
Reproducer Classification Using the

Theory of Affordances

Matt Webster

Department of Computer Science

University of Liverpool

Liverpool, L69 3BX, UK

matt@csc.liv.ac.uk

Grant Malcolm

Department of Computer Science

University of Liverpool

Liverpool, L69 3BX, UK

grant@csc.liv.ac.uk

Abstract— We present a new approach to the classification
of reproducers based on an affordance theory of reproductive
behaviour. First, we define the notion of an affordance as an
action that one object in an environment can perform for another
object. Using this ontology we can classify the reproducer space
according to the presence (or absence) of a self-description
and/or reproductive machinery. We give examples of how various
reproducers (both natural and artificial) can be categorised, and
show how this ontology can be used to separate trivial from
non-trivial examples of reproduction. With a worked example
we show how we might use this approach to classify computer
viruses, and gain insight into their reproductive reliance on
external agency. Finally, we conjecture that reproduction requires
a self-description and a reproductive mechanism, whether it is
supplied from within or from an external agent.

I. INTRODUCTION

The ability to reproduce is a necessary condition in most

definitions of what it means to be alive (see, e.g., [1], [2]).

Defining life seems to be contentious and prone to admitting at

least some false positives: examples such as biological viruses,

that meet all the defining criteria, yet go against intuitions

about what life actually is. In contrast, defining reproduction

seems relatively straightforward. There are clear paradigmatic

examples of reproducers: biological organisms [3], von Neu-

mann’s self-reproducing automaton [4], computer viruses [5],

and so forth. Despite its comparative straightforwardness,

however, there are many examples of reproducers that stretch

intuitive acceptance of what it means to be a reproducer.

Such examples include fire, seeding crystals, photocopied

documents, fixed points of functions, and even a pen on a

desk, which reproduces itself from one instant to the next.

One might try to construct a definition of reproduction that

rules out such rogue examples; an alternative approach would

be to classify different kinds of reproducers: i.e., to structure

the space of reproducers in such a way that trivial and rogue

examples of reproducers inhabit a clearly defined region that is

separated from the region containing the paradigmatic exam-

ples. This is the approach taken in the present paper, where we

give a classification of reproducers based on Gibson’s Theory

of Affordances [6]. By classifying and structuring the space

of reproducers, we hope to gain insight into the similarities

and differences between various reproductive processes, and

hence, if only indirectly, gain insight into what constitutes life.

The class of reproducers has been subdivided many times,

according to various criteria (see, e.g., [7]); a comprehensive

overview of the various classifications is given by Freitas &

Merkle (ch. 5, [8]). Our approach seems to be novel in using

a theory of affordances to develop an ecological approach

to reproduction. In Section II, we set out our classification,

which is based on a division between self-description on

the one hand, and the machinery of reproduction on the

other. Any specific example of a reproductive process will

involve a number of agents (or entities), which will include

the reproducer itself. The classification is based on analysing

which actions in the reproductive process are under the control

of the reproducer itself, and which actions are made possible,

i.e., afforded to the reproducer, by other agents.

Section II also gives types for each class of reproducer, e.g.,

Von Neumann’s self-reproducing automaton, bacteriophage

viruses, various kinds of computer viruses, and — in the trivial

corner — photocopied documents. The approach in this section

is very much a pragmatic realist one that discusses “real

world” examples; Section III gives a more formalist approach

to our classification, in which the focus is on classifying

models of reproductive processes. We give a formal definition

of such models, in which we can state precisely what is

meant by an affordance. We also give a worked example of

a computer virus that relies on the agency of an operating

system in order to obtain a self-description. Although the

presentation of this model is merely sketched, it is based on a

very precise formal model presented as an equational theory

of the semantics of assembly language [9], [10]. This more

formal approach allows us to formulate relationships between

models, which means that our classification is much more like

a structured space of reproducers. As an example, Section III

concludes with a conjecture relating all models to what we

call “Type I” models.

We believe that our classification provides useful insights

with particular applications to computer virology. Although

this paper presents only the first steps towards an ecological

understanding of agents interacting through mutual affordance,

directions for future research are discussed in the concluding

section.

115

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE



II. CLASSIFICATION USING AFFORDANCES

Here we present four abstract types for reproduction, based

on analysis of classic formal models of reproduction, e.g., von

Neumann’s self-reproducing automaton in an unmodified and

two modified versions to define the different types of non-

trivial reproducers (Types I, II and III), and gliders such as

those seen in Conway’s Game of Life [11] to define trivial

reproducers (Type IV).

We shall see that these types are the four corners of a

reproducer classification space, and that real-life reproduc-

ers (such as biological organisms, artificial organisms, and

computer viruses) occupy different points within this space

depending on their reproductive reliance on themselves and

their environment.

A. Affordance Theory

Affordance theory describes the functional relationships

between an animal and its environment [6]. For an animal,

an affordance is an “opportunity for action.” For example, a

piece of food affords an animal nourishment, a tree affords it

the ability to climb to safety, and a cave affords shelter. We

use affordances to form a classification of reproducers based

on the functionality that they afford to themselves and the

functionality that their environment affords them, with respect

to reproduction.

