis-modules is
calculated as:

k
Ay = E :l:j
j=1

+1
—1 if cis-module j is inhibitory.

Note that this use of min is an extension of logical AND
(see table I) and results in non-additive effects (“synergy”) in
gene regulation. Furthermore this is a canalizing function in

min

pt
ijm?
4: protein  binds to cis-module j J

if cis-module j is activator
where +; = J y

Note that all variables for protein amounts are treated as continuous.
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TABLE 1
min AND and FUNCTIONS FOR BOOLEAN {0,1} INPUTS.

i

.
i

‘ min(il,ig) ‘ and(z’l,ig)

[V

_—— O
—_o = O

0 0
0 0
1 1

the sense of Kauffman [18], who underlines their importance
for dynamical properties of boolean networks. For a function
to be canalizing (at least) one input variable must be able to
assume a value that enforces a certain output value, regardless
of the other inputs — which is clearly given here as one low
input to the min function suffices to ensure a low output.

So the calculation of every gene’s activation level is done by
adding (activatory) or subtracting (inhibitory) the values per
cis-module but only the lowest value of bound protein per cis-
module is used (min). The increase in protein concentration
due to gene m is then f,,(ay,), > where

(tanh(£=12) + 1) if gene m is “default off”

fm @) = (tanh(2£3) 4 1)

N3 N3

if gene m is “default on”.

The parameter s = 5 determines the steepness of the slope,
with the smaller s is chosen the more switch like the function
gets, and r 150 the range of the function®, see also
fig. 1. The output of the gene’s activation function is added
to the unbound concentration of that gene’s output protein
type. Afterwards the concentrations of all unbound proteins
are checked for being above the global saturation value and
all proteins, free or bound, decayed by the protein specific
rate. Finally, environmental input to the GRN-controlled cell
can occur by increasing the unbound concentration of certain
proteins by some value and output by reading some protein
concentration values.*

C. Evolution

We use a standard Genetic Algorithm with elitism, tour-
nament selection and replacement. Every evolutionary condi-
tion was studied with ten runs, lasting 750 generations each
with each generation containing 250 individuals, where one
individual consisted of a single cell with GRN-controlled
interaction with its environment as determined by its genome
and regulatory dynamics. The initial populations started with
one cis-module per gene and one protein binding site per cis-
module, all coding bit values being randomly assigned — with

2For example, for the gene 010111021101020011113 from fig. 2 this
would mean that due to the first (inhibitory) cis-module, assuming a share
of 20 type 5 proteins (101) and 1 type 6 protein (110) per binding site, the
value —1 would go into the sum. The second (activatory) cis-module however
would contribute +20 resulting in an overall activation of 19, which gives a
protein output of about 125 type 7 proteins.

3The model seems to be quite robust against moderate changes in parameter
choice as tests with different values for s, r and the inflection points of
the activation functions (here, 15 resp. —5 for default on and off) produced
qualitatively similar results.

4Simple scaling by 7 is used to map stimulus input levels from the signal
range to a protein concentration, and vice versa for output protein levels.
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Fig. 3. Gaussian offset crossover. Genomes of (1) parent 1, (2) parent 2,
(3) offspring 1, (4) offspring 2. Only the compartment chosen for crossover
and two neighboring genes are shown. Both children get digits up to the
crossover point (solid bar) from their respective parent, but then continue in
the other parent’s genome with opposite gaussian-distributed offsets (—3 and
+3, respectively, here).

a fixed number of genes during evolution. In network terms,
depicting genes as nodes and protein products of a gene that
match a binding site of another gene as arcs between those
nodes’, the nodes are randomly connected, with at most one
incoming arc.

1) Selection: Later generations are formed by carrying
over the best-performing individual of the last generation
automatically and, keeping population size constant; the other
individuals are replaced by offspring. For every pair of off-
spring, 15 (not necessarily different) individuals of the prior
generation are chosen randomly and of these the best two
selected to be “parents”.

