
Epistasis in Multi-Objective Evolutionary Recurrent
Neuro-Controllers

Mario Ventresca and Beatrice Ombuki-Berman

Abstract— This paper presents an information-theoretic anal-
ysis of the epistatic effects present in evolving recurrent neural
networks. That is, how do the gene-gene interactions change as
the evolutionary process progresses from an initially random state
to the final generation and does this reveal anything about the
problem difficulty. Also, to what extent does the environment
influence epistasis. Our investigation concentrates on multi-
objective evolution, where the major task to be performed is
broken into sub-tasks which are then used as our objectives.
Our results show that the behavior of epistasis during the evolu-
tionary process is strongly dependant on the environment. The
experimental results are presented for the path following robot
application using continuous-time and spiking neuro-controllers.

Index Terms— Epistasis, spiking, continuous-time, recurrent
neural network, multi-objective, evolutionary algorithm.

I. INTRODUCTION

VARIOUS neural network models have been successfully
utilized as controllers for autonomous robots. However,

due to their connectivity, recurrent neural network weights
are inherently dependant on each other to achieve the desired
output. In a neuro-evolutionary scenario, network weights and
other free parameters are randomly initialized and become
specialized as the generations pass. One goal of this work
is to investigate how the problem difficulty changes with
respect to a change in network weights over the generations.
Additionally, we examine how the environment can influence
these epistatic interactions by fixing the state of the environ-
ment over all experiments (to focus on its effect). This paper
provides some insight into these questions from the standpoint
of epistasis.

With respect to evolutionary algorithms, epistasis refers to
the influence of interacting genes on the overall fitness of the
genotype [1]. As such, epistasis plays an important role on the
search difficulty of a problem. Generally, higher degrees of
epistasis imply a harder search. In many evolutionary robotics
applications neural networks are encoded into chromosomes
so that they may be evolved. Therefore, the weight dependence
as the network evolves will be visible as epistatic interactions
within the chromosomes. So, we may apply epistatic metrics
to evaluate the difficulty of searching for neuro-controllers that
can accomplish the given task.

A popular choice of neuro-controller is based on
continuous-time [2] or spiking recurrent models [3]. These

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC)

M. Ventresca, Department of Systems Design Engineering, University of
Waterloo, Waterloo, ONT, Canada (email: mventres@pami.uwaterloo.ca)

Dr. B. Ombuki-Berman, Computer Science Department, Brock University,
St. Catharines, ONT, Canada (email: bombuki@brocku.ca)

models are capable of modelling temporal effects and thus do
not exhibit purely reactive behaviors. That is, they also take
recent actions into account before acting on the current input
signal. We will concentrate on these models in this paper.

Recently, multi-objective techniques such as Pareto rank-
ing [4] have been utilized in the evolutionary robotics and
embodied cognition communities. For example, [5] and [6]
utilize this technique to simultaneously evolve the neuro-
controller and morphology of multi-legged robots. The goal is
to minimize the controller size while maximizing the robots
locomotion distance. This paper differs in that we maintain
a fixed neural architecture, and instead investigate multiple
sub-objectives of a larger goal. For example, in order for a
robot to quickly traverse through a maze it must satisfy the
sub-objectives of forward motion, relatively fast speed and
avoidance of obstacles.

The remainder of this paper is as follows: Section II briefly
describes the Pareto ranking strategy, Section III will discuss
the information-theoretic measures of epistasis. Section IV
introduces continuous-time and spiking recurrent neural net-
works. Our experimental setup is outlined in Section V and
the results are presented in Section VI. Our conclusions and
directions for future research are given in Section VII.

II. MULTI-OBJECTIVE EVOLUTION

A multi-objective problem is one where the solution is
composed of two or more objectives or goals which may
interact in a constructive or destructive manner. While various
approaches exist to incorporate multi-objectivity into evolu-
tionary algorithms, we will utilize the Pareto ranking [4]
strategy.

