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Abstract-A new approach to learning structure of dynamic 
Bayesian networks (DBNs) is proposed in this paper. This approach 
is based on particle swarm optimization (PSO) algorithm. We start 
by giving a fitness function based on expectation to evaluate possible 
structure of DBNs by converting incomplete data to complete data 
using current best DBN of evolutionary process. Next, the definition 
and encoding of the basic mathematical elements of PSO are given 
and the basic operations of PSO are designed which provides 
guarantee of convergence. Next, samples for the incomplete training 
set and test set are generated from a known original dynamic 
Bayesian network with probabilistic logic sampling. Next, the 
structure of DBN is learned from incomplete training set using 
improved PSO algorithm steps. Finally, the simulation experimental 
results also demonstrate this new approach’s efficiency and good 
performance in terms of predictive accuracy for test set. 

I. INTRODUCTION 

A Bayesian Network (BN) is a convenient graphical way to 
describe statistical dependencies between a set of variables. It 
combines graph theory with probability to express complex 
uncertainty among random variables. Dynamic Bayesian 
Networks (DBNs) is a species of Bayesian networks (BNs) 
designed to model stochastic temporal processes, which models 
the stochastic evolution of a set of random variables over time 
[1]. Owing to DBNs’ significant advantages in describing 
nonlinear, temporal, evolving and uncertain relationships and 
strong ability of probabilistic inference, studies on modeling, 
learning and inference of DBNs have been developed widely [4]. 
And also, DBNs have been used for many purposes in deferent 
fields [2, 5, 7]. The most common approach to building dynamic 
Bayesian networks is to elicit knowledge from an expert. This 
works well for smaller networks, but when the number of 
variables becomes large, elicitation can become a tedious and 
time-consuming affair. There may also be situations where the 
expert is either unwilling or unavailable. Whether or not experts 
are available, if there are data building the model from data is a 
feasible modeling method. 

When data are complete, learning the structure of a dynamic 
Bayesian network can be decomposed into the problem of 
learning two very simple networks, prior network and transition 
network because the fitness function used to evaluate structures 
exists as a closed form expression. However, the data are usually 
incomplete in most real life applications since we do not have 

complete observability of the process we want to model. One 
major complicated factor for incomplete data is that the fitness 
function exists as a closed form expression for complete data but 
not for incomplete data. Hence the problem of learning the 
structure of DBN from incomplete data is much more difficult 
than for learning from complete data. 

In 1998 Friedman expends SEM (Structural EM) to the DBN 
structure learning in the presence of missing data and hidden 
variables. But it has been noted that the search space of structure 
is large and multimodal, and EM as a deterministic search 
algorithm is prone to find local optima. An obvious choice to 
combat the problem of “getting stuck” on local maxima is to use 
a stochastic search method. This paper explores the use of 
particle swarm optimization (PSO) algorithms for learning 
dynamic Bayesian networks from incomplete data. Our choice 
was partly motivated by the work of Clerc et al. [10]. Network 
structures are especially amenable for evolutionary algorithms 
since the substructures of the network behave as building blocks 
so we can evolve higher fit structures by exchanging 
substructures of parents with higher fitness.  

We’ll begin by briefly describing dynamic Bayesian networks 
and the learning problem. Next we will discuss the scoring 
metric, fitness function, and the landscape. In section 3 we’ll 
make the point for using particle swarm optimization algorithms. 
Section 4 will describe the design choices we made, to obtain 
results from a simulation experiment using a known DBN and 
some results of an empirical study. We’ll close in section 5 with 
a summary of our approach and experiments and discuss our 
future plans. 

II. PROBLEM FORMULATION 

We use capital letters, such as X, Y, Z for variable names and 
lowercase letters x, y, z to denote specific values taken by those 
variables. Sets of variables are denoted by boldface capital letters 
X, Y, Z etc, with sets of values denoted by boldface lowercase 
letters x, y, z etc. Assume that changes occur between discrete 
time slices that are indexed by the non-negative integers and that 
X = {X1,X2, . . . , Xn} is a set of attributes that evolves with the 
process changes. Xi[t] is a random variable that denotes the value 
of the attribute Xi at time t, and X[t] is the set of random 
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variables Xi[t]. The probability distribution over all the random 
variables can be represented as follows: 
        P(X[1],…,X[t]) = P(X[1])P(X[2]|X[1])…..P(X[t] | 
X[1],…,X[t-1])                                                                      (1)                                              

