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Abstract-Three different agendas for the philosophy of AlLife
are presented. While the metaphysical and the epistemological
ones have been extensively developed, a third one is proposed
here. The naturalistic agenda is more interested in resolving
empirical problems. Consequently, this paper addresses an
empirical issue: the adaptive function of a phenomenon known as
“probability matching”, that is, the tendency to match the
probability of choice with the probability of reward. Probability
matching and its common interpretations are presented and
discussed. Based on ALife and Neural Networks simulations, |
present an alternative hypothesis: probability matching is an
adaptation to radical uncertainty.

[, INTRODUCTION

Most philosophical discussions of Artificial Life (Alife
hereafter) fall under two categories. In the first one, the
philosophy of ALife focuses on the relability of AlLife
modeling as a scientific tool, and reflects on whether
simulations and robotic experiments are deductive/inductive
instruments, theoretical biology research. scientific models.
thoughts experiments, efe. This could be called the
epistemological agenda. In the second one. philosophical
inquiry also deals with the role of ALife in the definition and
understanding of important notions: life, cognition, emergence,
evolution or adaptation. This could be construed as the
metaphysical agenda. These two agendas [1-3], however
important, push the philosophy of ALife toward the study of
broad and deep questions such as the nature of scientific
explanations or the relation between life and cognition. This
attitude implies that philosophy and ALife are two separate
fields and that philosophy uses ALife to validate or invalidate
its theories. This conception of interdisciplinary relationship
fits the pre-Quinean picture of philosophy: while science deal
with the empirical world, philosophy is a meta-theoretical
discipline that analyses abstracts objects like propositions,
theories, or norms. Nevertheless, after Quine. philosophers
begins to conceive their discipline as continuous with science:
concepts from both fields are so interwoven that there is no
strict boundaries between them [4]. Naturalism, according to
Quine, implies that philosophy and science are partner on the
same epistemic project: the description of reality. Since there is
no principled reason why philosophical activity should be
restrained to epistemological or metaphysical questions and the
practice of naturalistic philosophy is already well established, 1
suggest that the philosophy of ALife should set upon another
project that 1 would call the naturalistic agenda.

1-4244-0701-X/07/$20.00 ©2007 IEEE

In this conception, the philosophy of ALife is not only about
broad questions or conceptual defimtions, but is on par with
ALife and other philosophical and scientific domains
(philosophy of mind, cognitive science, neuroscience, etc.) in
the “purswit of truth”[5]. I therefore advocate a Quinean
approach to ALife, in which ALife cum other fields helps us in
resolving problems that may be relevant to ALife or not. (Note
that I do not pretend that Quinean approaches to ALife do not
already exist, but only that they are more peripheral in the
philosophy of ALife).

One project in which the naturalistic agenda may bear fruit 1s
in what | call “natural rationality™ [6]. Natural rationality 1s the
study, from both a descriptive and a normative point of view,
of the cognitive mechanism by which humans or other animals
make decisions, Most approaches of rationality take only the
descriptive or the normative side, and hence tend either to
describe cogmtive/neuronal processes without concern with
their optimality [7], or to state @ priori conditions for rational
behavior [8]. Natural rationality 1s an attempt to bridge the gap
between these two projects without the a priori biases
commonly found in either side of the debate on
normative/descriptive 1ssues (classical rationality 1s not natural,
rationality cannot be described n seientific terms, ete.). It 1s
not an epistemological or metaphysical project, but a more
limited one concerned with the structure and evolution of
decision-making processes found mn nature. In this paper, [ am
interested i the phenomenon known as “probability matching”
(PM hereafter), the tendency to match the probability of choice
with the probability of reward. In section 11, | introduce PM
and 1ts common interpretations. Section III present an ALife
modeling that suggests an evolutionary scenario for PM while
section IV argue that PM should be understood as a rational
strategy to cope with radical uncertanty.

