
Research on Structure Learning of Dynamic Bayesian Networks by Particle Swarm
Optimization

Heng Xing-Chen, Qin Zheng, Tian Lei, Shao Li-Ping

School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China.

Abstract-A new approach to learning structure of dynamic
Bayesian networks (DBNs) is proposed in this paper. This approach
is based on particle swarm optimization (PSO) algorithm. We start
by giving a fitness function based on expectation to evaluate possible
structure of DBNs by converting incomplete data to complete data
using current best DBN of evolutionary process. Next, the definition
and encoding of the basic mathematical elements of PSO are given
and the basic operations of PSO are designed which provides
guarantee of convergence. Next, samples for the incomplete training
set and test set are generated from a known original dynamic
Bayesian network with probabilistic logic sampling. Next, the
structure of DBN is learned from incomplete training set using
improved PSO algorithm steps. Finally, the simulation experimental
results also demonstrate this new approach’s efficiency and good
performance in terms of predictive accuracy for test set.

I. INTRODUCTION

A Bayesian Network (BN) is a convenient graphical way to
describe statistical dependencies between a set of variables. It
combines graph theory with probability to express complex
uncertainty among random variables. Dynamic Bayesian
Networks (DBNs) is a species of Bayesian networks (BNs)
designed to model stochastic temporal processes, which models
the stochastic evolution of a set of random variables over time
[1]. Owing to DBNs’ significant advantages in describing
nonlinear, temporal, evolving and uncertain relationships and
strong ability of probabilistic inference, studies on modeling,
learning and inference of DBNs have been developed widely [4].
And also, DBNs have been used for many purposes in deferent
fields [2, 5, 7]. The most common approach to building dynamic
Bayesian networks is to elicit knowledge from an expert. This
works well for smaller networks, but when the number of
variables becomes large, elicitation can become a tedious and
time-consuming affair. There may also be situations where the
expert is either unwilling or unavailable. Whether or not experts
are available, if there are data building the model from data is a
feasible modeling method.

When data are complete, learning the structure of a dynamic
Bayesian network can be decomposed into the problem of
learning two very simple networks, prior network and transition
network because the fitness function used to evaluate structures
exists as a closed form expression. However, the data are usually
incomplete in most real life applications since we do not have

complete observability of the process we want to model. One
major complicated factor for incomplete data is that the fitness
function exists as a closed form expression for complete data but
not for incomplete data. Hence the problem of learning the
structure of DBN from incomplete data is much more difficult
than for learning from complete data.

In 1998 Friedman expends SEM (Structural EM) to the DBN
structure learning in the presence of missing data and hidden
variables. But it has been noted that the search space of structure
is large and multimodal, and EM as a deterministic search
algorithm is prone to find local optima. An obvious choice to
combat the problem of “getting stuck” on local maxima is to use
a stochastic search method. This paper explores the use of
particle swarm optimization (PSO) algorithms for learning
dynamic Bayesian networks from incomplete data. Our choice
was partly motivated by the work of Clerc et al. [10]. Network
structures are especially amenable for evolutionary algorithms
since the substructures of the network behave as building blocks
so we can evolve higher fit structures by exchanging
substructures of parents with higher fitness.

We’ll begin by briefly describing dynamic Bayesian networks
and the learning problem. Next we will discuss the scoring
metric, fitness function, and the landscape. In section 3 we’ll
make the point for using particle swarm optimization algorithms.
Section 4 will describe the design choices we made, to obtain
results from a simulation experiment using a known DBN and
some results of an empirical study. We’ll close in section 5 with
a summary of our approach and experiments and discuss our
future plans.

II. PROBLEM FORMULATION

We use capital letters, such as X, Y, Z for variable names and
lowercase letters x, y, z to denote specific values taken by those
variables. Sets of variables are denoted by boldface capital letters
X, Y, Z etc, with sets of values denoted by boldface lowercase
letters x, y, z etc. Assume that changes occur between discrete
time slices that are indexed by the non-negative integers and that
X = {X1,X2, . . . , Xn} is a set of attributes that evolves with the
process changes. Xi[t] is a random variable that denotes the value
of the attribute Xi at time t, and X[t] is the set of random