Here we use “affordance” metaphorically; we apply it

to reproducers rather than animals, replacing “animal” with

“reproducer” in Gibson’s original definition. If we allow this

slight expansion of the definition of the word, this affordance-

based ontology can afford us an intuitive and novel way of

approaching the classification of reproducers.

(Please note: the word “affordance” has come to mean

“perceived affordance” in the domain of human-computer

interaction. Torenvliet [12] gives a thorough discussion of

the confusion that has arisen, and the correct meaning of the

word.)

1) Philosophical Note: Gibson describes a niche in an

environment, into which an organism fits, as a “set of af-

fordances” [6]. In this paper we categorise different types of

reproducer according to the sets of affordances corresponding

to different reproductive niches. Gibson’s affordance theory

was preceded philosophically by Hume’s bundle theory of

ontology [13], which sought to describe all objects in terms of

their functions only. In that sense, we seek to gain insight into

the different categories of reproducer through a bundle theory

of reproduction.

B. Type I

John von Neumann’s self-reproducing automaton was the

first mathematical simulation of a reproductive process. Von

Neumann identified that reproduction is possible when the

reproducer has a self-contained self-description, and a re-

productive machinery that interprets the self-description as a

set of instructions for producing an offspring [4]. From an

abstract point of view, this is the same process that biological

organisms undergo during reproduction, where the genome (cf.

self-description) is interpreted by the reproductive machinery

within the organism to produce an offspring. We will call this

mode of reproduction Type I. The von Neumann reproducer

is completely self-reliant with respect to reproduction, as its

reproductive mechanism and self-description are completely

self-contained. The self-description consists of a tape that is

attached to the automaton. The reproductive mechanism of the

automaton consists of the method by which the tape is read

and translated into a sequence of instructions, which are fed

to the constructing arm in order to construct the offspring.

1) Example: Langton’s Loop: Langton’s self-reproducing

loops consist of an outer sheath which encapsulates a sequence

of cells with various states (a data signal), which effectively

correspond to instructions to the construction arm for building

an offspring loop [14]. The self-description here is the data

signal within the sheath, and the reproduction mechanism is

the means by which the instruction in the self-description are

“interpreted” by the constructing arm. Both the self-description

and reproductive mechanism are self-contained, and therefore

this particular case of reproduction belongs in Type I.

C. Type II

Biology, as well as artificial life and computer virology,

presents us with examples of reproduction that do not fit

into Type I. For example, biological viruses such as the T4

bacteriophage (Fig. 1) have a self-contained self-description,

but lack a completely self-contained reproductive machinery to

interpret the self-description and produce an offspring. Instead,

these viruses inject their viral self-description into a host cell

(e.g., a bacterium, in the case of T4) where it essentially

hijacks the reproductive mechanism of the cell so that the

cell no longer creates copies of itself, but rather copies of the

virus.

A Type II reproducer differs from Type I in that it lacks a

completely self-afforded reproductive mechanism. There is a

self-afforded self-description mechanism, but the reproductive

mechanism is afforded (at least in part) by an external agent

to the Type II reproducer.

1) Example: Automaton with Self-Description: An example

of a Type II reproducer would be an automaton similar to

the von Neumann self-reproducing automaton. This automaton

does not need to be a universal constructor, or have any

construction abilities at all. It must, however, contain a self-

description such that when it is interpreted by an external

agent with constructing abilities (i.e., an external reproductive

mechanism) the resulting construction is an offspring of the

reproducer. The Type II reproducer then reproduces by the

agency of an external constructor that takes the self-description

within the reproducer and creates an offspring based on it.

2) Example: T4 Bacteriophage: The T4 bacteriophage af-

fords itself a complete and sufficient self-description in the

form of its genome, encoded as DNA or RNA (see Fig. 1).

The first stage in the reproductive process (the injection of the

genetic material into the host bacterium) is performed by the

T4 itself, and therefore part of the reproductive mechanism is

self-contained. However, since all of the subsequent stages of

116

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



Fig. 1. The T4 bacteriophage virus. The legs of the T4 attach themselves to
the cell wall of a bacterium. Then, using the base plate and tail as an injection
mechanism, the genetic material in the head is transferred to the interior of
the host cell, where it hijacks the reproductive mechanism of the cell in order
to reproduce. Image source: [15].

the reproduction are afforded by the bacterium, we can say

the mode of reproduction for the T4 bacteriophage is Type II.

D. Type III

So far we have described two reproductive types corre-

sponding to the case where a self-description and a repro-

ductive mechanism are afforded completely by a reproducer to

itself (Type I), and the case where a self-description is afforded

by the reproducer to itself but the reproductive mechanism is

(at least partially) afforded by some other agent (Type II).

Let us consider a reproducer that does not afford itself a

self-description completely, but does afford itself a complete

reproductive mechanism. Therefore, in order to complete its

reproductive cycle it must obtain a complete self-description.

We call this Type III reproduction.

Type III reproducers differ from Type I reproducers in that

they lack a completely self-afforded self-description, but they

do have a complete and sufficient self-afforded reproductive

mechanism. In terms of the von Neumann self-reproducing

automaton, we can visualise an Type III reproducer as being

a von Neumann self-reproducing automaton without the input

tape providing a self-description. The reproductive cycle can

then only be completed by the action of an external agent that

provides a self-description suitable for interpretation by the

reproductive machinery of the self-reproducing automaton.