2) Variability: A (single-point) crossover between the par-
ent genomes occurred 90 percent of the times and there is
mutation every coding bit is flipped with a mutation probability
of one percent. To generate a variable number of cis- and
of protein binding sites per gene it is necessary to have
variable length genomes. Note that despite this, the number
of genes stays the same all the time. These properties are
achieved by dividing the parent genomes into compartments:
one compartment for every gene and one compartment for
the global variables. Then (with a probability of 0.9) a single
compartment is chosen for crossover and in this compartment
a point allocated for crossover. However when crossing over
from parent 1’s genome to the second parent’s genome copying
does not necessarily continue at the same position of parent
2’s genome but is shifted by an offset (see fig. 3), mimicking
the unequal crossing-over observed in biology [19].

This offset is randomly drawn from a gaussian distributed
random variable with mean zero and standard deviation four.
The relatively large number four was chosen to allow for
some shifts by three to occur. An offset of three is likely to
add or remove exactly one binding site and at most disturb
immediately adjoining sites. Other values are more probable
to cause a change in the reading frame, i.e. all following
binding sites change the protein type they are receptive for —
very much like what biologists call a frameshift mutation. In
network terms the latter can have a huge impact on the GRN’s
dynamics while the former might be a relatively smooth
transition. The importance of duplicating genetic information
was already pointed out by [20] for the evolution of bio-

5 Another possibility would be to have protein types as nodes with arcs
going from every binding site protein type a gene has to its output protein.
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logical complexity — see also [21], [22]. Ohno put emphasis
on whole-genome duplications while it is now, with better
techniques, becoming ever clearer that “both small- and large-
scale duplication events have played major roles” [23, p. 320].
Experiments where the duplication of genes is possible, in
network terms the addition of nodes with the same connection
structure as an existing node, are under way.

Note that the offset point is limited to stay within the bound-
aries of the compartment, hence if crossoverpoint + offset
is smaller/larger than the left/right boundary it is set to the
corresponding boundary value. So the number of 2s (cis-
modules) might increase by crossover — mutation was only
applied to digits 0 and 1 — but not the number of 3s as these
are the compartment boundaries. When crossover occurs in
the part encoding for global parameters the offset is always
set to 0 as more bits would be meaningless here.

These processes allow both neutral crossover and mutational
changes, as degenerate cis-modules (i.e. less than three bits
— one protein encoding — long) are ignored. Additionally
this means that, although the number of genes was constant
over one evolutionary run, genes could become inactive, in a
manner similar to the so-called pseudo-genes found in nature,
i.e. if there is no non-degenerate cis-module and the gene had
an activation type of “off by default”.

D. Environmental Coupling

We decided to systematically vary evolutionary conditions
by varying the pattern of external signal received at the cellular
level as well as the periodic output behavior expected. The set
of functions was inspired by nature’s circadian rhythms, as
we first wanted one celled “simple models of biological clocks
that have evolved to respond to periodic environmental stimuli
of various kinds with appropriate periodic behaviors” [4], [5].
We will refer to this as the original setting. In other work we
investigated evolving differentiation of cells [6]. There two-
celled (both cells having the same genome) models had to
respond very differently to an almost identical signal (see
schema in fig. 5). This setting will be referred to as the
differentiation setting.

1) Input stimuli: The basic idea for both settings was to
have periodic environmental stimuli based on a sine curve
(shifted to the interval [0,1]). The wavelength was set to
w = 20 time steps, while the lifetime L for every GRN was
400 steps. Variations included having only the positive part
of sine, a periodic step function, and a brief pulse. The four
functions used are depicted in fig. 4.

As mentioned above, in the differentiation setting both cells
of an individual always received the same periodic stimuli,
however one cell additionally received a constant inducing
signal with a value of 1 (see fig. 5).

