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Abstract- The artificial immune system (AIS) is a 
computational intelligence approach based on information 
regarding a biological immune system. This study combines the 
metaphor of clonal selection and idiotypic network theories to 
design an AIS method. Although contradicting each other, these 
two theories are useful in developing a function optimization tool. 
The AIS approach comprises idiotypic network selection, 
somatic hypermuation, receptor editing and bone marrow 
operators. The idiotypic network selection operator controls the 
number of good solutions. The somatic hypermuation and 
receptor editing operators explore a search space of solutions to 
an optimization problem. The bone marrow operator generates 
diverse solutions to maintain the population of solutions. The 
performance of the proposed AIS method is measured by using it 
to solve a set of constrained global optimization (CGO) problems. 
The best AIS solution is compared with the known global 
optimum. Numerical results show that the proposed method 
converged to the global optimal solution to each tested CGO 
problem. 

I.  INTRODUCTION 

Many scientific and engineering problems can be 
formulated as constrained global optimization (CGO) 
problems, as follows: 
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where )(0 xg  represents an objective function; )(xmg  is a 
set of m nonlinear inequality constraints; )(xkh  is a set of k
nonlinear equality constraints; x  represents a vector of 
decision variables with real values, and each decision variable 

nx  is constrained by its lower and upper boundaries [ u
n

l
n xx , ].  

All methods that solve the CGO problems can be classified as 
local or global optimizations. Local optimization techniques 
have many limitations. For example, these techniques 
guarantee to locate a global minimum in the neighborhood of 
a staring point, but strongly rely upon choosing a starting 
point. These techniques fail to find a global minimum solution 
to a CGO problem that has multiple local optima. 
Gradient-based optimization methods that need information 
on the gradient of an objective function, are inefficient when 
the objective function is non-differentiable. These methods 

guarantee to produce local optimal solutions to a CGO 
problem. Many global optimization methods have been 
developed to overcome these disadvantages. These methods 
can be divided into two categories–deterministic and 
stochastic optimizations [1]. Deterministic global 
optimization methods often involve a sophisticated 
optimization process and usually make some assumptions 
regarding the problem to be solved [2]. Although these 
approaches produce a global solution to a CGO problem, they 
can be computationally tedious and difficult for general 
practitioners to use.  

The simulated annealing (SA) algorithm and genetic 
algorithms (GAs) are popular stochastic global optimization 
approaches. In 1953, Metropolis et al. [3] first simulated the 
physical annealing process using a Monte Carlo method. 
Their approach was preferred until Kirkpatrick et al. [4] used 
an SA algorithm to solve combinational optimization 
problems, such as traveling salesman problems. Various SA 
algorithms have been developed for application to CGO 
problems [5, 6]. Although SA algorithms have been proven 
statistically to converge to a global optimum, the randomness 
of Monte Carlo causes that SA algorithms cannot guarantee to 
reach a global optimum without unlimited resource [7]. 
Holland first introduced GAs in 1970s. GAs have been widely 
used to solve optimization problems. GAs are described in 
detail in the literature [8]. Unfortunately, GAs have two 
disadvantages–the lack of a local search ability and premature 
convergence [9]. 

In the past decade, a field of computational intelligence 
called artificial immune systems (AIS) has emerged, and is 
now of interest to many researchers. AIS approaches mimic 
the process by which the immune system (IS) learns, 
memorizes, identifies and destroys foreign materials such as 
viruses, pathogens and bacteria (called antigens, Ags). AIS 
methods are commonly based on population-based or 
network-based immune algorithms [10]. They have been 
successfully used in various function optimization problems. 
For instance, de Castro and Von Zuben [11] presented an AIS 
approach called CLONALG to solve mutimodal optimization 
problems; de Castro and Timmis [12] developed an AIS 
method called opt-aiNET to be applied to mutimodal 
optimization problems, and Coello Coello and Cruz Cortés 
[13] designed a constraint-handling technique based on AIS to 
solve CGO problems. 