1) Example: Compiler: A compiler (in self-reproducing

automata terms) is a constructor of programs, which takes

as its input a sequence of symbols in some programming

language (i.e., source code). A compiler can be given its own

source code (self-description) as input, and as a result it will

create a copy of itself based on these instructions. Therefore,

a compiler has a completely self-afforded reproductive mech-

anism, but the self-description is afforded by external agency.

Therefore a compiler is a Type III reproducer.

2) Example: Damaged Bacterium: It is difficult to think

of a biological example approximating Type III reproduc-

tion. However, we might imagine a bacterium that has been

damaged so that it no longer contains any genetic material.

At this point there will be no self-description but there will

be a completely self-afforded reproductive mechanism, and

reproduction will only be possible through the action of an

external agent that affords a sufficient self-description.

E. Type IV

Let us now consider a reproducer that does not afford itself

completely either a self-description or a reproductive mecha-

nism. If reproduction is to take place it follows that some agent

external to the reproducer must provide the necessary self-

description and reproductive mechanism. We call this Type

IV reproduction.

1) Example: Game of Life Gliders: Cellular automaton

(CA) gliders in Conway’s Game of Life [11] are able to

reproduce trivially thanks to the transition rule of the CA.

Here, the state of the CA at a particular instant stores the

glider’s description, and therefore acts as a self-description

for the glider. The reproductive mechanism is provided by the

transition rule which maps one state of the CA to the next,

and causes the glider to reproduce to a new point on the CA

grid. Therefore a glider is a Type IV reproducer, as it does not

afford itself completely either a reproductive mechanism or a

self-description.

2) Example: The Photocopy: The information stored in

writing on a piece of paper is able to reproduce trivially

in an environment with a photocopier. A piece of paper is

fed into the photocopier, at which point it is scanned and

a representation (digital or otherwise) which captures the

appearance of the piece of paper is created. This representation

is a self-description for the piece of paper. This representation

is then fed to the printer within the photocopier, which creates

a facsimile of the original piece of paper in the form of a

photocopy. This printing process is the reproductive mecha-

nism for the writing on the paper. The photocopy therefore

does not afford itself completely either a self-description or

reproductive mechanism, making it a Type IV reproducer.

The photocopy as an example of trivial reproduction was

given by Taylor [16].

F. Degrees of Reliance on External Agency

We have given four types of reproduction based on a repro-

ducer’s ability to afford itself completely either a reproductive

mechanism or a self-description (see Fig. 2). Where a repro-

ducer lacks ability in either way (i.e., in Types II, III and IV) it

should be possible to further categorise reproducers according

to degrees of reliance on external agency. For example, a T4

bacteriophage affords itself part of its reproductive mechanism

(i.e., the DNA/RNA injection mechanism), and is therefore

less reliant on external agency than, for example, a disabled

T4 bacteriophage that cannot perform the DNA/RNA injection

action.

III. A FORMAL APPROACH TO MODELLING

AFFORDANCES

The preceding discussion has focused on the distinguishing

characteristics of the four types of reproduction. These char-

117

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



Type III Type I

rm ∈
Aff (r, r)

e.g., von Neumann automaton

without tape

e.g., von Neumann automaton

with tape

Type IV Type II

rm /∈
Aff (r, r)

e.g., cellular automaton glid-

ers

e.g., automaton with self-

description

sd /∈ Aff (r, r) sd ∈ Aff (r, r)

Fig. 2. The four reproducer types, where r is a reproducer, rm is the action
corresponding to the reproductive mechanism, sd is the action corresponding
to the self-description and Aff (r, r) is the set of actions that r affords itself.
If some action a /∈ Aff (r, r), then a ∈ Aff (e, r), where e is some external
entity.

acteristics were described in terms of the actions afforded by

entities to other entities. The identification of the entities and

actions involved in a process, and the allocation of affordances

among these entities, depends upon the level of abstraction

at which the process is viewed: in other words, what we are

characterising is not so much processes themselves, as models

of processes. A long-term goal of our research is not just to

classify models of self-reproductive processes, but to be able to

compare and relate different models. This might allow us, for

example, to identify strategies for self-reproduction, such as

the various ways of “hijacking” the reproductive machinery of

other reproducers: bacteriophage viruses and computer viruses

rely on another, general-purpose reproductive mechanism —

proteins that will copy any DNA or RNA sequence; universal

constructors or compilers that will work on any input sequence

of instructions, and so forth. A deep understanding of such

strategies would be useful, for example, in computer virology,

in designing security protocols for mobile processes. We

believe that such advances are most likely to be achieved by

providing formal notions of model and relationships between

models, along the lines of the relationships between algebraic

theories of formal ontologies (see, e.g., [17]).

In this section, we give a more formal approach to modelling

self-reproduction and affordances. We begin by defining what

we mean by a model of a reproductive process, and what an af-

fordance is in such models. We then give a worked example in

Section III-B of a copier computer virus. Finally, Section III-

C gives a first step towards relating models of reproductive

processes by stating a conjecture that all such processes can

be viewed at some stage in their reproduction processes, and

at some level of abstraction, as Type I reproducers.