Obviously, such a distribution can be extremely complex. For 
simplicity of DBN’s modeling, learning and inference, two 
assumptions are introduced. One is Markov assumption I(X[t + 
1], {X[1], . . . ,X[t -1]}|X[t]), which means that the state 
variables at each time slice are only dependent on the state of the 
last time slice. Given the Markov assumption, the Eq. (1) can be 
rewritten as: 

P(X[1],…,X[t]) = P(X[1])P(X[2]|X[1]) 
…..P(X[t] | X[t-1])                                   (2)                                                       

Within a finite interval 0, . . . , T , a DBN can be notionally 
“unrolled” into a BN over X[0], . . . ,X[T].The joint distribution 
over X[0], . . . ,X[t] is: 

∏
−

=

+=
1

0
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T

t
B tXtXPXPtXXP（                   (3)                       

The other assumption introduced is time-invariant assumption, 
i.e., the transition probability P (X[t + 1]|X[t]) and the 
dependence relationship among variables are independent of t 
and does not vary with time. Given the assumption, a DBN can 
be simplified further into two parts: A prior network B0 that 
specifies a distribution over initial states X[0]; and A transition 
network B→ over the variables X[0]∪X[1] that is taken to 
specify the transition probability for all t. Thus, a DBN can be 
defined by a pair (B0,B→), as shown in figure 1(b). The transition 
probability in figure 1(b) can be computed as follows: 

∏= >−−
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》

                 (4)                                     

Where pa (Xi [1]) denotes the value of the parent node set of 
Xi[1]. Hence the joint distribution of a DBN over X [0], . . . ,X [T] 
can be simply represented as follows: 

PB (X [0],…., X[t] ) = 
P

0B  (X[0]) P t
》−B

 (X[1]|X[0])                  (5) 
The introduction of the above two assumptions makes the 

DBN’ modeling and learning very easy, because only two very 
simple networks, prior network and transition network, have to 
be handled.   

 
 
             

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig.1. An example for simplification of DBN 
 
Generally, it is difficult for experts to give the structure of 

DBN directly, and learning it from data is a feasible modeling 
method. As a DBN can be defined as two  simple networks,  B0 
and B→, learning the structure of a DBN means learning the 
structure of B0 and B→ respectively from data. In addition, the 
structure learning algorithm can itself be decomposed into 
searching for structures by using search algorithm and evaluating 
structures by using scoring metric (fitness function), which aims 
at finding the best combination of B0 and B→ with highest 
accuracy of generating training set. So the problem of the 
structure learning can be formally defined as follows: 

Input: A training set D of instances of X, which contains N 
observation sequences. The length of the kth sequence is lk and 
each case xk[0], xk[1],…, xk[lk ] is given.    

Output: A DBN that best matches D. The notion “best 
matches” is defined using a scoring function. 

III. PS_DBN ALGORITHM 

Particle swarm optimization (PSO) is an evolutionary 
computation technique developed by Dr. Eberhart and Dr. 
Kennedy in 1995, which is inspired by social behavior of bird 
flocking and fish schooling [2,3]. It has been found to be 
extremely effective in solving the continuous optimization 
problem, but now it has been expanded to discrete domain. 
Though its strict convergence has not been proved, it can be 
easily modified for any discrete/combinatorial problem for which 
we have no good specialized algorithm. Therefore, as a 
combinatorial optimization problem, it is possible to learn the 
structure of DBN by using PSO algorithm. 

PS_DBN algorithm can be expressed simply by the 
following equation, PS_DBN= (F, X, V, Sxx , Pvv , Mv , Pxv ,, λ , 
Ginit , υ ), where F is a fitness function, X a space of positions of  
particles, V velocity set of particles, Sxx a substraction operation 
(position, position), Pvv  a move operation (position plus velocity), 
Mv a multiplication operation (coefficient times velocity), Pxv a 
addition operation (velocity plus velocity), λ the swarm size, 
Ginit  an initial swarm and υ  stopping condition. 

(a) The prior network and transition network 
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A.  Fitness Function F 

As a DBN can be decomposed into two BNs, B0 and B-> , the 
fitness function used to evaluate the structure of DBN can be 
decomposed to evaluate the two BNs respectively. 

When data are complete the BIC score and BDe score as two 
fitness functions for BNs exist in closed form. So we may utilize 
the score decomposition properties, which facilitate the 
computation of the BIC score in several ways. First, note that the 
likelihood is expressed as a sum of terms, where each term 
depends only on the conditional probability of a variable given a 
particular assignment to its parents. Thus, if we want to find the 
maximum likelihood parameters, we can maximize within each 
family independently. Second, the decomposition implies that we 
can learn B0 independently of B->. Finally, we can learn B-> in 
exactly the same manner as learning a BN for a set of samples of 
transitions. 