The underlying idea behind the Pareto ranking fitness evalu-
ation strategy is to preserve the independence of the individual
objectives. This is accomplished by stratifying the current
population of solutions into ranks whereby lower ranks store
more desirable solutions. In order for a solution to occupy a
lower rank it must be clearly superior (i.e., non-dominated)
to the others in all objectives of the problem. Solutions that
occupy the same rank are considered indistinguishable from
each other. A definition of the notion of dominance as given
by [7] for any two solutions G1 and G2 is:

1) The solution G1 is no worse than G2 in all objectives,
mathematically stated as fj(G1) 6 Bfj(G2) ∀ objectives
j = 1, 2, ...M , where fj represents the fitness of the jth

objective.
2) The solution G1 is strictly better than G2 in at least

one objective, mathematically, ∃j ∈ 1, 2.., M such that
fj(G1) C fj(G2).

77

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

If these conditions are satisfied, then it is said that S1

dominates S2 and S1 must occupy a lower rank. Conversely,
if these conditions are not satisfied then S1 does not dominate
S2. Those solutions in the lowest rank are said to be non-
dominated.

III. INFORMATION-THEORETIC EPISTASIS METRICS

In order to perform our analysis we utilize the information-
theoretic measures described below (as proposed by Seo et al
[8]). These metrics quantify the significance of a single gene,
epistasis between pairs of genes and for the whole problem.
A more detailed description of the required computations are
presented in Appendix A.

A. Gene Significance
This measure aims to quantify the contribution of each

of the n genes of Si for i = 1, ..., n to the fitness of the
solution f(S). This is interpreted as the amount of information
I(Si; f(S)) that the ith gene of a solution reveals about the
fitness and is calculated by

ξi =
I(Si; f(S))
H(f(S))

. (1)

The denominator H(f(S)) calculates the entropy over the
marginal distribution of possible fitness values of f(S) and
scales ξi to a range of [0, 1]. A gene significance value close
to 0 implies that the gene contributes very little to the fitness.
Conversely, a value close to 1 indicates that the fitness is highly
influenced by the gene.

If a single gene Sk has a value near 1 and all others are
all close to 0, then the other genes may be not needed. This
is because the fitness is very dependant on the value of Sk.
It may be possible to use this measure to shorten the solution
representation, although not done so here.

B. Gene Epistasis
While the gene significance is concerned with an individual

gene’s contribution to the overall fitness, the gene epistasis
measure concentrates on pairs of genes. This is interpreted as
the amount of information I(Si, Sj ; f(S)) that any two genes
Si and Sj reveal about the fitness of S, where

I(Si, Sj ; f(S)) =
n∑

i=1

I(Si; f(S)|S1...Si−1)

= I(S1; f(S)) + I(S2; f(S)|S1),

where this value is calculated for all i 6= j. Then, the amount
of epistasis between the two genes is calculated by

εij =
{

1− I(Si;f(S))+I(Sj ;f(S))
I(Si,Sj ;f(S)) , if I(Si, Sj ; f(S)) 6= 0

0, otherwise
(2)

This value exists on the range [−1, 1]. When εij > 0 it is
said that the genes Si and Sj exhibit a constructive epistatic
relationship, meaning they interact constructively with each
other. On the other hand if ε < 0 the genes interact in a
destructive manner. When the gene epistasis is 0 the two genes
are mutually independent.

C. Problem Epistasis

As a measure of the epistasis of the problem itself, the sum
of the absolute value of all the gene epistasis values is used.
The problem epistasis η is then calculated by equation 3.

η =
1

n(n− 1)

n∑

i=1

∑

j<i

|εij |. (3)

This value is bounded below by 0 and 1 from below and
above, respectively. Values of η closer to 1 indicate a highly
epistatic problem.

IV. NEURAL MODELS

Our experiments will concentrate on two recurrent neural
network models, namely continuous-time [9] and spiking [3].
The main difference between the two models lies in the
method in which data is encoded and signals are transmitted
between neurons. Spiking networks use a spike-encoding,
whereas continuous-time models use a rate-encoding scheme
which approximates a spike-encoding [3]. Nevertheless, both
models have been successfully utilized in evolutionary systems
for adaptive behavior tasks [2] and [10].