A. Models and Affordances

We assume that any model of a reproductive process iden-

tifies the states of affairs within which the process plays itself

out. In more formal processes, such as the von Neumann

self-reproducing automaton or computer viruses, these states

of affairs may be very clearly and precisely defined: e.g.,

the states of the grid of cellular automata, or the states of

a computer that contains a virus, including the files stored

on disk, the contents of working memory, and so forth. The

example we present in Section III-B below uses a very formal

description of such computer states based on previous work in

modelling computer viruses through an algebraic theory that

captures the semantics of a computer assembly language [10],

[9]. In more “real life” examples, such as the T4 bacteriophage,

these states may be more abstractly presented: e.g., some

aqueous solution containing cells and viruses, with perhaps

some virus attached to some cell membrane, or some cell

having been injected with viral DNA, and so forth.

Two key elements of the states of a model are the entities

that partake in the various states, and the actions that allow

one state to evolve into another state. For example, we

might consider some aqueous solution containing bacteria and

bacteriophages, and we might identify a particular state in

which a particular bacterium and a particular bacteriophage are

present, and close to each other. If the bacteriophage attaches

to the bacterium, this action takes us to a new state in which

both the bacterium and bacteriophage are present, but now

rather than merely being in the bacterium’s neighbourhood,

the bacteriophage is latched on to the cell’s outer membrane.

In general, we assume that a model identifies the key entities

or agents that take part in the process being modelled, and has

some way of identifying whether a particular entity occurs in

a particular state of affairs (e.g., once an infected bacterium’s

cell membrane has ruptured, that bacterium will presumably no

longer be present in any further states). We also assume that a

model identifies those actions that are relevant to the process

being modelled, and describes which actions may occur to

allow one state of affairs to be succeeded by another. (In

computer science, we call such a structure describing states,

actions, and a relation of succession, a “labelled transition

system”; as far as modelling is concerned, a key property is

that these need not be deterministic: there may be several states

that may succeed another state as the result of some particular

action.)

This basic framework allows us to talk about reproductive

processes: we can say that reproduction means that there is

some entity r (the reproducer), some state s (the initial state of

the reproductive process) with r present in state s (denoted “r :
s” — see Definition 1 in this section) and some sequence w =
a1, . . . , an of actions, such that w leads, through a succession

of intermediate states, to a state s′ with r : s′. This, of course,

allows for trivial reproductive processes, in which the entity

r simply persists through the successive states from s to s′,
but also allows for more interesting cases where r is, e.g., a

von Neumann self-reproducing automaton, and the succession

of states represents all the intermediate states involved in the

construction of its copy. We assume that the relation r : s
can be made abstract enough to accommodate an appropriate

laxity in the notion of entity: i.e., we should gloss r : s as

stating that the entity r, or a copy of r, or even a possible

progeny of r, is present in the state s. In computer virology,

such an abstraction was explicit in the pioneering work of

Cohen [5], where a virus was identified with the set of forms

that the virus could take. This approach is useful for so-called

metamorphic viruses that, in an attempt to avoid detection,

may mutate their source code. Cohen’s sets of possible forms

are referred to as “viral sets”; we might say that our approach

118

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



identifies entities modulo “self sets.”

In the previous section, we saw that it was possible to char-

acterise various types of self-reproductive systems, including

trivial systems, by means of affordances. In the more formal

approach of this section, we can say that affordances are ways

of carving up possible actions among the entities of the system.

Actions may be afforded by one entity to another. We write

Aff (e, e′) for the actions that entity e affords to entity e′. The

idea is that these are actions that are available to e′ only in

states where e is present. Thus, we require that a model carves

up these actions in a coherent way: formally, for any state s
where e′ is present, the action a is possible (i.e., a leads to at

least one state that succeeds s) only if e is also present in s.
These assumptions on models are captured in the following

Definition 1: A model of a reproductive system consists of:

• a set S of states;

• a set Ent of entities;

• a relation : between entities and states, where for

entities e and states s, e : s indicates that e is present in

the state s;
• a set A of actions;

• a ternary relation 7−→ of succession: s
a

7−→ s′ means that

the action a occurring in the state s leads to the new state

s′;
• a function Aff that assigns to two entities e and e′, a

set Aff (e, e′) of possible actions, in such a way that if

a ∈ Aff (e, e′), then for all states s with e′ : s: a is

possible in s (i.e., if s
a

7−→ s′ for some state s′) if and only

if e : s. Notionally, Aff (e, e′) is the set of affordances

that e gives to e′.
As an immediate corollary of this definition, we have that an

action a is afforded by some entity e to itself implies that the

action a is possible in all states in which e is present. That is,

the ability to perform that action depends only on the presence

of e itself.

We saw above that this basic framework allows us to charac-

terise reproduction, in a way that allowed trivial, i.e., Type IV,

examples. We can specify Type I reproduction by requiring

the following: some entity r (the reproducer); states s0, s1
and s2, with r : s0 and r : s2; a sequence sd = a1, . . . , an
of actions (which notionally obtain a self-description of r),

with s0
sd
7−→ s1; an entity d (the description) with d : s1; and

a sequence rm = b1, . . . , bm of actions (which notionally

is the process of creating a copy from the description) with

s1
rm
7−→ s2. Finally, we require that this be Type I reproduction,

by requiring that rm, sd ∈ Aff (r, r). (Note that we freely

extend the succession relation s
a

7−→ s′ and the affordance

function Aff to sequences of actions; the details are quite

straightforward, and omitted here.) Specifications of Types II,

III and IV are similar.