[I. PROBABILITY MATCHING

Probability matching (PM) is a widely observed
phenomenon in which subjects match the probability of
choices with the probability of reward in a stochastic context.
For instance, suppose one has to choose between two sources
of reward: one (A) that gives reward on 70% of the occasions,
and the other (B) on 30%. The rational, utility-maximizing
strategy is to choose always A. The matching strategy consists
in choosing A on 70% of the occasions and B on 30% of the
occasions. While the former leads to a reward 7 times out of
10. the latter will be rewarding only 3.8 times out of 10 [(0.7 x
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0.7) + (0.3 x 0.3) = 0,58]. Clearly, the maximizing strategy
outperforms the matching strategy.

The maximizing strategy, however, is rarely found in the
biological world. From bees to birds to humans, most animals
match probabilities [9-13]. In typical experiments with
humans, subjects are asked to predict which light will flash
(left or right for instance) and have a monetary reward for
every correct answer, Rats have to forage for food in a T-maze,
pigeons press levers that reward food pellets of different size
with different probability, while bees forage artificial flowers
with different sucrose delivery rate. In all cases, the problem
amount to efficiently maximize reward {rom various sources,
and the most common solution is PM. (There are variations,
but PM predicts reliably subjects’ behavior). Different
probability distributions, rewards or context variations do not
significantly alter the results. Hence it is a particularly robust
phenomenon, and a clear example of a discrepancy between
standards of rationality and natural behavior. Three different
perspectives could then be adopted: 1) subjects are irrational,
2) subjects are boundedly rational and hence cannot avoid such
mistakes or 3) subjects are in fact ecologically rational and
hence PM is not irrational.

According to the first one, mostly held in traditional
normative economics and decision theory [e.g., 14], this
behavior is blatantly irrational. Rational agents rank possible
actions according to the product of the probability and utility of
the consequences of actions, and they choose those that
maximize subjective expected utility. In opting for the
matching strategy, subjects violate the axioms of decision
theory, and hence their behavior cannot be rationalized. In
other words, their preferences cannot be construed as
maximizing a utility function: it is “an experimental situation
which 1s essentially of an economic nature in the sense of
secking to achieve a maximum of expected reward. and yet the
mndividual does not in fact, at any point. even in a limt, reach
the optimal behavior” [ 15].

Another perspective, found in the “heuristic and biases”
tradition [ 16, 17] also considers that it is irrational but suggests
why this particular pattern is so common. The boundedly
rational mind cannot always proceed to compute subjective
expected utilities but rely on simplifying tricks: heuristics. One
heuristic that may explain human shortcomings in this case 1s
representativeness: judging the likelihood of an outcome by the
degree to which it is representative of a series. This is how the
phenomena known as the gambler’s fallacy (the belief that an
event 1s more likely to occur because it has not happened for a
period of time) may be explained: “there was five heads in a
row: there cannot be another one!™ This heuristics may also
explain why subjects match probabilities: it 1s more likely that
if the 70% source was rewarding in the last round, it would be
better to try the 30% a little in order to maximize reward.
Hence PM 1s irrational, but this irrationality is excusable, albeit
without any particular significance.

The third perspective. that could be either named “ecological
rationality”™ or “evolutionary psychology” [18-21] argue

instead that humans and animals are not really irrational. but
adapted to certain ecological conditions whose absence
explains apparent irrationality. Ecologically rational heuristics
are not erroneous processes, but mechamsms tailored to it
both the structure of the environment and the mind: they are
fast, frugal and smart. PM can be rational in some context and
irrational in another one. For instance, when animals are
foraging and competing with conspecilics for resources, PM is
the optimal strategy:

(... ) if one considers a natural environment in which animals
are not as socially isolated as in a T-maze and in which they
compete with one another for food, the sitation looks
different. Assume that there are a large mumber of rats and two
paiches, lefi and right, with an 80:20 distribution of food. If all
animals maximized on an individual level, then they all would
end up in the left part, and the few deviating from this rule
might have an advantage. Under appropriate conditions, one
can show that probability matching is the more rational
strategy in a socially competitive environment [22].