85

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

variables Xi[t]. The probability distribution over all the random
variables can be represented as follows:
 P(X[1],…,X[t]) = P(X[1])P(X[2]|X[1])…..P(X[t] |
X[1],…,X[t-1]) (1)

Obviously, such a distribution can be extremely complex. For
simplicity of DBN’s modeling, learning and inference, two
assumptions are introduced. One is Markov assumption I(X[t +
1], {X[1], . . . ,X[t -1]}|X[t]), which means that the state
variables at each time slice are only dependent on the state of the
last time slice. Given the Markov assumption, the Eq. (1) can be
rewritten as:

P(X[1],…,X[t]) = P(X[1])P(X[2]|X[1])
…..P(X[t] | X[t-1]) (2)

Within a finite interval 0, . . . , T , a DBN can be notionally
“unrolled” into a BN over X[0], . . . ,X[T].The joint distribution
over X[0], . . . ,X[t] is:

∏
−

=

+=
1

0

])[|]1[(])0[(])[],....,0[
T

t
B tXtXPXPtXXP（ (3)

The other assumption introduced is time-invariant assumption,
i.e., the transition probability P (X[t + 1]|X[t]) and the
dependence relationship among variables are independent of t
and does not vary with time. Given the assumption, a DBN can
be simplified further into two parts: A prior network B0 that
specifies a distribution over initial states X[0]; and A transition
network B→ over the variables X[0]∪X[1] that is taken to
specify the transition probability for all t. Thus, a DBN can be
defined by a pair (B0,B→), as shown in figure 1(b). The transition
probability in figure 1(b) can be computed as follows:

∏= >−−
= n

i IiBB XpaxPxxP
1

]))1[(|]1[(])0[|]1[（
》

 (4)

Where pa (Xi [1]) denotes the value of the parent node set of
Xi[1]. Hence the joint distribution of a DBN over X [0], . . . ,X [T]
can be simply represented as follows:

PB (X [0],…., X[t]) =
P

0B (X[0]) P t
》−B

 (X[1]|X[0]) (5)
The introduction of the above two assumptions makes the

DBN’ modeling and learning very easy, because only two very
simple networks, prior network and transition network, have to
be handled.

Fig.1. An example for simplification of DBN

Generally, it is difficult for experts to give the structure of

DBN directly, and learning it from data is a feasible modeling
method. As a DBN can be defined as two simple networks, B0
and B→, learning the structure of a DBN means learning the
structure of B0 and B→ respectively from data. In addition, the
structure learning algorithm can itself be decomposed into
searching for structures by using search algorithm and evaluating
structures by using scoring metric (fitness function), which aims
at finding the best combination of B0 and B→ with highest
accuracy of generating training set. So the problem of the
structure learning can be formally defined as follows:

Input: A training set D of instances of X, which contains N
observation sequences. The length of the kth sequence is lk and
each case xk[0], xk[1],…, xk[lk] is given.

Output: A DBN that best matches D. The notion “best
matches” is defined using a scoring function.

III. PS_DBN ALGORITHM

Particle swarm optimization (PSO) is an evolutionary
computation technique developed by Dr. Eberhart and Dr.
Kennedy in 1995, which is inspired by social behavior of bird
flocking and fish schooling [2,3]. It has been found to be
extremely effective in solving the continuous optimization
problem, but now it has been expanded to discrete domain.
Though its strict convergence has not been proved, it can be
easily modified for any discrete/combinatorial problem for which
we have no good specialized algorithm. Therefore, as a
combinatorial optimization problem, it is possible to learn the
structure of DBN by using PSO algorithm.

PS_DBN algorithm can be expressed simply by the
following equation, PS_DBN= (F, X, V, Sxx , Pvv , Mv , Pxv ,, λ ,
Ginit , υ), where F is a fitness function, X a space of positions of
particles, V velocity set of particles, Sxx a substraction operation
(position, position), Pvv a move operation (position plus velocity),
Mv a multiplication operation (coefficient times velocity), Pxv a
addition operation (velocity plus velocity), λ the swarm size,
Ginit an initial swarm and υ stopping condition.

(a) The prior network and transition network

X1[0]

X2[0]

X3[0]

X1[0]

X2[0]

X3[0]

X1[1]

X2[1]

X3[1]

(b) The DBN extended over 3 time slices.