B. Worked Example

In order to illustrate a concrete example of reproducer clas-

sification, we present the copier computer virus (Fig. 3). The

virus shown here is written in SPL, an ad hoc programming

language designed specifically for the purpose of modelling

computer viruses [10]. The syntax and semantics of SPL are

defined formally using OBJ, a formal notation for algebraic

specification [18].

The copier virus exists in an environment consisting of a

file system and an operating system that can manipulate the

file system. Programs written in SPL can manipulate the file

system using operating system function calls.

The behaviour of the computer virus is as follows. In line 1

the variable fh1 is assigned the returning value of the function

getFileHandle, which returns an arbitrary file handle from

the file list. In line 2 the function getSelfName is called

in order to return the file handle of the file currently running

(i.e., the file handle of “self”) and it is assigned to variable

myName. In line 3 the variable nfh is set to the value of

a new file handle, that is, a file handle that is not currently

being used by any other file. This is so that a temporary file

can be created and written to during the infection process. In

lines 4–5 two variables that are needed for the forthcoming

do {_} while (_) loop are initialised.

In lines 6–10 we encounter the loop. In the first iteration

of the loop, the 0th statement (i.e., the first line) of the

file named myName (which is the file currently running and

therefore the file containing the virus) is read in by the function

getLine(_,_) and assigned to the variable line. Next,

this statement is written to the temporary file whose handle is

nfh using the writeToFile(_,_) function. In line 8 the

variable counter is incremented, so that on the next iteration

of the loop the following line will be read in and written to

the file nfh, and so on.

The net effect of this loop is that a copy of the virus is

placed in a temporary file (nfh). The loop stops when the

statement that has just been copied (line) is equal to the

value of variable lastLine, which is set to label end.

label end is the last executable line of the virus program

(line 13) and separates the virus from the rest of the infected

executable. Clearly, in this case the virus exists in a file alone,

but the purpose of the guard is to make sure that in future

generations only the virus is copied and not the rest of the

host executable.

Next comes a call to the function prepend(nfh,fh1),

which causes the statements corresponding to nfh to be added

to the start of the file fh1, in the order they appeared in nfh.

This is the most crucial stage of viral infection, where the virus

attaches itself to the host. In line 12 the temporary file nfh is

deleted from the file system. Line 13 is the label mentioned

in the previous paragraph, and the final line (14) denotes the

end of the file.

The overall effect of running the above virus program is

that the virus searches for another executable file in the file

system, which it infects by prepending its own code to that of

the executable.

1) Classifying the Copier Virus: We shall show how the

copier virus can be classified using two different models (M
and N ) for the reproductive system. In model M the entities

in the environment are the copier virus (cv ) and the file store

(fs), which contains a list of executable files together with their

119

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



1 fh1 := getFileHandle ;

2 myName := getSelfName ;

3 nfh := newFileHandle ;

4 counter := 0 ;

5 lastLine := label end ;

6 do { line := getLine(myName,counter) ;

7 writeToFile(line,nfh) ;

8 counter := s(counter) ;

9 eof }

10 while ( not(line == lastLine) ) ;

11 prepend(nfh,fh1) ;

12 deleteFile(nfh) ;

13 label end ;

14 eof

Fig. 3. Copier computer virus programmed in SPL.

file handles. The functions provided by the operating system

are taken for granted as the “laws of the universe” in which

the copier computer virus resides, and are not considered as

actions explicitly afforded by the OS in the same way that

the laws of thermodynamics are not usually considered to be

actions afforded by the Universe on biological reproducers.

In the second model N the entities are the copier virus (cv )

and the operating system (os), which encapsulates the file store

from Model M , as well as a number of operating system (OS)

functions which are used to modify the file store. The model

differs from the first model in that the OS is no longer taken

for granted as a part of the physical laws of the universe,

but rather is viewed as an external agent which affords the

computer virus help in the form of actions performed by its

function calls.

Some statements in the program Ψ are afforded by the

copier virus to itself. However, certain other statements could

not execute without external agency, and these statements are

therefore afforded by either the file store (model M ) or the

operating system (model N ).

Let Ψ = ψ1, ψ2; . . . ;ψn represent the statement list corre-

sponding to the copier virus algorithm written in SPL. Let the

set of states of the environment S be the set of states of the

computer system, which includes a file store. (Therefore, if the

file store is updated, the state of computer system changes.)

Then, the ternary relation of state succession 7−→ is defined

as follows: ∀ψx ∈ Ψ : s
ψx

7−→ s′. (The precise semantics of

these statements is defined formally using OBJ [10].) Since

Ψ is a list of statements, and each one modifies the state of

the machine executing the instructions, it is important to note

that ∀ψx ∈ Ψ : s
ψx

7−→ s′ iff [[ψx]](s) = s′ where [[ψx]](s) is the

effect of ψx on store s, which is to say that a state transition

from s to s′ under action ψx is only possible if the effect of

ψx on state s is s′. The set of actions A consists only of the

statements used by the copier virus algorithm, and therefore

A = {ψ1, ψ2, . . . , ψn}. We can now assign different actions

to different affordance sets for models M and N .