This pattern of behavior and spatial distribution correspond
to the Ideal Free Distribution (IFD)) model used in behavioral
ecology [23]. Derived from optimal foraging theory [24], the
IFD predicts that the distribution of individuals between food
patches will match the distribution of resources, a pattern
observed in many occasions in animals and humans [25-29].

There are of course discrepancies between the model and
observed behaviors, but foraging groups tend to approximate
the IFD. This supports the claim that PM is a rational heuristic
only in a socially competitive environment: it could also be
construed as a mixed-strategy Nash equilibrium in a
multiplayer repeated game [30] or as an evolutionarily stable
strategy, that is, a strategy that could not be invaded by another
competing strategy in a population who adopt it [31]. Seth’s
simulations [32] showed that a simple behavioral rule may
account for both individual and collective matching behavior.

Are we justified here in concluding that, at the individual
level, PM is suboptimal and irrational? Although the common
wisdom in evolutionary psychology and ecological rationality
is affirmative |7, 33, 34|, | will argue that, while PM is an
efficient social heuristics, it 1s also an efficient, adaptive,
individual heuristics in some contexts. This account will be
supported by findings in artificial lfe, neural networks
simulations and neuroscience.

I1I. THE (ARTIFICIAL) EVOLUTION OF PROBABILITY MATCHING

In a recent study, Niv, Joel, Meilijson and Ruppin [35;
NIMR herafter] showed that PM evolves when the
environment 1s highly uncertain. NJMR’s model simulated the
evolution of bees in a foraging environment. Instead of
handerafting the synaptic learning rule or evolving only
synaptic weights or architectures, NJIMR attempted to evolve
the network’s learning rule.

The artificial bees forage a (virtual) 3D space where a
portion of the ground is a 60 x 60 grid of blue and yellow
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squares (see Iig. la). Each square represents a flower, and
each color is a kind of flower that has a particular reward
contingency, randomly modified at every generation and
during the bee’s life. A particular flower type (blue or vellow)
may indicate either a constant 0.7 pl nectar reward, or a 1.0 pl
nectar in 20% of the occasions and 0 otherwise. The bee’s
“life” begins on a randomly assigned location, consists in
moving from one flower to another while maximizing nectar
intake, and ends after 100 of such trials. Its vision field is a 10°
cone (see Fig. 1a) and the bee can, at each step, either maintain
its orientation or reorient it randomly. The bee can go to any
adjacent flower from where it is currently located after
consuming all available nectar in the lower. This task is not an
easy one: successfully foraging an environment is a problem
similar to the Traveling Salesperson [36], a problem known to
be NP-complete. Thus foraging strategies must be efficient
while simple, because the optimal solution involves complex
computational capacities.

The bee’s brain is composed of three modules: 1) the
“regular” specify the percentage of the yellow, blue and neutral
patches in the visual field, 2) the “differential” indicate the
temporal difference of these values (e.g.. the difference
between the actual percentage of vellow and the previous one),
and 3) the “reward” module report the quantity of nectar found
m the flower (see Iig. 1b). All modules are connected to a
linear neuron P [mirroring the functioning of the VUMmx]
neuron in real bees, cf. 37|, whose output determines the bee’s
action.

The bee’s genome is composed of 28 genes coding for a
parameter of the neural network architecture or dynamics: for
mstance, 15 code for the “innate™ structure of the network: 7
determine the existence or inexistence of each synapse; 6 code
for the initial weight of the regular and differential module
while the others specify the parameters of action and learning
dvnamics. A first generation of 100 bees was produced by
generating random genomes. These bees foraged the
environment and ended their life with a fitness score
proportional to their average nectar intake per trial. That fitness
score also determined their probability of reproducing. A
genetic algorithm optimized the bees’ performance by forming
50 pairs of parents (matched according to their [itness score),
combining their genome after mutation and crossover and
producing 2 offspring per pair of parents. The offspring went
foraging and the evolutionary process was repeated for 500
generations.