This study presents an AIS method to overcome the 
difficulties of local optimization techniques, global 
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optimization methods, SA algorithms and GAs. The proposed 
AIS approach is naturally an unconstrained optimization 
technique. Therefore, a penalty function method that can 
transform a CGO problem into an unconstrained optimization 
problem is employed. The performance, in terms of 
effectiveness, efficiency and ease of use, of the proposed AIS 
approach is evaluated by solving a set of CGO problems.

II.  IMMUNE SYSTEM 

Human immunity comprises innate and adaptive 
immunities. Innate immunity provides immediate defense of 
the host, destroying foreign Ags using the macrophages and 
natural killer cells. The immune response has no 
immunological memory, since the response can not be altered 
by repeated exposure to specific Ags. After innate immunity 
is achieved, adaptive immunity, which has an immunological 
memory for specific Ags, is activated. The immune response 
consists of antigen-specific reactions of T and B cells 
(lymphocytes), which operate as in cell-mediate and homoral 
immunities, respectively [14]. This study focuses on B cell 
response. B cells that develop in bone marrow produce 
antigen-specific antibodies (Abs) to fight with Ags. The 
receptors located on a B cell surface are called Abs. Each B 
cell can only manufacture one form of Abs. In this study, an 
Ab is considered to be a B cell, although Abs are only 
receptors of a B cell. 

A. Ag and Ab

-s-s-

B
cell 2
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- s-s -
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Fig. 1. Ag and Abs 

Figure 1 shows an Ag and Abs. The Ag has multiple 
epitopes (antigenic determinants), which can be recognized by 
various Abs with paratopes (recognizers), on its surface. An 
Ab and an Ag have high Ab-Ag affinity when the paratope of 
Ab and the epitope of Ag have complementary shapes. Figure 
2 presents an Ab structure.  
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Fig. 2. Ab structure 

The Ab is composed of two identical heavy (H) and two 
identical light (L) polypeptide chains. These chains consist of 
variable (V) and constant (C) regions. The V-region can 
recognize foreign Ags, while the C-region is responsible for a 
variety of effector functions, including complement fixation. 
Furthermore, H chain comprises gene segments variable VH,
diversity DH, joining JH and C-region gene CH; L chain 
consists of gene segments variable VL, joining JL and 
C-region gene CL [15]. In humans, bone marrow can 
synthesize diverse Abs by recombining gene segments (VH
DH JH and VL JL). Moreover, the Ab also has two 
immunogenic idiotopes (antigenic determinates) that can be 
identified by other Abs in IS [16].  

B.  Immune Theories 
Jenre [16] presented an idiotypic network theory based on 

Ab-Ab recognition to represent the dynamics of a set of 
identical B cells. Perelson [17] subsequently reviewed Jenre’s 
theory and developed a general network model, as follows: 

RDBRIP +−=                 (5) 

where  
RIP  = rate of increase of population of B cells 
B = influx from bone marrow 
D = death of un-stimulated B cells 
R = reproduction of stimulated B cells 

The first two terms in Eq. (5) represent immune network 
metadynamics, which are the continuous manufacture and 
recruitment of diverse B cells. The last term includes Ab-Ag
and Ab-Ab recognition information. Although Langman and 
Cohn [18] asserted that the conceptual foundations of the 
idiotypic network are formal absurdities, the general model 
defined in Eq. (5) is useful for developing a computer tool. 

Clonal selection theory is used to capture the basic concepts 
that are involved in an adaptive immune response to an 
antigenic stimulus. The clonal selection algorithm based on 
clonal selection theory has two features–somatic 
hypermutation and receptor editing [11]. Hypermutation is the 
local exploration of the Ab-Ag affinity landscape. Receptor 
editing provides the ability to escape from the local Ab-Ag 
affinity landscape. Therefore, hypermuation and receptor 
editing have complementary roles in Ab-Ag affinity 
maturation process [19]. 