ψ1 = fh1 := getFileHandle

ψ2 = myName := getSelfName

ψ3 = nfh := newFileHandle

ψ4 = counter := 0

ψ5 = lastLine := label end

ψ6 = do { ... } while ( ... )

ψ7 = line := getLine(myName,counter)

ψ8 = writeToFile(line,nfh)

ψ9 = counter := s(counter)

ψ10 = prepend(nfh,fh1)

ψ11 = deleteFile(nfh)

ψ12 = label end

Fig. 4. Numbering of the SPL statements from the copier computer virus.

2) Classifying the Copier Virus Using Model M : Model M
has two entities: the copier virus and the file store. Therefore,

EntM = {cv , fs}. Since we have two entities, there are two

affordance sets Aff (cv , cv) and Aff (fs, cv) we must consider.

(Since we are trying to assess the contribution of external

agency to cv , it is unnecessary to calculate the sets Aff (cv , fs)
and Aff (fs, fs).)

Numbering the statements from ψ1 to ψ12 (see Fig. 4)

we can calculate the dependence on the operating system

using set analysis. Let rm be the set of actions facilitating

the reproductive mechanism, and let sd be the set of actions

facilitating the self-description acquisition mechanism. Then,

sd = {ψ2} since this is the statement used to obtain a file

handle for acquisition of the self-description (i.e., SPL code)

and rm = {ψ8, ψ10, ψ11}, since these are the statements which

take the self-description and create an offspring within one

of the executable files within the file store. We define the

statements aided by the file store as those which access the

file store, i.e., Aff (fs, cv) = {ψ1, ψ2, ψ3}. The statements

ψ4−12 ∈ Aff (cv , cv) since these actions only need the

presence of the copier virus (cv ). (Even though some of ψ4−12

rely on the file handle obtained by ψ2 as an affordance from

the file store, this information does not need to retrieved again,

and therefore the copier virus is able to modify files using the

file handles directly and without the help of the file store.) Now

we can calculate rm∩Aff (fs, cv) and sd∩Aff (fs, cv) in order

to specify the reliance on external agency (i.e., in this case,

the file store) by the copier virus. So, rm ∩ Aff (fs, cv) = ∅
and sd ∩ Aff (fs, cv) = {ψ2}. In fact, rm ⊆ Aff (cv , cv) and

sd ⊆ Aff (fs, cv), and therefore the copier virus is a Type III

reproducer within Model M , since the defining characteristics

of Type III are that the reproductive mechanism is completely

self-afforded (i.e., rm ⊆ Aff (cv , cv)) and the self-description

is afforded (at least partially) by external agency (i.e., sd 6⊆
Aff (cv , cv)).

3) Classifying the Copier Virus Using Model N : Model N
has two entities: the copier virus and the operating system.

Therefore EntN = {cv , os}.

Since we have two entities, there are two affordance sets

Aff (cv , cv) and Aff (os, cv) we must consider. (As is the case

120

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



with Model M , we are trying to assess the contribution of

external agency to cv , so it is unnecessary to calculate the

sets Aff (cv , os) and Aff (os, os).)
Numbering the statements from ψ1 to ψ12 as before

(see Fig. 4) we can calculate the dependence on the op-

erating system using set analysis. Again, let rm be the

set of actions facilitating the reproductive mechanism, and

let sd be the set of actions facilitating the self-description

acquisition mechanism. Then, sd = {ψ2} and rm =
{ψ8, ψ10, ψ11}, for the same reasons as for Model M . We

define the statements (actions) afforded by the operating

system as those which use operating system functions, i.e.,

Aff (os, cv) = {ψ1, ψ2, ψ3, ψ7, ψ8, ψ10, ψ11}. The statements

ψ4, ψ5, ψ6, ψ9, ψ12 ∈ Aff (cv , cv) since these actions only

need the presence of the copier virus (cv ), as they do not use

any OS functions. Now we can calculate rm ∩ Aff (os, cv)
and sd ∩ Aff (os, cv) in order to specify the reliance on

external agency (i.e., in this case, the operating system) by

the copier virus. So, rm ∩ Aff (fs, cv) = {ψ8, ψ10, ψ11} and

sd ∩ Aff (fs, cv) = {ψ2}. In fact, rm ⊆ Aff (os, cv) and

sd ⊆ Aff (os, cv), and therefore the copier virus is an Type IV

reproducer within Model N , since the defining characteristics

of Type IV are that the reproductive mechanism and self-

description are afforded (at least partially) by external agency

(i.e., sd , rm 6⊆ Aff (cv , cv)).
4) Comparing Models M and N : We found that for

Models M and N we can categorise the copier computer virus

within Types III and IV respectively.