A. Continuous-time Model

Continuous-time recurrent neural networks (CTRNN) are
composed of dynamical neurons, whereby the rate at which
their activation changes is dependant on a time constant τ >
0. Furthermore, each neuron acts as a leaky integrator, such
that input increases the neuron’s action potential which slowly
degrades over time. In this manner, a neuron is influenced by
its previous state(s). The state of a neuron is determined by
both its previous activation and its current output, which is
dependant on the type of activation function. The purpose of
the time constant τi is to determine the rate of change of the
neuron’s state. This process is summarized as

dνi

dt
=

1
τi

−νi +

N∑

j=1

wijσ(νj + θj) + Ii

 (4)

where νi represents the activation potential for the ith neuron.
The activation function σ(·) takes each jth incoming signal
and its bias θj as input. Additionally, real-valued external
input Ii can be provided to the neuron as well. For this work
we utilize the common logistic function (5) as each neuron’s
activation.

σ(x) =
1

1 + e−x
(5)

It has been shown by Funahashi and Nakamura [11] that
CTRNNs are universal approximators of any real-valued func-
tion.

78

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

B. Spiking Model

Spiking recurrent neural networks (SRNN) attempt to utilize
a more biologically realistic data encoding and signal trans-
mission approach [3]. It has been argued that these types of
networks are better suited for applications where the timing of
signals is important [12]. It has been mathematically shown by
Maass [13] that networks of spiking neurons have considerably
more computing processing power than similarly sized non-
spiking networks. However, this does not imply that non-
spiking models are obsolete.

Since their inception many variations on spiking neuron
models have been proposed but we have focus on the Spike
Response Model [14]. According to this model, a neuron is
solely represented by its membrane potential νi at time t.
When the membrane potential reaches the neurons threshold
level θ, the neuron will fire, represented as tfi (where f refers
to the fact the neuron fired). The set of all n firing times of
the ith neuron is defined as its spike train, represented as

Fi = {tfi : 1 ≤ f ≤ n} = {t|νi(t) = θ}. (6)

The actual spike is a function of the synaptic delay ∆,
synaptic time constant τs, and the membrane time constant
τm. Here we model each spike according to equation (7),
where adjusting the respective constants causes the shape of
the function to change (where s = t− tf).

ε(s) =
{

e
s−∆
τm · (1− e

s−∆
τs), if s ≥ ∆

0, otherwise
(7)

A plot of this function is shown in Figure 1 for ∆ = 1,
τs = 10 and τm = 4.

Fig. 1: The behavior of an action potential.

After emitting a spike, the neuron enters the absolute
refractory period, which lasts for Ω time units. During this
time it is impossible for the neuron to evoke a spike. After
this period, the neuron enters a state of relative refractoriness
during which it becomes increasingly likely that it can fire.
A common method to model this behavior is presented in
equation (8).

η(s) =
{
−θe

−s
τm , if s > Ω

−∞, otherwise
(8)

where s = (t − tf) represents the difference between the
current and spike times, respectively, while τm is a membrane
time constant. Figure 2 shows a plot of the refractory periods.

Fig. 2: The absolute and relative refractory periods.

By combining equations (7) and (8) we can describe the
dynamics of the ith neuron having several incoming connec-
tions. Each of the incoming signals is given a weight wj ∈ <.
Thus, the membrane potential can be described as

νi(t) =
∑

j

wt
j

∑

f∈Fi

εj(sj) +
∑

f∈Fi

ηi(si). (9)

So, if νi ≥ θ the neuron will evoke a spike and the neuron
will enter the refractory stages. In this paper, we allow each
kth synapse to have its own time constant, τsk

as well as
its own delay ∆k. Similarly, each nth neuron can have its
own membrane time constant τmn , although all neurons have
a fixed firing threshold θ = 0.7 (empirically decided).

V. EXPERIMENTAL SETUP

In order to run any experiments we must address the
genetic representation and search operator for the neural
network models. Additionally, the application being utilized
is described as is the method for gathering the probabilities
used for calculating epistasis.