Exactly how these two immune theories differ is discussed. 
Idiotypic network theory emphasizes the Abs of the IS are 
interconnected. Therefore, two levels of interaction exist 
Ag-Ab and Ab-Ab recognitions. Clonal selection theory 
considers that the Abs of the IS are not connected to each 
other. Thus, Abs interact directly with Ags.

III.  PENALTY FUNCTION METHODS 

Penalty function methods, which are constraint handling 
techniques, are usually used in evolutionary algorithms, such 
as GAs, to solve CGO problems. Exterior and interior penalty 
functions are popular. Exterior penalty functions use an 
infeasible solution as a starting point, and the direction of 
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convergence is from the infeasible region to the feasible 
region. Interior penalty functions start from a feasible solution, 
and move from the feasible region to the constrained 
boundaries. Exterior penalty functions are favored over 
interior penalty functions, because they do not require a 
feasible starting point and are easily implemented. Many 
exterior penalty functions have been performed, such as static, 
dynamic, adaptive and death penalty functions [20]. This 
study used an adaptive penalty function, as follows: 
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m
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2
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where 
pesudof = pseudo-objective function obtained using an original 

objective function plus a penalty term 
gρ  = penalty parameter in current generation g
The parameter gρ  can be adaptively modified by: 
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where 
1+gρ = penalty parameter in generation g +1

1c , 2c > 1 and 21 cc ≠  (to avoid cycle) 
κ = number of past generations 

lx = best solution in generation l
S = feasible solution 

This study defined a solution with a constraint violation of 

[ ] 6

1
101)(,0max −

=
×≤=

M

m
mgvio x  as feasible. These settings 

can yield an accuracy of at least four decimal places for the 
violation of each constraint of the AIS solution to a testing 
CGO problem, as follows: 

9
0 101×=ρ (initial penalty parameter), κ = 50, 1c = 1.5 and 

2c = 10.  
Moreover, the parameter 1+gρ  was limited within the interval 

[ 117 101,101 ×× ]. 

IV.  METHOD 

An AIS approach based on the metaphor of the clonal 
selection and idiotypic network theories was developed and 
applied to solve CGO problems. Although these two theories 
conflict with each other (as described in Section II), they are 
useful in designing a function optimization tool. Figure 3 
shows the pseudo-code of the proposed AIS method, which is 
described below. 

Step 1: Initialization 
Many parameters must be predetermined, such as repertoire 

(population) size rs  and the threshold degree of Ab-Ab

recognition rtp . Section V considers the manipulation of these 
parameters. Real numbers are used to represent Ab and Ag,
since real-coded method yields a more precise solution than 
that obtained using the binary-coded method to solve 
optimization problems with continuous decision variables nx .
Figure 4 shows the Ag and Ab the representation. The epitope 
of Ag in Fig. 4 describes the known parameters in a CGO 
problem; the paratope of Ab represents the decision variables 

nx  of the CGO problem, and the idiotope of Ab is 
responsible for Ab-Ab recognition. An available Ab
repertoire (population) is randomly created based on rs
from [ u

n
l
n xx , ].  

0←g

rs

maxgg <

rsjj ,,2,1, =Ab
rtr pp

j
≥

rsjaffinity j ,,2,1),max(* =←Ab

5.0() ≤rand

1+← gg

rtp

jAb

Fig. 3. The pseudo-code of the proposed AIS method 
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Step 2: Evaluation of Ab-Ag affinity 
A pseudo-objective function is obtained using the adaptive 

penalty function, as defined in Eq. (6). Equation (6) is 
transformed to continue the Ab-Ag affinity metaphor, as 
follows: 

[ ]{ }

rsj

gfaffinity
M

m
mgj

,,2,1

,)(,0max)(1Maximize
1

2

=

+×−=
=

xx ρ  (8) 

Equation (8) is then used to measure Ab-Ag affinity. After the 
Ab-Ag affinities of Abs in the current Ab repertoire are 
evaluated, the Ab with the highest Ab-Ag affinity is selected 
to undergo clonal selection in Step 3. The best Ab ( *Ab ) is 
defined by *

nx ( Nn ,,2,1= ). 