2) Output behavior: Two periodic target functions were
used to measure the performance of an individual and assign
fitness: sine (fig. 4.1) and step (fig. 4.3), with the first requiring
smooth changes of protein levels and the latter a boolean step-
function-like pattern. The desired output’s shape and phase
might differ from the input, however the wavelength was
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Fig. 4. Periodic functions used: 1) sine (dashed a shifted wave), 2) positive
part of sine, 3) step (dashed a shifted wave), 4) pulse. Note that shifting phase
by one half of the wavelength is equivalent to the inverse wave.
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Fig. 5. Schematic drawing of our model; the two cells have the same genome
and thus the same regulatory network but can produce very different behavior,
induced by a very simple signal which is here shown as external, but it could
also be an internal gene that is always on due to cell division disparity.
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always the same. Fitness was measured based on the deviation
from this desired output, i.e. the smaller the value, the better
adapted the GRN.

Letting cﬁo denote the (unbound) concentration of the induced
output protein ig and dJ, the desired output in phase p € [0,1]
relative to that of the input at time ¢ the performance in the
original setting is simply calculated as: ZtL:l Ict, — db.ol-
For the differentiation setting, while the induced cell’s desired
output would still be in the the same phase as the input, we
ultimately want the other cell to produce the mirror inverse of
the input, which is equivalent to shifting the input’s phase by
one half. Fitness was measured as a funtion of the deviation
from the corresponding desired output, i.e. the smaller the
value, the better adapted the GRN.

With the denominations from above the deviation of the
induced cell is calculated as: 31, |ct, — df | and again for
the other cell, only with d, ; — finally both values were added
up and divided by 2 for comparability with the original setting.
The lifetime L of every individual was set to 400 time steps;
as a reference, over such a lifespan a random GRN typically
achieved a deviation of approximately 200.

Because of results from our earlier research [6] we did not
immediately, i.e. from the first generation, expect individ-
uals to fully differentiate. Instead, the environment became
gradually harder by increasing the relative shift in phase for
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Fig. 6. Evolved under evolutionary pressure (light gray) vs. randomly
evolved (dark gray) average network pattern distributions. On the x-axis
every pair is for a subgraph pattern and on the y-axis the average within-
population number of occurrences is shown. The upper plot shows results for
the original and the lower for the differentiation setting. There are differences
in the distributions however we find huge standard deviations and statistical
significance levels are generally very low.

two cells little by little from 0 to w/2 every 25 generations
(writing g for the current generation we wanted d;,* with
p* = )/w) — so full differentiation was only
required after 2 enerations.
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III. RESULTS

In the following we compare the population subgraph pat-

terns for the original, differentiation and random evolution
settings. Every population consists of 80 individuals (four
input stimuli times two expected outputs times 10 runs), each
from generation 750 of one run. There are more three node
patterns possible than appear in the plots, but for conciseness
only those which had a number of occurences within the GRNs
of a population at the end of a run exceeding at least 0.2 are
shown (averaging over 10 runs, see also fig. 10 for all such
patterns found in this study).
We find that subgraph patterns vary greatly between networks
of all kinds (cf. standard deviations in figures 6, 7). If pattern
occurrence differences are at all significant, significance levels
are very low.

This huge diversity of network patterns might conceivably
have been only due to the different starting populations used
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Fig. 7. Evolved for differentiation (light gray) vs. evolved in the original
setting for one task (dark gray) average network pattern distributions.
Subgraph patterns are shown on the x-axis and average within-population
number of occurrences on the y-axis.

for every run (recall that we used 10 runs for every evo-
lutionary condition). So we ran all experiments again, this
time starting every run from the same initial population and
only afterwards, for the variability operators, changing the
random number generator seed. But even with the same set of
initial networks and the same selective pressures and the same
variability operators, different chance events in generating
variation lead to a very big diversity in resulting networks
(see fig. 8).