A. Genetic Encoding
The continuous-time recurrent neural networks were directly

encoded into a set of three matrices representing connection
weights wij ∈ [−5, 5] between neurons i and j, the time
constants τi ∈ [1, 50] and biases θ ∈ [−1, 1]. Similarly, spiking
networks were encoded into three matrices which represent
the connection weights wij ∈ [−5, 5], axonal delay ∆ ∈ [1, 5]
and the synaptic and membrane potentials τs, τm ∈ [1, 10]
such that for each ith neuron, τmi

> τsij
∀j. So, each matrix

entry represents a gene of the encoding. The above respective
intervals have been empirically determined.

79

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

B. Evolutionary Operator

In order to adapt the CTRNN and SRNN representations we
utilize a mutation-only evolutionary algorithm. The operator
we implemented adds a small random value to each variable
in the network with a small probability that is inversely pro-
portional to the total number of non-zero genes the respective
variable, V . For example, V can be the matrix of weights in
a SRNN, where |V | is the total number of non-zero weights.
This operator is summarized in equation (10), where random
is a uniform random number on [0, 1], vi ∈ V and j is the
current generation.

vj
i =

{
vj−1

i + U(−0.5, 0.5), if random < 1/|V |
vj−1

i , otherwise
(10)

This operator is applied to each of the matrices for each
network at every generation of the algorithm. On average only
1 value per matrix will have the mutation operator applied to
it, which is a result of the inverse proportionality.

C. Path-finding Robot

The path-finding robot is a common evolutionary-robotics
benchmark application [15]. Given a map such as that in
Figure 15, the goal is to design a robot capable of quickly
navigating around it while maintaining a safe distance from
the walls. The starting point of the robot is indicated by
the gray circle. We have utilized the Wright State University
Khepera Simulator [16], which is a Java-based program, as
our simulating environment.

The robot receives input from 8 infrared sensors distributed
around it, which sense the distance to objects. Each sensor
reading is a value between 0 and 1, where smaller values
indicate that an object is close. Movement is accomplished by
the rotation of its two wheels. The wheel speeds are integer
values between 0 and 10 units, although they are scaled during
fitness evaluation to make calculations simpler.

Input to the CTRNN neuro-controller will simply be the 8
raw sensor readings. The output neuron activation potential
will then be the rotation speed of the left and right wheels,
respectively. However, the SRNN cannot use the raw sensor
readings. Instead, these readings must be transformed into a
series of spikes. We have allowed each of the input neurons
to emit a spike for every tenth of sensor input greater than
a value of 0.4. Due to the non-negativity of spike times, the
SRNN-controlled robot cannot move its wheels backwards.

In order to accomplish the task we use the objectives given
below, as described in [15] (although, in that work these
objectives are combined into a single value). For each of
the objectives Oi the wheel rotation speed range is mapped
to [-0.5, 0.5] and each Oi ∈ [0, 1]. First, to encourage fast
movement through the maze, the absolute value of the left
(L) and right (R) wheel speeds are summed together, O1 =
|L|+ |R|. Higher values of this objective are desirable.

Forward motion is abetted by transforming the wheel speeds
to the range [0,1] by adding 0.5 to each speed and then
taking the absolute value of their difference. This value will
be denoted as ∆v. We then subtract the square root of ∆v

from 1 in order to transform it to a maximization problem.
So, this objective is computed by O2 = (1−√∆v).

The final objective is to ensure that the robot does not hit
any walls. This is accomplished by calculating O3 = (1− j),
where j is the smallest sensor reading, which indicates the
distance to the closest object.

D. Probability Model

In order to calculate the three epistasis metrics described
in Section III the probability model must be defined. Since
connection weights for both neural models are real-valued
and the epistasis metrics expect discrete variables we must
perform a discretization of the weights and output. This is
accomplished by dividing the respective variable ranges into
10 equal intervals. For example, the weight interval [-5,5] is
divided into {[-5,-4),[-4,-3)...,[4,5]}. Therefore, each weight
variable takes on one of these ten possible states. Similarly,
each of the three objectives of a solution is divided into 10
equally sized partitions, {[0,.1),...,[.9,1]}.

The probabilities themselves are based on the current
population of solutions. At each generation we estimate the
p(Si, f(S)), p(Si, Sj) and p(Si, Sj , f(S)) joint distributions
and the p(Si) and p(f(S)) marginal distributions from the
current population of individuals. Then, we can compute the
epistasis measures as outlined in Section III.