Step 3: Clonal selection 
Various selection operators can be applied to create an 

intermediate Ab repertoire, such as roulette wheel selection, 
elitist selection, rank-based selection and tournament selection 
[21]. However, this study presents an operator called idiotypic 
network selection, based on the idiotypic network theory [16], 
to control the number of antigen-specific Abs and reproduce 
them. The operator is defined by: 

=
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where  

jrp = probability that Ab j recognizes *Ab

njx = decision variables nx of Ab j

The *Ab  selected in Step 2 is the foreign Ag. The *Ab  is 
recognized by other Ab j in the current Ab repertoire. A large 
value of 

jrp means that Ab j can effectively recognize *Ab .

The Ab j with 
jrp that is equal to or larger than the threshold 

degree rtp  is reproduced to create an intermediate Ab
repertoire. The Ab j with 

jrp that is smaller than the rtp  is 
suppressed. 

Step 4: Affinity maturation 
The intermediate Ab repertoire is divided into two subsets. 

A uniform random number is generated for each Ab in the
intermediate Ab repertoire. These Abs undergo somatic 
hypermutation when their random numbers equal or are 
smaller than 0.5. They undergo receptor editing when their 
random numbers exceed 0.5. Somatic hypermutation and 
receptor editing are described below. 

1) Somatic hypermutation 
This study employs multi-non-uniform mutation [22] as the 

somatic hypermutation operator, which can be stated as 
follows: 

≥−−
<−+

=
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where 
2

max
1 1)1,0()( −=

g
gUgA = perturbation factor 

nx ,current = current value of decision variable nx

nx ,trial  = trial value of decision variable nx
g = current generation  

maxg = maximum generation number 
)1,0(U and )1,0(1U = uniform random number 

This operator has two tasks, uniform search and local 
fine-tuning. 

2) Receptor Editing 
Standard Cauchy distribution )1,0(C , in which the local 

parameter is zero and scale parameter is one, is used to 
develop a receptor editing operator. The probability density 
function of )1,0(C  is as follows: 

∞≤≤∞−
+

= s
s

sfC ,
1

11)( 2)1,0( π
         (12) 

Cauchy random variables generated from )1,0(C  are 
employed to perform receptor editing, since they can offer a 
large jump in Ab-Ag affinity landscape to increase the 
probability of escape from the local Ab-Ag affinity landscape. 
The proposed Cauchy receptor editing can be expressed as 
follows: 

[ ]xx ×+= 2
2currenttrial )1,0(U         (13) 

where 

,],,,[ 21
T

Nσσσ= vector of Cauchy random variables 

)1,0(2U  = uniform random number in the interval [0, 1] 

This operator functions in local fine-tuning and large 
perturbation. 

Step 5: Introduction of diverse Abs 
The paratope of an Ab can be created by recombining gene 

segments VH DH JH and VL JL. Based on this metaphor, this 
study presents a bone marrow operator to synthesize diverse 
Abs to recruit the Abs that were suppressed in Step 3. Figure 
5 shows the bone marrow operator. This operator randomly 
chooses two Abs from the intermediate Ab repertoire and a 
recombination point from the gene segments of the paratope 
of the selected Abs. As shown in Fig. 5, the selected gene 
segments (gene 2x  of Ab 1 and gene 2x  of the Ab 2) are 
reproduced to create a library of gene segments, and the 
selected gene segments in the paratope are then deleted. The 
new Ab 1 is formed by inserting into the gene segment, which 
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is gene 2x  of the Ab 2 in the library plus a random variable 
generated from standard normal distribution )1,0(N , at the 
recombination point. Accordingly, the new Ab 2 is created. 
Receptor editing, as described in Step 4, can be applied to 
these Abs to increase the diversity of the created Abs. Finally, 
the gene segments of the idiotope, corresponding to paratope 
at the recombination point, are also altered. 