When data are incomplete we no longer have the score 
decomposition properties. The BIC score and BDe score don’t 
exist in closed form. This is because the formula involves the 
sufficient statistics, which are not known when data are 
incomplete. This means that the optimal parameter choice in one 
part of the network depends on the parameter choices in other 
parts of the network.  

For learning from incomplete data, it is necessary to decrease 
the computational complexity of the fitness function. So we try 
to utilize the score decomposition properties by transforming the 
incomplete data into the complete data. The most commonly used 
method to alleviate this problem is the Expectation-Maximization 
(EM) algorithm. The E-step of EM uses the currently estimated 
parameters to complete the data by computing the expected 
counts. The M-step then re-estimates the maximum likelihood 
parameter values as if the expected counts were true observed 
counts. The central theorem underlying EM’s behavior is that 
each EM cycle is guaranteed to improve the likelihood of the 
data given the model until it reaches a local maximum. 

EM has been traditionally viewed as a method for adjusting 
the parameters of a fixed model structure. However, the 
underlying theorem can be generalized to apply to structural as 
well as parametric modifications. Friedman’s Structural EM 
(SEM) algorithm [9] has the same E-step as EM, completing the 
data by computing expected counts based on the current structure 
and parameters. In addition to re-estimating parameters, the M-
step of SEM can use the expected counts according to the current 
structure to evaluate any other candidate structure—essentially 
performing a complete-data structural search in the inner loop. 
Friedman shows that for a large family of scorings rules, 
including the BIC score and BDe score, the resulting network 
must have a higher score than the original. This is true even 
though the expected counts used in evaluating the new structure 
are computed using the old structure. 

In this paper we will take the BIC score extended for DBNs 

with EM algorithm.  

B. Encoding PSO Elements for DBN 

The structure of  B0 or B-> can be represented as an adjacency list, 
see Figure 2, where each row represents a variable Xi  and the 
members of each row, with the exception of the first member, are 
the parents of Xi, pa(Xi). The first member of each row, i.e. the 
first column of the adjacency list, is the variable Xi. 
 
 
 
 
 
 
 
 
 
 

● Position of Particles and State space  

As PS_DBN algorithm is designed to find the best structure of 
BN (B0 or B->) by using PSO, the structure of BN should be 
encoded into a position of particle. 

Although we show the variable Xi in the figure 2 for clarity, 
the internal representation encodes its parents only, with the 
variable being encoded by sequence. The adjacency list can be 
thought of as a “position” where each pa (Xi) represents a “local 
position”. For example, the “local position” of the variable F can 
be encoded as [D, E]. Because the logarithm of the scoring 
metric is the summation of scores for each variable, each local 
position can be scored separately and added to generate the 
fitness score for the entire structure. As a DBN composes of two 
parts, B0 and B->, the corresponding position of particle P should 
be expressed as P = (P0, P->).  

Based on above, the structure of a DBN shown in figure 1 can 
be encoded as the position of a particle in figure 3:  

 
 
 
 
                                                                      

 
Fig.3. Encoding the structure of a DBN 

So the search space is enormous. A local position can range 
from no parents to n-1 parents, where n is the number of 
variables in the dataset. Thus a local position can take on 

A 

Fig.2. Encoding the structure of a BN 

B C

D E

F 

X1[t] |   X1[t-1]    
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P  

X1[0] | 
X2[0] |  X1[0] 
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            P0      
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a variable can have and n is the number of variables in the 
dataset. So, the search space can be defined as follow: 
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● Velocity 
 
Definition 1 switch operator  
If a specified DBN has n variables, the position of a particle can 
be expressed as an adjacency list P = ((xi)), i=1,…,n. We define a 
switch operator SO which, when applied to a position during one 
time step, gives another position. So, here, SO has three types: 
+xi, -xi and φ . The +xi denotes adding a variable xi into original 
position,   -xi reducing a variable xi and φ  null.  
Definition 2 switch unit 
A sequence composed of one or several switch operators is a 
switch unit. We denote it by SU. 

SU = (SO1, SO2 , ., SOk)                                (6) 
where SO 1, SO 2 , ., SOk  are k switch operators and   
the different orderings of them have different  
signification. The length of the SU is defined by ||SU||  
=k. Each SU is applied to the change of a local  
position.  
Definition 3 switch list (velocity) 
A sequence composed of one or several switch units is a switch 
list. We denote it by SL. Here, actually, the number of switch 
units of each switch list is equal to the number of variables n of 

BN. The length of the SL is defined by ||SL|| =∑
=

n

i 1
i ||SU|| .  A 

velocity V is then defined by   
V = SL = (SU1, SU2 , ., SUn )                           (7)                   

where SU1, SU2, ., SUn are n switch units and each SL  
or V  is applied to the change of a global position. 
Definition 4 equivalent set of switch list  
If different switch lists are equivalent (same result when applied 
to any position), the set of them is called equivalent set of switch 
list.   