Therefore, by changing our model for the reproductive

system, we can see that the actions afforded by the external

agents vary, which in turn can modify the classification we

give to reproducers. In the case of the copier computer virus,

using the operating system as an external agent instead of the

file store changed the categorisation from Type III (non-trivial)

to IV (trivial). It seems inconsistent to categorise a reproducer

like the copier computer virus in the same class as a photocopy

or a glider, but this apparent paradox is a result of the

model choice, rather than a problem with the affordance-based

approach to reproducer classification. Indeed, it may be useful

to shift the line between trivial and non-trivial reproduction

depending on the application, e.g., some computer viruses

may be so reliant on external help that they are minimally

autonomous and therefore are easily detected at run-time —

it would be natural therefore to classify these reproducers as

trivial.

A potential practical application of model selection is in

the field of computer anti-virus scanning technology, where

it may be possible only to scan certain interactions between

running programs and the computer system that they run

on. For instance, if we were to monitor hardware interrupts

only (e.g., disk input/output routines), we would be in a

situation analogous to Model M , where the actions afforded

by the file store (cf. hard drive) are the only potential sources

of information on viral activity at run-time. If we were to

monitor both the hardware interrupts and the OS function

calls, then we are in a situation analogous to Model N where

all OS function use (including calls to read from or write

to the file store) is afforded by external agents to the copier

virus, and consequently more actions are available for the

purposes of scanning for viral behaviour at run-time. This

increase in dependence on external agency is reflected in the

categorisation for the copier computer virus: Type III in Model

M , and Type IV in Model N .

C. Type I Conjecture

Reproducers that lie outside Type I necessarily lack a com-

plete self-afforded self-description or reproductive mechanism.

However, in order to complete the reproductive process they

must obtain, via external agency, the reproductive mechanism

and self-description which they lack. Therefore, it follows that

at some point during the reproductive process, any reproducer

outside Type I must form a complex which is Type I with

respect to the reproducer.

For example, when the T4 bacteriophage injects its viral

DNA into the host bacterium, the resulting T4-bacterium com-

plex is Type I with respect to the T4 bacteriophage, in that the

self-description and reproductive mechanism are completely

afforded by the complex to itself. For the worked example

in III-B, the copier virus forms a Type I reproducer when it

uses the file store or operating system to obtain a sufficient

reproductive mechanism and self-description. Gliders in the

Game of Life become Type I when the CA transition rule,

which is a reproductive mechanism, is combined with the

instant state of the CA, which serves as a self-description. The

modified von Neumann self-reproducing automata in Types II

or III (see II-C, II-D) must form a complex by external agency

which is of Type I, in order to complete their reproductive

processes.

IV. CONCLUSION

We have shown that the “classic” examples of reproduc-

tion (including biological organisms and von Neumann self-

reproducing automata) can be classified within Type I. We

have defined two further Types (II and III) of reproducers that

lack some critical part of their reproductive machinery, and a

fourth Type (IV) which has no completely self-afforded repro-

ductive machinery, but reproduces trivially thanks to external

agency (e.g., cellular automaton gliders and the photocopy).

This provides a means of separating trivial reproducers (i.e.,

those in Type IV) from non-trivial reproducers using the theory

of affordances to show the dependence on external agency.

The problem of separating trivial reproducers from non-trivial

reproducers was highlighted by Langton [14], and the work

here suggests that the reproducers intuitively thought of as

being trivial are those found in Type IV. Langton says that for

non-trivial reproducers,

“. . . responsibility for the production of the offspring

should reside primarily within the sequences of

actions undertaken by the parent structure. Note

that we want to require that responsibility reside

primarily with the parent structure itself, but not

totally.” [14]

121

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



By using the affordance-based theory of reproductive mod-

els (see, e.g., III-B) we have begun to state, qualitatively and

quantitatively, in what ways the “responsibility” for the pro-

duction of offspring is divided between the parent (reproducer)

and the environment (other entities), and what the difference

is between “primarily” (e.g., non-trivial reproducers outside

Type I) and “totally” (Type I).

We gave an example of how a computer virus can be anal-

ysed to discover its reproductive reliance on external agents

such as the file store or operating system, in terms of acquisi-

tion of a self-description and its reproductive mechanism. Such

analyses of computer viruses could be a practical application

in computer virology and anti-virus software engineering, as

the less help a virus needs to reproduce, the more autonomous

it is, and the less it relies on external agents (e.g., the operating

system), thus making it more difficult to detect at run-time.

A. Comparison with Other Approaches

Reproducer classification based on reliance of a reproducer

on the environment can also be found in the works of Freitas

and Merkle (ch. 5, [8]), Taylor [16] and Luksha [7]. Freitas

and Merkle give categories for the location of replication infor-

mation (i.e., self-description) and replicator parasiticity (i.e.,

reliance on external agency for the reproductive machinery).

Taylor divides the reproducer space into two: reproduction

occurs either with or without reliance on external agency

(auto- and assisted-reproduction respectively). Our approach

differs from the aforementioned in that it allows a variety of

possibilities between full reliance and non-reliance on external

agencies for the reproductive mechanism and self-description

(see II-F). For example, within our framework it is possible

that the set of actions corresponding to the reproductive ma-

chinery and/or the self-description of a reproducer is afforded

partly by an external agent, and partly by the reproducer itself.

A more finely-grained categorisation of reproducers along

either axis is therefore possible.