X1[0]

X2[0]

X3[0]

X1[1]

X2[1]

X3[1]

X1[2]

X2[2]

X3[2]

86

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

A. Fitness Function F

As a DBN can be decomposed into two BNs, B0 and B-> , the
fitness function used to evaluate the structure of DBN can be
decomposed to evaluate the two BNs respectively.

When data are complete the BIC score and BDe score as two
fitness functions for BNs exist in closed form. So we may utilize
the score decomposition properties, which facilitate the
computation of the BIC score in several ways. First, note that the
likelihood is expressed as a sum of terms, where each term
depends only on the conditional probability of a variable given a
particular assignment to its parents. Thus, if we want to find the
maximum likelihood parameters, we can maximize within each
family independently. Second, the decomposition implies that we
can learn B0 independently of B->. Finally, we can learn B-> in
exactly the same manner as learning a BN for a set of samples of
transitions.

When data are incomplete we no longer have the score
decomposition properties. The BIC score and BDe score don’t
exist in closed form. This is because the formula involves the
sufficient statistics, which are not known when data are
incomplete. This means that the optimal parameter choice in one
part of the network depends on the parameter choices in other
parts of the network.

For learning from incomplete data, it is necessary to decrease
the computational complexity of the fitness function. So we try
to utilize the score decomposition properties by transforming the
incomplete data into the complete data. The most commonly used
method to alleviate this problem is the Expectation-Maximization
(EM) algorithm. The E-step of EM uses the currently estimated
parameters to complete the data by computing the expected
counts. The M-step then re-estimates the maximum likelihood
parameter values as if the expected counts were true observed
counts. The central theorem underlying EM’s behavior is that
each EM cycle is guaranteed to improve the likelihood of the
data given the model until it reaches a local maximum.

EM has been traditionally viewed as a method for adjusting
the parameters of a fixed model structure. However, the
underlying theorem can be generalized to apply to structural as
well as parametric modifications. Friedman’s Structural EM
(SEM) algorithm [9] has the same E-step as EM, completing the
data by computing expected counts based on the current structure
and parameters. In addition to re-estimating parameters, the M-
step of SEM can use the expected counts according to the current
structure to evaluate any other candidate structure—essentially
performing a complete-data structural search in the inner loop.
Friedman shows that for a large family of scorings rules,
including the BIC score and BDe score, the resulting network
must have a higher score than the original. This is true even
though the expected counts used in evaluating the new structure
are computed using the old structure.

In this paper we will take the BIC score extended for DBNs

with EM algorithm.

B. Encoding PSO Elements for DBN

The structure of B0 or B-> can be represented as an adjacency list,
see Figure 2, where each row represents a variable Xi and the
members of each row, with the exception of the first member, are
the parents of Xi, pa(Xi). The first member of each row, i.e. the
first column of the adjacency list, is the variable Xi.

● Position of Particles and State space

As PS_DBN algorithm is designed to find the best structure of
BN (B0 or B->) by using PSO, the structure of BN should be
encoded into a position of particle.

Although we show the variable Xi in the figure 2 for clarity,
the internal representation encodes its parents only, with the
variable being encoded by sequence. The adjacency list can be
thought of as a “position” where each pa (Xi) represents a “local
position”. For example, the “local position” of the variable F can
be encoded as [D, E]. Because the logarithm of the scoring
metric is the summation of scores for each variable, each local
position can be scored separately and added to generate the
fitness score for the entire structure. As a DBN composes of two
parts, B0 and B->, the corresponding position of particle P should
be expressed as P = (P0, P->).

Based on above, the structure of a DBN shown in figure 1 can
be encoded as the position of a particle in figure 3:

Fig.3. Encoding the structure of a DBN

So the search space is enormous. A local position can range
from no parents to n-1 parents, where n is the number of
variables in the dataset. Thus a local position can take on

A

Fig.2. Encoding the structure of a BN

B C

D E

F

X1[t] | X1[t-1]
X2[t] | X1[t] X1[t-1] X2[t-1]
X3[t] | X2[t] X2[t-1]

P

X1[0] |
X2[0] | X1[0]
X3[0] | X2[0] X1[0]
 P0

A
B | A
C | A
D | B
E | C
F | DE

87

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

∑
=

−
k

i

n
i

1

1)(possible values where k is the maximum set of parents

a variable can have and n is the number of variables in the
dataset. So, the search space can be defined as follow:

∑∑
= =

−
n

j

k

i

n
i

1 1

1）（

● Velocity

Definition 1 switch operator
If a specified DBN has n variables, the position of a particle can
be expressed as an adjacency list P = ((xi)), i=1,…,n. We define a
switch operator SO which, when applied to a position during one
time step, gives another position. So, here, SO has three types:
+xi, -xi and φ . The +xi denotes adding a variable xi into original
position, -xi reducing a variable xi and φ null.
Definition 2 switch unit
A sequence composed of one or several switch operators is a
switch unit. We denote it by SU.

SU = (SO1, SO2 , ., SOk) (6)
where SO 1, SO 2 , ., SOk are k switch operators and
the different orderings of them have different
signification. The length of the SU is defined by ||SU||
=k. Each SU is applied to the change of a local
position.
Definition 3 switch list (velocity)
A sequence composed of one or several switch units is a switch
list. We denote it by SL. Here, actually, the number of switch
units of each switch list is equal to the number of variables n of

BN. The length of the SL is defined by ||SL|| =∑
=

n

i 1
i ||SU|| . A

velocity V is then defined by
V = SL = (SU1, SU2 , ., SUn) (7)

where SU1, SU2, ., SUn are n switch units and each SL
or V is applied to the change of a global position.
Definition 4 equivalent set of switch list
If different switch lists are equivalent (same result when applied
to any position), the set of them is called equivalent set of switch
list.

C. Designing Operations for PSO

● Opposite of a velocity

It means to do the same switch as in original SL, but with reverse
operator. For example, - ((-A), (+B-C)) = ((A), (-B+C)). It is

easy to verify that we have - (- SL) =SL (and SL ⊕ -SL  φ≅ , see
below Addition "velocity plus velocity").

● Addition (Pxv) "position plus velocity"
Let P be a position and V a velocity. The position P’=P+ V is
found by applying the first switch of V to P, then the second one
to the result etc.
Example

P = (φ , A, A, B, C, D+E)

V = ((+B), (-A), (-A+B), (-B+C), (φ), (-D-E+A)) (8)
Applying V to P, we obtain successively
 P’ = (B, φ , B, C, C, A) (9)

● Substraction (Sxx) "position minus position"
Let P1 and P2 be two positions. The difference P2 – P1 is defined
as the velocity V, found by a given algorithm, so that applying V
to P1 gives P2. The condition "found by a given algorithm" is
necessary, for, as we have seen, two velocities can be equivalent,
even when they have the same size. In particular, the algorithm is
chosen so that we have P1 = P2 ⇒V = P2 – P1 = φ

● Addition (Pvv) "velocity plus velocity"
Let V1 and V2 be two velocities. In order to compute V1 ⊕ V2 we
consider the switch list which contains the first switch unit of V1,
followed by the first switch unit of V2, then the second switch
unit of V1, followed by the second switch unit of V2 etc. For
example, ((-A), (-B+C)) ⊕ ((-B+A), (-B+D)) = ((-A-B+A), (-
B+C-B+D)). In general, we "contract" it to obtain a smaller
equivalent velocity. For example, ((-A-B+A), (-B+C-B+D)) = ((-
B), (+C+D)). In particular, this operation is defined so that V ⊕ -
V . = φ . So, we can have the following definition:
Definition 5 basic switch list
The switch list of equivalent set of switch list, which contains the
least switch operators, is defined as basic switch list. Each
velocity is a basic switch list.

● Multiplication (Mv) "coefficient times velocity"
Let α be a real coefficient and V be a velocity. There are
different cases, depending on the value of α .
Case α = 0
We have α V =φ
Case α ∈[0,1]
We just "shrink" V. Let ||α V || be the greatest integer smaller
than or equal toα ||V||. So we define α V = ((SO1, ..,
SOk)1,…..,(SO1,..,SOk)n), k

)/||(||
1

nVα↑

88

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

Case α > 1
It means we have α = d +α ’, d is an integer (d ≠ 0), α ’∈[0,1].

So we define α V =∑
=

⊕⊕
d

i
VV

1

')(α .