VI. EXPERIMENTAL RESULTS

We present the experimental results as averages over 10
runs of 30 controllers per neuro-controller and each run lasted
for 40 epochs. The selection strategy used was a 2-way
tournament selection with a selection pressure of 0.75, as
described in [17]. For each run the Pareto optimal set contained
3 elements on average.

During each fitness evaluation the Khepera robot was given
600 steps. The fitness is then evaluated as an average per step,
with respect to each objective value. Almost every experi-
ment was successful at evolving a neuro-controller capable
of quickly traversing fully through the maze starting from its
fixed starting position (1 unsuccessful CTRNN, 0 SNN). Each
of the objectives outlined in Section V will be referred to as:
Fast (refers to wheel speeds), Forward (forward movement),
Avoid (obstacle avoidance).

It should be emphasized that the results given below repre-
sent the population as a whole. That is, we are not concerned
with the best individual or its efficacy at solving the given
task. Rather, we investigate how the problem difficulty changes
over the entire run, and also the environmental influence for
the entire population. Furthermore, the path following problem
has been specifically chosen for its simplicity and also we
disregard generalization since it would become cumbersome
to analyze the environmental effects.

A. CTRNN Results

This section will describe the experimental results for the
evolution of a CTRNN. Figure 3 shows the evolution of each
of the three objectives, where convergence occurs after about

80

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

15 generations. Since each objective shows an increase, it
implies that they are very dependant on one another to achieve
a neuro-controller with high fitness. The obstacle avoidance
and forward motion objectives show a strong similarity in
behavior, that is, the robot is very good at accomplishing these
objectives.

Fig. 3: Average fitness of the population for each objective.

The average amount of gene significance with respect to
each objective over the evolutionary run is presented in Figure
4. During the initial generations we observe a relatively large
value which indicates that the fitness of the neuro-controllers
are very dependant on a subset of genes. Since the initial
weights are randomly initialized, this corresponds to the entire
population of controllers having a similar fitness. As new
behaviors (i.e. ability to turn left) are evolved this value will
decrease since the responsibility control is spread over the
entire architecture. Additionally, the permutation problem [18]
also influences the results, since the epistasis metrics do not
take it into account.

Fig. 4: Average amount of gene significance for the population.

Figure 5 plots the results of the average gene epistasis mea-

sure over the entire run. During the initial three generations
moving fast and obstacle avoidance show a decrease in value,
whereas moving forward is the main goal. Once it can move
forward (opposed to a circular motion), then turning left and
avoiding the wall is the next required behavior, followed by
turning to the right.

With respect to each objective, the overall gene epistasis
exhibits a destructive relationship which tends towards zero
epistasis. The initial generations show a destructive interaction
to a degree of about -0.30. Thus, the weights are having a
detrimental effect on each other and should make the problem
harder. Continuing with the evolution, this value tends towards
zero indicating that the genes become nearly independent on
each other, as expected.

Fig. 5: Average number of constructive epistatic effects for the
population.

The amount of constructive (gene epistasis values > 0.5)
and destructive (values < −0.5) weights are shown in Figures
6 and 7, respectively. We show that there are very few con-
structive interactions, the maximum of 4 occurs at generation
six (from Figure 6). The number of destructive interactions
reaches a maximum of nearly 500 (about generation 2),
however by the end of the run is near one. This implies that
most gene interactions do not contribute in a very constructive
or destructive manner. Thus, this should not be a very difficult
problem.

Figure 8 confirms that according to the problem epistasis
measure, this problem should not be very difficult since the
amount of epistasis is less than 0.1. Therefore, evolving the
CTRNN for this application was not very difficult.

B. SRNN Results

The fitness curve of the average individual for each of the
three objectives is shown in Figure 9. Each of the values
exhibits a similar convergence curve, indicating that each
objective is complementary. That is, they seem to be very
dependant on each other to achieve a high fitness.

Figure 10 shows the average gene significance results over
the evolutionary runs. The curves are nearly identical, which

81

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

Fig. 6: The average amount of constructive gene pairs over
the entire population.

Fig. 7: The average amount of destructive gene pairs over the
population.

Fig. 8: The amount of problem epistasis.

