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Abstrad-Three different agendas for the philnsnphg of ALife 
are presented. \mile the mctsphysicnl nnd the epistemologicnl 
ones have been extrnsively dc\-clopd, a third one is proposed 
here. The nabralirtie agenda i s  more interested in resolving 
empirical prohlcmr. Con.wquently, this paper addresser an 
empirical issue: the adaptive function of a phenomenon knc~wn as 
"prohahilit?. matching", that is, the tendency to match the 
prohahilit?. of choice with h e  probability of reward. Probability 
matching and its common interpretations are presented and 
diseusrcd. Bared on .\Life and Neural Uchvnrkr simulntinns, I 
present an alternative hypothesis: prohahility matching is an 
adaptatinn to radical uncertainty. 

Most philosophical discussions of Artificial Life (ALife 
hereafter) fall under two categories. In the first one, the 
philosophy of ALife focuses on the reliability of ALife 
modeling as a scientific tool, and reflects on whether 
simulations and robotic experiments are deductivelinductive 
instruments, theoretical biology research, scientific models, 
thoughts experiments, etc. This could be called the 
episte~~iological agenda. In the second one, philosophical 
inquiry also deals with the role of ALife in the definition and 
understanding of important notions: life, cognition, emergence, 
evolution or adaptation. This could he construed as the 
metaplrysical agenda. These two agendas [I-31, however 
important, push the philosophy of ALife toward the study of 
broad and deep questions such as the nature of scientific 
explanations or the relation between life and cognition. This 
anitude implies that philosophy and ALife are two separate 
fields and that philosophy uses ALife to validate or invalidate 
its theories. This conception of interdisciplinary relationship 
fits the preQuinean picture of philosophy: while science deal 
with the empirical world, philosophy is a meta-theoretical 
discipline that analyses abstracts obiects like propositions, . . 
theories, or norms. Nevertheless, after Quine, philosophers 
begins to conceive their discipline as continuous with science: - 
concepts from both fields are so interwoven that there is no 
strict boundaries between them [4]. Naturalism, according to 
Quine, implies that philosophy and science are partner on the 
same epistemic project: the description of reality. Since there is 
no principled reason why philosophical activity should be 
restrained to epistemological or metaphysical questions and the 
practice of naturalistic philosophy is already well established, I 
suggest that the philosophy of ALife should set upon another 
project that I would call the natrrralistic agenda. 

In this conception, the philosophy of ALife is not only about 
broad questions or conceptual definitions, but is on par with 
ALife and other philosophical and scientific domains 
(philosophy of mind, cognitive science, neuroscience, etc.) in 
the "pursuit of truth[5]. 1 therefore advocate a Quinean 
approach to ALife, in which ALife arm other fields helps us in 
resolving problems that may be relevant to ALife or not. (Note 
that 1 do not pretend that Quinean approaches to ALife do not 
already exist, hut only that they are more peripheral in the 
philosophy of ALife). 

One project in which the naturalistic agenda may bear fruit is 
in what 1 call "natural rationality" [6]. Natural rationality is the 
study, from both a descriptive and a normative point of view, 
of the cognitive mechanism by which humans or other animals 
make decisions. Most approaches of rationality take only the 
descriptive or the normative side, and hence tend either to 
describe cognitivelneuronal processes without concern with 
their optimality [7], or to state apriori conditions for rational 
behavior [8]. Natural rationality is an attempt to bridge the gap 
between these two projects without the a priori biases 
commonly found in either side of the debate on 
normativeldescriptive issues (classical rationality is not natural, 
rationality cannot be described in scientific terms, etc.). It is 
not an epistemological or metaphysical project, but a more 
limited one concerned with the structure and evolution of 
decision-making processes found in nature. In this paper, I am 
interested in the phenomenon known as "probability matching" 
(PM hereafter), the tendency to match the probability of choice 
with the probability of reward. In section 11, I introduce PM 
and its common interpretations. Section I11 present an ALife 
modeling that suggests an evolutionary scenario for PM while 
section 1V argue that PM should he understood as a rational 
strategy to cope with radical uncertainty. 

Probability matching (PM) is a widely observed 
phenomenon in which subjects match the probability of 
choices with the probability of reward in a stochastic context. 
For instance, suppose one has to choose between two sources 
of reward: one (A) that gives reward on 70% of the occasions, 
and the other (B) on 30%. The rational, utility-maximizing 
strategy is to choose always A. The matching stratem consists 
in choosing A on 70% of the occasions and B on 30% of the 
occasions. While the former leads to a reward 7 times out of 
10, the latter will be rewarding only 5.8 times out of 10 [(0.7 x 

123

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE



0.7) + (0.3 x 0.3) = 0,581. Clearly, the maximizing strategy 
outperforms the matching strategy. 