Case α < 0
As α V = (-α) * (- V), we only need to consider one of the
previous cases.

D. Control Parameters

The initial swarm Ginit , as well as the velocities, can be generated
either randomly or by a Sobol sequence generator[6, 7], which
ensures that the D-dimensional vectors will be uniformly
distributed within the search space.
 The swarm size λ should be not kept too big because of the
computation time required scoring the fitness function; On the
other hand, λ should be not kept too small for improving the
diversity of particles of swarm to avoid premature convergence.
Hence, we choose λ within [30,100].
 The stopping criterionυ for the algorithm is set in term of that
when either g1 generations have been run or when in g2
successive generations, the value of the fitness function of the
best structure corresponds with the average value of the fitness
function.

. Ⅳ PS_DBN ALGORITHM FOR DBN

We can now rewrite the formula from the basic PSO algorithm:
V 1+k

id = w * V k
id ⊕ c1* ()rand * (P id - X k

id)

⊕ c2* ()Rand * (P gd - X
k
id) (10)

X 1+k
id = X k

id + V 1+k
id (11)

where i = 1,2,…,N; N is the swarm’s size; d represents the d-
dimensional search space; w is the inertia weight factor; c1 and c2
are two positive constants, called the cognitive and social
parameter respectively; ()rand and ()Rand are two random

numbers uniformly distributed within the range [0,1]; V k
id is the

velocity of particle i at iteration k; X k
id is the current position of

particle i at iteration k; P id is the best previous position of

particle i at iteration k; P gd is the best neighbour’s best previous

position at iteration k.
The PS_DBN algorithm can be described as follows:
Step 1: Initialize the particle swarm (each particle is given a

stochastic initial solution/position and switch

list/velocity).
Step 2: If stopping criterion is satisfied, turn to Step 5.
Step 3: Calculate the next position X '

id (the new solution)

according to the current position X id of the particle i.

1) Calculate the differenceα by α = P id - Xid

whereα is a basic switch list and is applied to Xid

to obtain Pid.
2) Calculate the difference β by β = Pgd - Xid

where β is also a basic switch list.

3) Calculate the velocity V '
id in term of the equation

(10) and transform V '
id into a basic switch list.

4) Calculate the new solution X '
id in term of the

equation (11).
5) If a better solution is found, update P id .

Step 4: If a better solution is found for the whole swarm,
update P gd and turn to Step 2.

Step 5: Show the optimal solution.

.Ⅴ EXPERIMENT

For evaluating the behavior of PS_DBN algorithm proposed, we
perform the different experimental steps as follows:

Step 1: Begin with a DBN B = (B0 , B->) (structure and
conditional probabilities) and simulate it, generating
randomly 1000 samples for the training set D and
another 1000 for the test set.

Step 2: Using the approach based on PS_DBN algorithm try to
obtain the structure of DBN B *

S from D, which

maximize the probability P (D| B S).
Step3: Evaluate the performance of PS_DBN algorithm by

evaluating the accuracy of B *
S predicting objective

probability distribution.
For this experiment we specify initially a DBN known as BAT

network that is used to describe the state of automobile running
on thruway [8]. It contains 10 state variables, 10 observed
variables and several instant variables.

We use probabilistic logic sampling [6], with which we
generate 500, 750, 1000 samples each from the original network
for training respectively. These training datasets only contain 10
observed variables.

The 3, 4, 5 and 6 hidden variables are introduced respectively
into every training dataset in advance to record the change of
observed variables and instant variables. The PS_DBN algorithm

89

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

is run 10 times respectively for each level of hidden variables,
and then the best structure of DBN of 10 times learning is
selected as the final learning result of each level of hidden
variables.

For the purpose of comparison, all simulations deploy the
same parameter settings for the PS_DBN except the swarm size
λ and inertia weight w. We try to observe the influence of λ ,
w and hidden variables on the PS_DBN performance and
different w and λ are chosen for simulations. We decide to stop
the algorithm when either 1500 generations are reached or when
in 200 successive generations, the value of the fitness function of
the best structure corresponds with the average value of the
fitness function. Finally, we evaluate the performance of result
model by using the accuracy of predicting the probability
distribution of the objectives through the result model. This
concrete process is that we generate 1000 samples as test set
containing 10 observed variables from the original network, then

calculate the log loss (∑
=

numN

i
i

ii

num

NXXp
N 1

])[],...,0[(log1
)

for the test set using the “best” network from each run, which can
be seen in figure 4.

the number of training data

 (b) 50=λ , W
9.0
4.0↓

Fig.4. Comparison of log loss for different number
of hidden variables: 3, 4, 5, 6

As can be seen from Fig. 4, the more the hidden variables and

the number of training data are introduced, the higher the
predictive accuracy becomes.