Fig. 9: The average of each objective value per generation for
the entire population.

indicates that the contribution of each gene to each of the
objective values is nearly the same. Additionally, while the
average gene significance value has converged by generation
15, the objective values do not converge until approximately
the 20th generation which shows that fitness can be improved
without changing the amount of epistatic interaction.

Fig. 10: Average gene significance per generation for the
population.

The results for the gene epistasis measure are presented
in Figure 11. During the initial 6 generations the amount of
gene epistasis is negative and relatively small. This indicates
that the weights of the network are working against each
other, and therefore having a detrimental effect on the neuro-
controller’s fitness. The amount of gene epistasis increases
until approximately generation 11, which is the same gen-
eration the gene significance values converged. At this point
the epistasis decreases for two generations then continues to
slowly increase as the robot learns to turn right.

Similar convergence behavior can be seen between Figures
11 and 12. The average number of constructive epistatic effects

82

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

Fig. 11: Average gene epistasis per generation for the popu-
lation.

(values > 0.5) is plotted for each generation. Additionally,
the number of destructive effects (values < −0.5) and the
amount of problem epistasis as shown in Figures 13 and 14,
respectively, exhibits similar behavior.

Fig. 12: Average number of constructive epistatic effects of
the population.

When comparing the above results to the behavior of
the simulated Khepera robot we can see the environmental
influence on epistasis. The initial stages correspond to the
robot’s ability to learn how to turn left in order to avoid
a wall. This takes about 6 or 7 generations to evolve. The
respective values increase since up to this point unfit ”random”
solutions permeate through the population. The following five
generations represent the time it takes to learn the ability to
avoid a wall by turning right. Together, these two tasks make
up the major contributing factor to the fitness of the robot
(since they allow for a longer life by not colliding with a
wall).

The remainder of the evolution concentrates on fine-tuning
the robot’s behavior, and convergence to that set of behaviors.

Fig. 13: Average number of destructive epistatic effects of the
population.

Fig. 14: Average amount of problem epistasis of the population
per generation.

As a result, the amount of epistasis decreases. This behavior
is summarized in Figure 15.

C. Summary

We examined two neural models for the path-finding robot
application. The continuous-time models exhibited lower prob-
lem epistasis than the spiking counterpart. These results were
expected since the SRNN took more generations to converge
to a successful controller. However, the CTRNN controller
contained a large amount of destructive interactions which is
a result of its architecture. For example, a negative output
neuron potential still causes the wheels to rotate.

The SRNN differed from the CTRNN in that it’s neurons
were much more dependant on each other, as is evident from
the large number of constructive and destructive weight pairs.
Additionally, the gene epistasis was also much higher. The
reasoning behind this lies in the method in which SRNN
operate. That is, the wheels of Khepera will turn only in the

83

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

Fig. 15: Behavior of Khepera robot as it learns left and right
turning behaviors.

presence of spikes. Therefore, the network must coordinate
itself such that given some input, the correct number of spikes
are outputted to achieve the desired behavior. As described
above, the CTRNN model will always have some action
potential at the output neurons.

In both cases, we find that as expected the problems are
relatively easy to solve as indicated by the relatively low
epistatic measures for each objective during the evolutionary
process. However, the problem epistasis for CTRNN-based
neuro-controllers was lower than for SRNN-based controllers.

VII. CONCLUSIONS AND FUTURE WORK

This paper has utilized information theoretic measures of
epistatic interactions to investigate the influence of neuro-
controller weights on the problem difficulty. Additionally, we
have explored how these values change during the evolutionary
process. We have provided an experimental insight to aid
in elucidating the theoretical aspects of epistatic interactions
in evolutionary neuro-controllers, specifically those utilizing
CTRNN or SRNN models. While we cannot make conclusions
over all possible applications, we have shown that environmen-
tal influences (that may not be observed from fitness plots)
can be observed through epistasis. Furthermore, we examined
multi-objective fitness evaluation of the controllers and show
that it is possible to achieve the desired behavior through
Pareto ranking evaluation if robot behavior is decomposed into
smaller sub-goals.