When comparing subgraph patterns of single evolved net-

works against the distributions of many random ones there was
always at least one motif (significantly frequent pattern) found.
This is not too surprising considering that network patterns
were very likely (about 70 per cent of the cases) to be found
more than once if found at all. Now we wanted to check if the
most significant motifs — mostly different between networks —
are functionally very important to their GRN.
A lesioning experiment should bring clarity: From every best
evolved network we took away one binding site of a gene,
either a) randomly any site or b) a random binding site
from a subgraph of the most significant motif of this GRN.
Results of running these disrupted networks and measuring
their performance drop have huge standard deviations but
there are on average no big differences between a) and b),
cf. fig. 9. Fitness became on average worse by 47.32 + 66.45
resp. 45.16 £ 67.73 for a) and b) in the original setting
and 51.59 4 65.88 resp. 58.19 + 67.97 in the differentiation
setting, revealing no significant robustness differences between
leasioning a motif or a random location in either the original
or differentiated settings. The higher complexity of the latter
evolutionary setting can nicely be seen by the higher impact
of the lesions on performance.

IV. CONCLUSIONS

The original intention for our analysis was to find a switch
motif to control differentiation when the requirement to differ-
entiate was the only difference between the two evolutionary
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Fig. 8. Independent initial populations (light gray) vs. same initial
populations (dark gray) average network pattern distributions. Subgraph
patterns are shown on the x-axis and average within-population number of
occurrences on the y-axis. The upper plot shows results for the original and
the lower for the differentiation setting. Note that standard deviations are very
large even when starting from the same initial populations.

environments. However this approach proved to be too naive
— there was no convergence on the same single motif or a
small set of switching motifs, and uniqueness of motifs was
not observed. Instead we have found a wide variety of network
patterns and topologies.

Although many evolutionary runs were compared, the ability
of the GRNs to produce dynamics employing a wide range
of different topologies might still be to a large degree due to
the simplicity of the model and target functions used. Also
in our model there is no cost for maintaining connections
(producing proteins). Nevertheless the results warrant caution
when topological measures like motif analysis are used to draw
conclusions about functional properties.

We agree with [7] when they conclude that rather than investi-
gating funtional impact of motifs “it may be more interesting
to investigate transcriptional regulatory network topology with
regard to the methods of network creation.” Note that their
GRN model as well as ours allow for large non-coding regions.
For functional analysis it might be useful to focus not so much
on the structure of networks, but on dynamical (“metabolic’)
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Fig. 9. Impact of lesions: Average reduction in fitness when one edge in a
network is removed for the original (left) and differentiated GRNs (right). In
each pair, the diagonally striped bar shows the impact when any edge can be
chosen while for the grid patterned bar an edge from the nets most significant
network motif was removed. On average the differences are very small and
the standard deviations huge.

properties®. Currently of course it is hard to get data for
biological systems; models might be at an advantage here.
“First, they [the gene motifs] may have come about through
the random duplication and subsequent diversification of a few
ancestral circuits. Given the high frequency at which genes and
genomes undergo duplication, this is a plausible scenario. It
is equally possible, however, that these circuits arose indepen-
dently by recruitment of unrelated genes. If such convergent
circuit evolution is prevalent, then these circuits owe their
abundance to the action of natural selection” [24]. But another
possibility is that we would see evolutionary convergence
for complex problems where there is a clear optimum much
preferred over all others. However for rather simple problems
with many solutions that perform similarly well we might
expect evolution to just take whatever variability generates
first. That is the case in our experiments as standard deviations
of network pattern occurrences are very big even when starting
from the same initial populations, cf. fig. 8. Of course this has
evolvability implications - for a more exact analysis lock-in
effects should be taken into account; if one solution is readily
created we might find it in most networks although there is a
better but hard to find solution.

Summarizing, we checked for the functional importance of the
network motifs found. This was done by removing one edge
in the connection network, either randomly chosen from the
whole network or only from the most significant motif of that
network. On average there was no significant difference in fit-
ness impact between these two settings. So in our experiments
we ended up not only with many different motifs but also mo-
tifs seem not to be functionally especially important. Possbile
shortcomings are the small size of networks used as well as
the coarse level of detail in distinguishing network patterns,
as no distinction was made between inhibitory and activatory
connections, and interaction among TFs was disregarded.

%In addition, note that the motif measure does not treat nonlinear interac-
tions between Transcription Factors at all, although these can have decisive
impact on network dynamics.
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