. Ⅵ CONCLUSION

In this paper we describe a novel approach for learning dynamic
Bayesian networks. This problem is extremely difficult for
deterministic algorithms and is characterized by a large, multi-
dimensional, multi-modal search space. Our approach is based on
particle swarm optimization algorithm, which is called PS_DBN
algorithm. It is simple and reliable, and it can converge rapidly.

Using simulations of the BAT network, we carry out a
performance analysis on the PS_DBN algorithm proposed. The
obtained experimental results also prove its efficiency and good
performance. Meanwhile, it is confirmed again in this paper that
PSO can be applied to solve any combinatorial optimization
problem as same as other evolutionary algorithms.

The future important step forwards would be to extend the
proposed structure learning approach based on PSO for trying to
find out the optimal ordering of these variables in DBN, which is
expected to improve the convergence of learning the structure of
DBN further. Then, we also plan to adapt the described structure
learning approach to hybrid DBNs.

100 200 300 400 500 600 700 800 900 1000

-1.1

-1.15

-1.2

-1.3

-1.35

-1.4

-1.45
-1.5

-1.55

-1.25

log
loss

1

2

4

3

1:HD=3
2:HD=4
3:HD=5
4:HD=6

10
the number of training data

(a) 100=λ , W
2.1
90。↓

-1.4

-1.45
-1.5

-1.55

1:HD=3
2:HD=4
3:HD=5
4:HD=6

1000100 200 300 400 500 600 700

log
loss

4

3

1

2

-1.1

-1.35

-1.15

-1.2

-1.3
-1.25

10 900 800

90

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

ACKNOWLEDGEMENT

The research reported in this paper is funded by the
National ”973” Key Basic Research Development Planning
Project (2004CB719401).

REFERENCES

[1] Heckerman, D., D. Geiger, et al. (1995). “Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data.”
Machine Learning 20:197-243.

[2] Kennedy, J. Minds and cultures: particle swarm implications.
Socially Intelligent Agents: Papers from the 1997 AAAI Fall
Symposium pp. 67-72. AAAI Press, Menlo Park, CA, 1997.usa,
2001, pp.289-294.

[3] Eberhart, R. C. and Kennedy, J. A new optimizer using particle
swarm theory. Proceeding of the sixth International symposium on
micro machine and human science pp. 39-43. IEEE service center,
Piscataway, NJ, Nagoya, Japan, 1995.

[4] J. Pearl, Probabilistic Reasoning in Intelligence Systems: Network
of Plausible Inference. San Mateo, Calif.: Morgan Kaufmann ,
1998.

[5] R.E. Neapolitan, Probabilistic Reasoning in Expert Systems. Theory
and Algorithms. John Wiley & Sons, 1990.

[6] M. Henrion, “Propagating Uncertainly in Bayesian Networks by
Probabilities Logic Sampling,” Uncertainty in Artificial
Intelligence, vol. 2, pp. 149-163, 1988.

[7] W.H. Press, W.T. Vetterling, S.A. Teukolsky and B.P. Flannery,
Numerical Recipes in Fortran 77,Cambridge University Press:
Cambridge, 1992.

[8] Forbes J, T Huang, K Kanazawa, S Russell. The BAT mobile:
Towards a Bayesian automated taxi [A]. Proc. of 1995 Intel. Joint
Conf. on Artificial Intelligence [C]. Montreal, Canada, 1995.

[9] N. Friedman. Learning belief networks in the presence of missing
values and hidden variables. In ICML97, 1997. Vanderbilt
University, Morgan Kaufmann Publishers

[10] Clerc, M., Discrete Particle Swarm Optimization, illustrated by the
Traveling Salesman Problem, New Optimization Techniques in
Engineering, Springer, 2004, 219-239

91

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