LLHHH JVJDV −

1x 2x Nx

LLHHH JVJDV −

1x
2x

Nx

LLHHH JVJDV −

1x
2x

Nx

LLHHH JVJDV −

2x Nx

2x

2x

)1,0(1N

)1,0(N

Fig. 5. Illustration of bone marrow operator 

Step 6: Update of Ab repertoire 
A new Ab repertoire is generated based on Eq. (5), 

consisting of the Abs that had been created from Steps 4 and 
5. The Ab-Ag affinities of the Abs in the generated Ab
repertoire are measured. This study presents a strategy for 
updating the Ab repertoire. If the Ab-Ag affinity of Ab j in 
the new Ab repertoire exceeds that in the current Ab
repertoire, then the strong Ab in the new Ab repertoire 
replaces the weak Ab in the current Ab repertoire. If the 
Ab-Ag affinity of Ab j in the new Ab repertoire is equal to or 
worse than that in the current Ab repertoire, then the Ab j in 
the current Ab repertoire survives. This strategy not only 
maintains the strong Abs, but also effectively eliminates 
non-functional Abs.

Steps 2-6 are repeated until the termination criterion maxg
is met. 

V.  RESULTS 

The proposed AIS method, as described in Section IV, was 
applied to a set of CGO problems taken from other studies [13, 
23, 24]. To measure the AIS sensitivity relative to rs , the 
parameter rtp  was fixed, and the values 

{ }150,100,50,10=rs were set. To evaluate the AIS 
sensitivity relative to rtp , the parameter rs  was fixed, and 
the values { }95.0,9.0=rtp were used. The proposed AIS 
approach was coded in MATLAB and was run on a Pentium 4 
2.4 (GHz) PC. For each test problem, the proposed method 
was run 50 times independently, under a set of parameter 
settings ( rs  and rtp ). The termination conditions were for 
test problem 1 maxg = 3500, for test problem 3 maxg = 5000 
and for test problems 2 and 4 maxg = 3000. Numerical results 
were summarized, including the best, median, worst and mean 
CPU times (MCT). 

A. Test problem 1 (TP1) 
TP1 has ten decision variables, eight inequality constraints 

and 20 boundary conditions, as follows: 
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The global solution to TP1 is as follows. 
*x = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 

1.430574, 1.321644, 9.828726, 8.280092, 8.375927), 
)( *xf = 24.306. 

Table I shows the numerical results obtained when the AIS 
method has fixed rtp = 0.9, and { }150,100,50,10=rs  are 
used for TP1. This table indicates that the best and worst 
results obtained with rs = 100 were better than those 
obtained with { },150,50,10=rs  and increasing rs
increased the CPU computational time.  

TABLE I 
Numerical results obtained by fixing rtp = 0.9 and using various rs s

for TP1

rtp = 0.9 

rs = 10 rs = 50 rs = 100 rs = 150

Best 24.934 24.446 24.377 24.382 
Median 26.381 24.877 24.663 24.627 
Worst 29.233 27.268 24.988 25.496 
MCT 8.47 sec. 16.80 sec. 26.70 sec. 36.26 sec.

Table II lists the numerical results obtained using the AIS 
method with fixed rs = 100 and { }95.0,9.0=rtp . This table 
indicates that the best, median and worst results obtained 
using rtp = 0.9 were superior to those obtained using rtp =
0.95.  

TABLE II 
Numerical results obtained by fixing rs = 100 and using various rtp s

 for TP1 
rs = 100 

rtp = 0.9 rtp = 0.95 

Best 24.377 24.487 
Median 24.663 24.914 
Worst 24.988 26.418 
MCT 26.70 sec. 27.99 sec. 

The best solution obtained using the AIS approach was 
*
AISx = (2.18791147, 2.33643103, 8.75582941, 5.11528280, 

0.96298318, 1.38959267, 1.34627148, 9.84486741, 
8.30123925, 8.34348600), )( *

AISxf = 24.377. 
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Each constraint was met as follows. 
)( *

AISxmg = ( 0.001207, 0.009214, 0.011205, 0.610655, 
0.009739, 0.066272, 6.182473, 47.334679). 