C.  Designing Operations for PSO 

● Opposite of a velocity 
 
It means to do the same switch as in original SL, but with reverse 
operator. For example, - ((-A), (+B-C)) = ((A), (-B+C) ). It is 

easy to verify that we have - (- SL ) =SL (and SL ⊕ -SL  φ≅ , see 
below Addition "velocity plus velocity"). 

● Addition (Pxv ) "position plus velocity" 
Let P  be a position and V a velocity. The position P’=P+ V is 
found by applying the first switch of V to P, then the second one 
to the result etc. 
Example 

P = (φ , A, A, B, C, D+E ) 
              

V = ( (+B), (-A), (-A+B), (-B+C), (φ ), (-D-E+A) )  (8)                        
Applying V to P, we obtain successively 
                 P’ = (B, φ , B, C, C, A)                                    (9)                        

● Substraction (Sxx) "position minus position" 
Let P1 and P2 be two positions. The difference P2 – P1 is defined 
as the velocity V, found by a given algorithm, so that applying V 
to P1 gives P2. The condition "found by a given algorithm" is 
necessary, for, as we have seen, two velocities can be equivalent, 
even when they have the same size. In particular, the algorithm is 
chosen so that we have P1 = P2 ⇒V = P2 – P1 = φ  

● Addition (Pvv) "velocity plus velocity" 
Let V1 and V2 be two velocities. In order to compute V1 ⊕ V2 we 
consider the switch list which contains the first switch unit of V1, 
followed by the first switch unit of V2, then the second switch 
unit of V1, followed by the second switch unit of V2 etc. For 
example, ((-A), (-B+C)) ⊕  ((-B+A), (-B+D)) = ((-A-B+A), (-
B+C-B+D)). In general, we "contract" it to obtain a smaller 
equivalent velocity. For example, ((-A-B+A), (-B+C-B+D)) = ((-
B), (+C+D)). In particular, this operation is defined so that V ⊕ - 
V . = φ . So, we can have the following definition: 
Definition 5 basic switch list 
The switch list of equivalent set of switch list, which contains the 
least switch operators, is defined as basic switch list. Each 
velocity is a basic switch list.  

● Multiplication (Mv) "coefficient times velocity" 
Let α  be a real coefficient and V be a velocity. There are 
different cases, depending on the value of α . 
Case α  = 0 
We have α V =φ  
Case α ∈[0,1] 
We just "shrink" V.  Let ||α V || be the greatest integer smaller 
than or equal toα ||V||. So we define α V = ((SO1, .., 
SOk )1,…..,(SO1,..,SOk)n ), k

)/||(||
1

nVα↑   
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Case α  > 1 
It means we have α = d +α ’, d is an integer (d ≠ 0), α ’∈[0,1]. 

So we define α V =∑
=

⊕⊕
d

i
VV

1

')( α . 

Case α  < 0 
As α V = ( -α ) * ( - V ), we only need to consider one of the 
previous cases. 

D. Control Parameters 

The initial swarm Ginit , as well as the velocities, can be generated 
either randomly  or  by a Sobol sequence generator[6, 7], which 
ensures that the D-dimensional vectors will be uniformly 
distributed within the search space. 
   The swarm size λ  should be not kept too big because of the 
computation time required scoring the fitness function; On the 
other hand, λ  should be not kept too small for improving the 
diversity of particles of swarm to avoid premature convergence. 
Hence, we choose λ within [30,100]. 
    The stopping criterionυ  for the algorithm is set in term of that 
when either g1 generations have been run or when in g2 
successive generations, the value of the fitness function of the 
best structure corresponds with the average value of the fitness 
function. 

. Ⅳ PS_DBN ALGORITHM FOR DBN 

We can now rewrite the formula from the basic PSO algorithm: 
V 1+k

id  = w * V k
id ⊕  c1* ()rand * (P id  - X k

id )  

⊕  c2* ()Rand * (P gd  - X
k
id )                             (10) 

X 1+k
id  = X k

id + V 1+k
id                                                         (11)                                                     

where i = 1,2,…,N; N is the swarm’s size; d represents the d-
dimensional search space; w is the inertia weight factor; c1 and c2 
are two positive constants, called the cognitive and social 
parameter respectively; ()rand  and ()Rand  are two random 

numbers uniformly distributed within the range [0,1]; V k
id is the 

velocity of particle i at iteration k; X k
id is the current position of 

particle i at iteration k; P id  is the best previous position of 

particle i at iteration k; P gd  is the best neighbour’s best previous 

position at iteration k.    
The PS_DBN algorithm can be described as follows: 
Step 1: Initialize the particle swarm (each particle is given a 

stochastic initial solution/position and switch 

list/velocity).   
Step 2: If stopping criterion is satisfied, turn to Step 5. 
Step 3: Calculate the next position X '

id (the new solution) 

according to the current position X id  of the particle i. 