Although not all evolutionary runs were successful, those
who were all ended up with a network architecture similar to
Montague e al. model [38]: a dependency of the differential
module on the reward module and a modification of these
mtermodule synapses correlated to the presence of reward.
Selected individuals exhibited efficient reinforcement learning
and developed a preference for the constant 0.7 pl nectar
reward, replicating observation of real bees in similar context
[39]. When reward contingencies changed (switching between
blue and vellow). the network’s dynamics adjusted itself to the

new payofl structure. Moreover, when implemented in a
Kephera mobile robot, the neural network architecture led to
similar behavior, suggesting that the embodied nature of
foraging and learning was well represented in the simulation,
Hence this simulation led to realistic learning rules and
behaviors.

An important finding of this simulation 1s that bees naturally
developed a strategy close to PM. While other simulations
[11]. in line with the conventional justification of PM, construe
this phenomenon as an outcome of competitive [oraging,
NIMR’s model indicate that matching probability may emerge
out of the evolutionary and reinforcement dynamics of agents
situated in complex environment. This makes sense if one
considers that PM is an adaptive strategy for radically
uncertain environment.

Fig. 1, from Niv et al (2002). a) schematic representation of the bee and its
environment. b) the neural network of the bee (B=blue flowers, Y =yellows,
Ne=neutral, R=reward)

[V. AN ADAPTIVE HEURISTICS FOR RADICAL UNCERTAINTY

Discussions about PM assume that probabilities are known
when the decision is taken. Hence when it is asserted that
animals or humans match probabilities, it is often implied that
they do that in a context of first-order uncertainty: knowing
that A will be rewarding in 70% of the occasions is uncertain
knowledge because one do not know for sure what will be the
next outcome (one can only know that there is a 70%
probability that it is a reward), In some situations however,
uncertainty can be radical, or second-order uncertainty. even
the probabilities are unknown., When the assumption of known
probabilities is dropped, the irrationality of PM is less obvious,
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Under radical uncertainty, cognitive agents must learn
reward probabilities. Learners in this setting must, at the same
time, explore their environment in order to gather information
about its payolf structure and exploit this information to obtain
reward. They face a deep problem - known as the
exploration/exploitation trade-ofl’ — because they cannot do
both at the same time: one cannot explore all the time. one
cannot exploit all the time and exploration must be reduced but
cannot be eliminated. A well-known example of this trade-off
1s K-armed bandit problem.

Suppose an agent has # coins to spend in a slot machine with
K arms (here K=2 and we will suppose that one arm 1s high-
paying and the other low-paying, although the agent does not
know that). The only way the agent has access to the arms” rate
of payment — and obtains reward — is by pulling them. Hence
she must find an optimal trade-ofl" when spending its coins:
trying another arm just to see how it pays or staying with the
one who already paid? The goal is not only to maximize
reward, but also to maximize reward while obtaining
information about the arm’s rate. Two types of error may
appear: false negative (a low-paying sequence of the high-
paying arm) or false positive (a high-paying sequence of the
low-paying paying arm),

To solve this problem, the optimal solution is to compute an
index for every arm, updating this index according to the arm’s
payofT and choosing the arm that has the greater index [40]. In
the long run, this strategy amounts to following decision theory
after a learning phase. But as soon as switching from one arm
to another has a cost, as Banks & Sundaram [41] showed, the
index strategies cannot converge towards an optimal solution.
A huge literature in optimization theory, economics,
management and machine learning addresses this problem [42-
44]. These researches look for the normative, optimal policy to
adopt in K-armed bandit problems. Studies of humans or
animals explicitly submitted to bandit problems, however,
show that subjects tend to rely on the matching strategy [45].
In one study, for instance. [46]. subjects were required to select
between two 1cons displayed on a computer screen; after each
selection, a slider bar indicated the actual amount of reward
obtained. The matching strategy predicted the subject’s
behavior, and the same results hold for monkeys in a similar
task |47, 48].