B. Test problem 2 (TP2) 
TP2 involves five decision variables, six inequality 

constraints and 10 boundary conditions, as follows: 
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The global solution to TP2 is 
*x = (78.0, 33.0, 29.995256, 45.0, 36.775812),  

)( *xf = 30665.539. 
The optimal settings of the parameters in the AIS method 

were rs = 100 and rtp = 0.9, and Table III summarizes the 
best numerical results for TP2.  

TABLE III 
The best numerical results for TP 2 

Parameter 
settings Best Median Worst MCT 

rs = 100 

rtp = 0.9 30665.543 30665.524 30665.500 16.93 
sec.

The best solution obtained by the proposed AIS method was 
*
AISx = (78.00000054, 33.00001145, 29.99523373, 

44.99989602, 36.77585061), )( *
AISxf = 30665.543. 

Each constraint had an accuracy of five decimal places, as 
follows. 

)( *
AISxmg = ( 92.000004, 0.000004, 8.840512, 11.159488, 

0.000009, 5.000009). 

C. Test problem 3 (TP3) 
TP3 has seven decision variables, four inequality 

constraints and 14 boundary conditions, as follows: 

.7,,2,1,1010
,0115234)(

,08623196)(

,01037282)(

,05432127)(Subject to

81047

10)11(3)12(5)10()(Minimize

76
2
321

2
2

2
14

7
2
6

2
213

54
2
3212

5
2
43

4
2

2
11

7676
4
7

2
6

6
5

2
4

4
3

2
2

2
1

=≤≤−
≤−++−+≡

≤−+++−≡

≤−++++−≡

≤+++++−≡

−−−++

+−++−+−=

nx
xxxxxxxg

xxxxg

xxxxxg

xxxxxg

xxxxxx

xxxxxf

n

x

x
x

x

x

The global solution to TP3 is 
*x = (2.330499, 1.951372, 0.4775414, 4.365726, 

0.6244870, 1.038131, 1.594227), )( *xf = 680.630. 

The optimal settings of the parameters of the AIS method 
were rs = 100 and rtp = 0.9, and Table IV lists the best 
numerical results for TP3. The best solution obtained using 
the proposed AIS approach was 

*
AISx = (2.32369042, 1.95040940, 0.48948969, 4.37120767,  

0.63059961, 1.03715874, 1.58827062), )( *
AISxf = 680.632. 

Every constraint was satisfied as follows. 
)( *

AISxmg = ( 0.000129, 252.485130, 145.002999, 
0.000180). 

TABLE IV 
The best numerical results for TP 3 

Parameter 
settings Best Median Worst MCT 

rs = 100 

rtp = 0.9 680.632 680.640 680.651 31.58 sec.

D. Test problem 4 (TP4) 
TP4 involves 13 decision variables, nine inequality 

constraints and 26 boundary conditions, as follows: 
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The global solution to TP4 is 
*x = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1), )( *xf = 15. 
The optimal settings of the parameters in the AIS method 

were rs = 100 and rtp = 0.9, and Table V summarizes the 
best numerical results for TP4. The best solution obtained by 
the proposed AIS approach was 

*
AISx = (0.99996543, 0.99995683, 0.99994412, 0.99999796, 

0.99991012, 0.99987109, 0.99995193, 0.99984601, 
0.99989468, 2.99971215, 2.99943694, 2.99917334, 
0.99996526), )( *

AISxf = 14.997. 
Each constraint was met as follows: 

)( *
AISxmg = ( 0.001006, 0.001295, 0.001588, 5.000011, 

5.000218, 5.000380, 0.000194, 0.000257, 
0.000413). 
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TABLE V 
The best numerical results for TP 4 

Parameter 
settings Best Median Worst MCT 

rs = 100 

rtp = 0.9 14.997 14.993 14.988 24.67 
sec.