1) Calculate the differenceα  by α  = P id  - Xid 

whereα  is a basic switch list and is applied to Xid 

to obtain Pid.  
2) Calculate the difference β  by β = Pgd - Xid 

where β is also a basic switch list. 

3)    Calculate the velocity V '
id in term of the equation 

(10) and transform V '
id into a basic switch list. 

4)    Calculate the new solution X '
id in term of the 

equation (11). 
5)    If a better solution is found, update P id . 

Step 4: If a better solution is found for the whole swarm, 
update P gd and turn to Step 2. 

Step 5: Show the optimal solution. 

.Ⅴ  EXPERIMENT 

For evaluating the behavior of PS_DBN algorithm proposed, we 
perform the different experimental steps as follows:   

Step 1:   Begin with a DBN B = ( B0 , B->) (structure and 
conditional probabilities) and simulate it, generating 
randomly 1000 samples for the training set D and 
another 1000 for the test set. 

Step 2: Using the approach based on PS_DBN algorithm try to 
obtain the structure of DBN B *

S from D, which 

maximize the probability P (D| B S ). 
Step3:  Evaluate the performance of PS_DBN algorithm by 

evaluating the accuracy of B *
S  predicting objective 

probability distribution. 
For this experiment we specify initially a DBN known as BAT 

network that is used to describe the state of automobile running 
on thruway [8]. It contains 10 state variables, 10 observed 
variables and several instant variables. 

We use probabilistic logic sampling [6], with which we 
generate 500, 750, 1000 samples each from the original network 
for training respectively. These training datasets only contain 10 
observed variables.  

The 3, 4, 5 and 6 hidden variables are introduced respectively 
into every training dataset in advance to record the change of 
observed variables and instant variables. The PS_DBN algorithm 
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is run 10 times respectively for each level of hidden variables, 
and then the best structure of DBN of 10 times learning is 
selected as the final learning result of each level of hidden 
variables.  

For the purpose of comparison, all simulations deploy the 
same parameter settings for the PS_DBN except the swarm size 
λ  and inertia weight w. We try to observe the influence of λ , 
w and hidden variables on the PS_DBN performance and 
different w and λ  are chosen for simulations. We decide to stop 
the algorithm when either 1500 generations are reached or when 
in 200 successive generations, the value of the fitness function of 
the best structure corresponds with the average value of the 
fitness function. Finally, we evaluate the performance of result 
model by using the accuracy of predicting the probability 
distribution of the objectives through the result model. This 
concrete process is that we generate 1000 samples as test set 
containing 10 observed variables from the original network, then 

calculate the log loss ( ∑
=

numN

i
i

ii

num

NXXp
N 1

])[],...,0[(log1
 ) 

for the test set using the “best” network from each run, which can 
be seen in figure 4.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
the number of training data  

                     (b)  50=λ , W
9.0
4.0↓  

Fig.4. Comparison of log loss for different number  
of hidden variables: 3, 4, 5, 6 

 
As can be seen from Fig. 4, the more the hidden variables and 

the number of training data are introduced, the higher the 
predictive accuracy becomes. 

. Ⅵ CONCLUSION 

In this paper we describe a novel approach for learning dynamic 
Bayesian networks. This problem is extremely difficult for 
deterministic algorithms and is characterized by a large, multi-
dimensional, multi-modal search space. Our approach is based on 
particle swarm optimization algorithm, which is called PS_DBN 
algorithm. It is simple and reliable, and it can converge rapidly. 

Using simulations of the BAT network, we carry out a 
performance analysis on the PS_DBN algorithm proposed. The 
obtained experimental results also prove its efficiency and good 
performance. Meanwhile, it is confirmed again in this paper that 
PSO can be applied to solve any combinatorial optimization 
problem as same as other evolutionary algorithms.  

The future important step forwards would be to extend the 
proposed structure learning approach based on PSO for trying to 
find out the optimal ordering of these variables in DBN, which is 
expected to improve the convergence of learning the structure of 
DBN further. Then, we also plan to adapt the described structure 
learning approach to hybrid DBNs. 
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