I suggest that the pervasiveness of PM in nature is neither an
accident nor a spandrel [49], and propose the following
hypothesis: PM is an adaptation to uncertainy. Put differently,
PM is a trait that was selected for its fitness-enhancing quality
m uncertain environment. It is not the perfect strategy for
coping with uncertainty but given the developmental,
computational and ecological constraints that living beings
face, this strategy 1s a “good enough™ one that beats others.
The maximizing strategy (choosing only the highest probable
source of reward) is not the best one because it does not
provide a robust reward intake across contexts.

As the last section showed, NJMR’s simulated bees where
situated 1n a bandit-like environment: they did not know the

probabilities of reward and these probabilities changed at some
point. Thus, in this environment, when cognitive systems able
to record information about reward can differentially
reproduce, natural selection leads to generations of individuals
that match probabilities.

A reasonable hypothesis about the neurological
underpinning of this trait is that mechanisms guiding matching
behavior are reinforcement learning algorithms realized by the
brain’s reward center. NJMR's evolved neural architecture,
replicating Montague ef al.’s architecture [38], implements a
learning rule analogous to TD-learming, a unsupervised
learning rule that update reward estimation according to
prediction error. Systems implementing TD-learning use the
difference between sequential predictions to leamn to predict
accurately: whenever an unpredicted reward or absence of
predicted reward is detected, TD algorithms revise prediction,
Artificial Neural Networks and robots implementing TD-
learning reproduced humans, primate and bees behavior [48,
50-52|. Neuroscience indicate that the TD mechanism are
realized in neuromodulatory processes such as dopaminergic
systems in vertebrates and octopaminergic systems in
invertebrates  [53].  Dopaminergic/octopaminergic — systems
provide homogeneous response and act as a common currency
for a reward signal [54. 55]. One of the interesting feature of
these neurons is that they also code for probability matching
[48]. Therefore it is plausible that PM emerges of the leamning
dynamics of natural brains. Nevertheless, to be considered as
an adaptation, the advantages of PM should be demonstrated.

One must first note that PM is a simple heuristic: instead of
tedious computations of indices, PM records the performance
of an action with its rate of success and recall it when needed.
Even simple systems like bees may rely on it. The only
cognitive representation involved in action selection would be
the reward rate: the system needs only to map this observed
rate to motor planning. It 1s not the best policy available, but it
is cognitively undemanding. Moreover, PM can be optimal in
at least 3 circumstances.

First, when probabilities are identical across reward sources
(ex: 50-50, or 20-20-20-20-20), first-order uncertainty is
maximal and in this case only is equivalent to second-order
uncertainty: knowing that it will either rain or not tomorrow is
tantamount to not knowing what will be the weather. In this
case, PM, decision theory and Ideal Free Distribution all agree:
the best solution is to sample every source in an equal
proportion (unless it is easier to stick with one resource). Thus
PM i1s optimal in this case.

A second scenario where PM is optimal is when
probabilities are unknown: in second-order uncertainty. every
option is a priori equivalent. For instance, in a 2-armed bandit
problem without any prior knowledge. the reward probability
of A and B must be initially set to 50% and hence the optimal
strategy 1s to try each option half of the time. [ence PM 1s also
optimal in this case.

A third case where PM is advantageous is in readjusting
probability in a changing environment. For instance, in the
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NIMR’s model, foraging bees may learn that one flower type
(say blue) has a 0.7 pl nectar reward on all occasions, and the
other type has 1 pl nectar in 20% of the occasions. The optimal
policy, according to decision theory, would be to collect nectar
only from the former. However, if the reward contingencies of
the flowers change, sticking to a strict policy such as “collect
nectar only on blue flowers”™ may be suboptimal if blue flowers
become the less rewarding flower, If the agent follows a PM-
style policy, the change in the flower reward rate will induce a
change in the visit rate. In this setting, the PM strategy
outperforms a ngid policy. NIMR’s artificial bees
demonstrated the adaptivity of PM, and switched their
preferences when reward contingencies changed. This example
highlights the optimality of PM in dynamic context. As
Goldberg noted, “if the environment of decision 1s changing
such that it is possible for the environment to go against our
current thinking, then probability matching can hold the upper
hand during the readjustment phase.” [56]. The problem of
most ol the solutions to armed bandit is that they assume the
stationarity of the environment. If; however, the environment is
non-stationary. PM is a better strategy. lere again, PM is
optimal,