Luksha offers a categorisation of reproducers based on the

relative complexities of the reproducer and its environment. In

our approach categorisation is based on the amount of reliance

on external agency for the self-description and reproductive

machinery, which we identify as two crucial criteria for

reproducer classification.

B. Future Work

1) Metrics for Reliance on External Agency: In II-F we

described how reproducers outside Type I might be classified

according to a sliding scale of reliance on external agency,

from full dependence on external agency (e.g., a photocopy

or a CA glider), through partial dependence (e.g., a T4

bacteriophage that affords itself only part of its reproduction

mechanism), to zero dependence (i.e., Type I reproducers). It

should therefore be possible to develop metrics for quantifying

this variable dependence of reproducers on other entities. It

may be possible to construct different metrics for the classes

of non-trivially reproducing cellular automata, or artificial life

organisms such as those seen in Ray’s Tierra [19], for example.

It is also possible to imagine metrics for use in the analysis and

classification of biological viruses, if a standard and abstract

means of defining and attributing the affordances of biological

viruses and their hosts could be found.

2) Abstract Reproductive Niches: Another extension of

this work (following on from III-B) would be to create

a standardised set of reproductive affordances (an abstract

reproductive niche) for the reproduction of computer viruses,

and to use this to form a more reliable metric for the reliance

of computer viruses and network worms on external agents

such as operating systems, compilers, network data transfer

protocols, etc.. Such a metric would provide a reliable means

of quantifying viral autonomy, which could be of practical

importance to the developers of anti-virus software.

REFERENCES

[1] B. Weber, “Life,” in The Stanford Encyclopedia of Philosophy,
E. N. Zalta, Ed., Spring 2006, http://plato.stanford.edu/archives/spr2006/
entries/life/ (accessed 2006-10-28).

[2] E. Schrödinger, What is Life? Cambridge University Press, 1944.
[3] R. Dawkins, The Selfish Gene. Oxford University Press, USA, 1990,

ch. 11, pp. 189–201, first published 1976. ISBN: 0192860925.
[4] J. von Neumann, Theory of Self-Reproducing Automata, A. W. Burks,

Ed. University of Illinois Press, 1966.
[5] F. Cohen, “Computer viruses – theory and experiments,” Computers and

Security, vol. 6, no. 1, pp. 22–35, 1987.
[6] J. J. Gibson, “The theory of affordances,” Perceiving, Acting and

Knowing: Toward an Ecological Psychology, pp. 67–82, 1977.
[7] P. O. Luksha, “The firm as a self-reproducing system,” in Proceedings

of 47th International System Science Society Conference, 2003.
[8] R. A. Freitas Jr. and R. C. Merkle, Kinematic Self-Replicating Ma-

chines. Landes Bioscience, 2004, ISBN 1570596905. http://www.
molecularassembler.com/KSRM.htm (accessed 2006-10-28).

[9] M. Webster and G. Malcolm, “Detection of metamorphic computer
viruses using algebraic specification,” Journal in Computer Virology,
vol. 2, no. 3, pp. 149–161, December 2006, DOI: 10.1007/s11416-006-
0023-z.

[10] M. Webster, “Algebraic specification of computer viruses and their
environments,” in Selected Papers from the First Conference on Algebra

and Coalgebra in Computer Science Young Researchers Workshop

(CALCO-jnr 2005). University of Wales Swansea Computer Science

Report Series CSR 18-2005, P. Mosses, J. Power, and M. Seisenberger,
Eds., 2005, pp. 99–113, http://www.csc.liv.ac.uk/∼matt/ (accessed 2006-
10-28).

[11] M. Gardner, “Mathematical games: The fantastic combinations of John
Conway’s new solitaire game ‘life’,” Scientific American, vol. 223, pp.
120–123, 1970.

[12] G. Torenvliet, “We can’t afford it!: the devaluation of a usability term,”
Interactions, vol. 10, no. 4, pp. 12–17, July-August 2003.

[13] D. Hume, A Treatise of Human Nature, 1740, book I, part I, sect. IV.
[14] C. G. Langton, “Self-reproduction in cellular automata,” Physica D:

Nonlinear Phenomena, vol. 10, pp. 135–144, 1984.
[15] M. D. Jones, “Tevenphage.png,” http://en.wikipedia.org/wiki/Image:

Tevenphage.png (accessed 2006-10-28).
[16] T. J. Taylor, “From artificial evolution to artificial life,” Ph.D. disserta-

tion, University of Edinburgh, 1999, http://www.tim-taylor.com/papers/
thesis/index.html (accessed 2006-10-28).

[17] T. Bench-Capon and G. Malcolm, “Formalising ontologies and their
relations,” in Proceedings of the 16th International Conference on

Database and Expert Systems Applications (DEXA ’99), ser. Springer
Lecture Notes in Computer Science, T. Bench-Capon, G. Soda, and
A. M. Toa, Eds., vol. 1677. Springer, Berlin, 1999, pp. 250–259.

[18] J. A. Goguen and G. Malcolm, Algebraic Semantics of Impera-

tive Programs. Massachusetts Institute of Technology, 1996, ISBN
026207172X.

[19] T. S. Ray, “An approach to the synthesis of life,” in Artificial Life II.
Addison-Wesley, California, 1991, pp. 371–408, ISBN 0201525712.

122

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)