Future work is mainly concerned with understanding
epistatic interactions and their influence on problem difficulty
from a theoretical and practical standpoint. Additionally, the
manner in which we utilized multi-objectivity to achieve the
path-finding goal can be further developed. An additional
direction for future research may involve the transition from
simulated to real environments since results obtained from
simulators can be somewhat questionable [?].

APPENDIX

A. Information-Theory Computations
Here we outline the calculations required to perform the

epistasis metrics described in Section III. According to [19],
entropy H(Y) measures the amount of uncertainty about
variable Y and is calculated by

H(Y) = −
∑

y∈Y

p(y)log[p(y)].

The average amount of uncertainty of X reduced by know-
ing the value of Y is known as the mutual information between
X and Y .

I(X; Y) =
∑

x∈X

∑

y∈Y

p(x, y)log
[

p(x, y)
p(x)p(y)

]

Similarly, the conditional mutual information calculates
the average amount of uncertainty of X that is reduced by
knowing the value of Y . However, in this situation we take
into account that the value of variable Z is given.

I(X; Y |Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z

p(x, y, z)log
[
p(x, y, z)p(z)
p(x, z)p(y, z)

]

REFERENCES

[1] G. Rawlins, Foundations of Genetic Algorithms. Morgan Kaufmann,
1991.

[2] R. Beer and J. C. Gallagher, “Evolving Dynamic Neural Networks for
Adaptive Behavior,” Adaptive Behavior, vol. 1, no. 1, pp. 91–122, 1992.

[3] W. Maass, “Computing with Spiking Neurons,” in The Handbook of
Brain Theory and Neural Networks, 2nd Edition, pp. 1080–1083, MIT
Press, Cambridge, Mass., 2001.

[4] D. Goldberg, Genetic Algorithms in Search, Optimiztion and Machine
Learning. Addison-Wesley, 1989.

[5] J. Teo and H. Abbass, “Multi-Objectivity and Complexity in Embodied
Cognition,” IEEE Transactions on Evolutionary Computation, vol. 9,
no. 4, pp. 337–360, 2005.

[6] J. Teo and H. Abbass, “Embodied Legged Organisms: A Pareto Evolu-
tionary Multi-Objective Approach,” Evolutionary Computation, vol. 12,
no. 3, pp. 355–394, 2004.

[7] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[8] D. Seo, Y. Kim, and B. Moon, “New Entropy-Based Measures of Gene
Significance and Epistasis,” in Genetic and Evolutionary Computation
Conference GECCO, pp. 1345–1356, 2003.

[9] R. Beer, “On the Dynamics of Small Continuous-time Recurrent Neural
Networks,” Adaptive Behavior, vol. 3, no. 4, pp. 469–509, 1995.

[10] D. Floreano, Y. Epars, J. Zufferey, and C. Mattiussi, “Evolution of
Spiking Neural Circuits in Autonomous Mobile Robots,” International
Journal of Intelligent Systems, vol. 21, no. 9, pp. 1005–1024, 2006.

[11] K. Funahashi and Y. Nakamura, “Evolution of Spiking Neural Circuits
in Autonomous Mobile Robots,” Neural Networks, vol. 6, pp. 801–806,
1993.

[12] W. Maass and C. Bishop, Pulsed Neural Networks. MIT Press, 1999.
[13] W. Maass, “Lower Bounds for the Computational Power of Networks of

Spiking Neurons,” Neural Computation, vol. 8, no. 1, pp. 1–40, 1996.
[14] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons,

Populations, Plasticity. Cambridge University Press, 2002.
[15] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-

gence and Technology of Self-Organizing Machines. MIT Press, 2000.
[16] S. Perretta and G. J., “A General Purpose Java Mobile Robot Simulator

for Artificial Intelligence Research and Education,” in Proceedings of
the Thirteenth Midwest Artificial Intelligence and Cognitive Science
Conference, 2002.

[17] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1998.
[18] P. J. B. Hancock, “Genetic Algorithms and Permutation Problems:

a Comparison of Recombination Operators for Neural Net Structure
Specification,”

[19] A. Coolean, R. Kuhn, and P. Sollich, Theory of Neural Information
Processing Systems. Oxford University Press, 2005.

84

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