Therefore, PM is a policy adequate for radical uncertainty:
whether this uncertainty comes {rom probabilistic distribution,
lack of information or environmental change, it is a rational
policy to adopt and it is found in vertebrate and invertebrate
nervous systems. Besides being efficient in uncertain contexts,
it also efficient in social foraging (see section II), hence this
suggests that PM is an adaptive heuristic that may be useful in
a lot of settings, individual or not. It does not imply that PM 1s
always rational: when probabilites are known and the
environment 1s stationary, the best strategy 1s still the
maximizing one. Yet the difficulty with this situation 1s that 1t
is an idealization and thus rarely occurs, Therefore,
maximizing is a solution for a problem almost nothing on Earth
faces, because one may never know whether the observed
probabilities are adequate and refer to stationary processes.
Signal detection [57], natural resources, weather, climate,
competition and the complex economy of biological markets
[58, 59| are sources of uncertainty. There are of course
exceptions: 1n the course of human history, we invented
statistics and probability theory, and we must reason
sometimes as if our probabilities represent accurately fixed
properties. In these formal contexts, maximizing is the rational
policy and behavioral studies indicate that it may emerge when
certain conditions are present: greater cognitive abilities of the
subjects, [60] larger incentives, feedback and training [61].
Thus one must distinguish contexts where PM is really
suboptimal from contexts where it 1s a good heuristics for
coping with uncertamnty. It is irrational in context where
mformation is — or should be — considered to be complete and
reliable.

V. CONCLUSION

The philosophy of ALife does not need to focus only on
epistemological and metaphysical 1ssues. Questions more
limited in scope may [igure in a naturalistic agenda, where
Alife and other disciplines are woven together. Natural
rationality, the research and evaluation of decision-making
mechanisms, 1s an instance of naturalistic inquiry that integrate
ALife. Hence the present paper focused on the nature and
adaptive function of probability matclhing. Contranly to claims
according to which PM is either irrational, a by-product of
heuristic and biases or only rational in competitive foraging, |
argued that PM must be construed as an adaptation to
uncertainty. Neuromodulatory processes in nervous syslems
induce TD-learning, a robust and efficient learmng rule that
tends to match probabilities, and PM’'s efficacy was
demonstrated in second-order uncertainty contexts, NIMR
simulated the evolution of foraging bees in bandit-like
environments and showed how evolution and development
lead 1o PM. Thus, plus the fact that PM 1s both ubiquitous in
nature and eflicient in uncertain contexts, supports the
hypothesis of PM as an adaptive heunstic that evolution and
learmng bring about. Thus n this sense, PM could be
considered as an evo-devo adaptation. Because life 1s often a
big K-armed bandit problem, evolution selects developmental
svstems that adjust themselves efficiently to their radically
uncertain environment:

A system that learns through prediction learning need not
have the path from goal to reward specified, in contrast to

Jixed behavioral patterns, such as stimulus-response learning.

Instead, the path from goals to rewards may be left open and
discoverable via learning, resulting in flexible action.
Evolution, then, may shape the pattern of basic rewards
animals are motivated to obtain, but the behavioral path is lefi
open 1o discovery, as are more complex relations among
predictors. |62]

Although the behavioral path is left open to discovery,
nervous systems have the propensity to discover PM
generations after generation because of 1t simplicity,
naturalness and usefulness. This hypothesis 1s more general
than the striet Ideal Free Distribution explanation of PM,
according to which its only adaptive advantage 1s in
competitive foraging, and hence treats competitive foraging as
a specific kind of uncertainty problems solved by PM. Further
simulations and empirical work will be needed to test this
hypothesis.
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