E. Comparison 
Table VI compares the numerical results of the proposed 

AIS method with those obtained using published GAs. In 
Table VI, the ‘ ’ indicates that information is not available; 
GA-1 is a GA with penalty function methods, as used by 
Michalewicz and Schoenauer [23], and GA-2 represents a GA 
with a penalty function method, but without any penalty 
parameter, as employed by Deb [24]. GA-1 was run ten times 
and GA-2 was executed 50 times, to obtain the best, median 
and worst for each tested CGO problems. Table VI indicates 
that the proposed AIS approach converged to a global 
optimum solution to each tested CGO problem, and that the 
best, median and worst results obtained using the AIS method 
were superior to those obtained by GA-1 for TPs 1 and 3, and 
that the worst results obtained using the AIS approach were 
better than those obtained by GA-2 for TPs 1, 2 and 4. 

Coello Coello and Cruz Cortés [13] presented a 
constraint-handling technique based on AIS, which was 
embedded in a GA, to solve TP2 TP4. They reported the best, 
mean and worst solutions. Table VII compares the results of 
the proposed AIS method with those of the AIS approach 
(here called AIS-1) that was presented by Coello Coello and 
Cruz Cortés. The table shows that the best, mean and worst 
results obtained using the proposed AIS were better than those 
obtained using the AIS-1 for TP2 and TP3, and that the mean 
and worst results obtained by the proposed AIS were superior 
to those obtained by AIS-1 for TP4. 

According to the No Free Lunch theorem [25], if algorithm 
A outperforms algorithm B on average for one class of 
problems, then the former must be worse than the latter on 
average over the remaining problems. Therefore, no unique 
stochastic global optimization approach is likely available to 
perform the best for all CGO problems. 

F. Summary of Results 
The performance of the proposed AIS approach is 

summarized as follows: 
1. Effectiveness: The method yields the global solution to 
each tested CGO problem and each constraint is satisfied. 
2. Efficiency: The method takes an acceptable CPU 
computational time, as shown in Tables I V. 
3. Ease of use: The method is easy to implement. This study 
recommends the following settings rs = 100, rtp = 0.9, 

9
0 101×=ρ , κ = 50, 1c = 1.5 and 2c = 10. 

VI.  CONCLUSION 

This study presented a simply artificial immune system 
(AIS) based on the metaphor of biological immune system, 
and used it to solve four constrained global optimization 
(CGO) problems. Numerical results show that the proposed 

AIS method was effective and efficient in solving each tested 
problem. It can be employed as a stochastic global 
optimization tool and may be applied to the CGO problems 
that cannot be easily solved by local optimization techniques 
or complex deterministic global methods. 

TABLE VI 
Comparison of results of the proposed AIS approach and those of  

the published GAs 
TP 
No.

Global
Optimum Methods Best Median Worst 

GA-1 [23] 24.690 29.258 36.060 

GA-2[24] 24.372 24.409 25.075 1 24.306

the  
proposed AIS 24.377 24.663 24.988 

GA-1 [23] 

GA-2 [24] 30665.537 30665.535 29846.6542 30665.539

the  
proposed AIS 30665.543 30665.524 30665.500

GA-1 [23] 680.642 680.718 680.955 

GA-2 [24] 680.634 680.642 680.651 3 680.630

the  
proposed AIS 680.632 680.640 680.651 

GA-1 [23] 15.000 15.000 15.000

GA-2 [24] 15.000 15.000 13.0004 15.000

the  
proposed AIS 14.997 14.993 14.988

TABLE VII 
Comparison of results of the proposed AIS approach and those of  

the AIS-1 method 
TP 
No.

Global
Optimum Methods Best Mean Worst 

the  
proposed AIS 30665.543 30665.522 30665.500

2 30665.539
AIS-1 [13] 30665.00 30662.32 30652.21

the  
proposed AIS 680.632 680.641 680.651 

3 680.630
AIS-1 [13] 680.750 681.666 683.258 

the  
proposed AIS 14.997 14.993 14.988

4 15.000
AIS-1 [13] 14.998 14.820 12.993
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