The maximizing strategy, however, is rarely found in the 
biological world. From bees to birds to humans, most animals 
match probabilities [9-131. In typical experiments with 
humans, subjects are asked to predict which light will flash 
(left or right for instance) and have a monetary reward for 
every comct answer. Rats have to forage for food in a T-maze, 
pigeons press levers that reward food pellets of different size 
with different probability, while bees forage artificial flowers 
with different sucrose delivery rate. In all cases, the problem 
amount to efficiently maximize reward from various sources, 
and the most common solution is PM. (There are variations, 
but PM predicts reliably subjects' behavior). Different 
probability distributions, rewards or context variations do not 
significantly alter the results. Hence it is a particularly robust 
phenomenoh and a clear example of a discrepancy between 
standards of rationality and natural behavior. Three different 
perspectives could then be adopted: 1) sub.iects are irrational, 
2) subjects are boundedly rational and hence cannot avoid such 
mistakes or 3) subiects are in fact ecologically rational and 
hence PM is not irrational. 

According to the first one, mostly held in traditional 
normative economics and decision theory [e.g., 141, this 
behavior is blatantly irrational. Rational agents rank possible 
actions according to the product of the probability and utility of 
the consequences of actions, and they choose those that 
maximize subjective expected utility. In opting for the 
matching strategy, subjects violate the axioms of decision 
theory, and hence their behavior cannot be rationalized. In 
other words, their preferences cannot be construed as 
maximizing a utility function: it is "an experimental situation 
which is essentially of an economic nature in the sense of 
seeking to achieve a maximum of expected reward, and yet the 
individual does not in fact, at any point, even in a limit, reach 
the optimal behavior" [IS]. 

Another perspective, found in the "heuristic and biases" 
tradition [16, 171 also considers that it is irrational but suggests 
why this particular pattern is so common. The boundedly 
rational mind cannot always proceed to compute subjective 
expected utilities but rely on simplifying tricks: heuristics. One 
heuristic that may explain human shortcomings in this case is 
representativeness: judging the likelihood of an outcome by the 
degree to which it is representative of a series. This is how the 
phenomena known as the gambler's fallacy (the belief that an 
event is more likely to occur because it has not happened for a 
period of time) may be explained: "there was five heads in a 
row, there cannot be another one!" This heuristics may also 
explain why sub.iects match probabilities: it is more likely that 
if the 70% source was rewarding in the last round, it would be 
better to try the 30% a little in order to maximize reward. 
Hence PM is irrational, but this irrationality is excusable, albeit 
without any particular significance. 

The third perspective, that could be either named "ecological 
rationality" or "evolutionary psychology" [18-211 argue 

instead that humans and animals are not really irrational, but 
adapted to certain ecological conditions whose absence 
explains apparent irrationality. Ecologically rational heuristics 
are not erroneous processes, but mechanisms tailored to fit 
both the structure of the environment and the mind: they are 
fast, frugal and smart. PM can be rational in some context and 
irrational in another one. For instance, when animals are 
foraging and competing with conspecifics for resources, PM is 
the optimal strategy: 

{...) yone considers a naturalenvironment in which animals 
are not as socially isolated as in a T-maze and in which they 
compete with one another for jbod, the situation looks 
d~rerent. Assume that there are a large nrrmber of rats and two 
patches. leff and n&, with an 80:20 distribrrtion of food. Ifall 
animals mnrimized on an individual level, then they all would 
end up in the leff part, and the few deviating from this nrle 
might have an advantage. Under appropriate conditions, one 
can show that probahiliv matching is the more rational 
strategy in a socially competitive environment 1221. 

This pattern of behavior and spatial distribution correspond 
to the Ideal Free Distribution (IFD) model used in behavioral 
ecology [23]. Derived from optimal foraging theory [24], the 
IFD predicts that the distribution of individuals between food 
patches will match the distribution of resources, a pattern 
observed in many occasions in animals and humans [25-291. 

There are of course discrepancies between the model and 
observed behaviors, but foraging groups tend to approximate 
the IFD. This supports the claim that PM is a rational heuristic 
only in a socially competitive environment: it could also be 
construed as a mixed-strategy Nash equilibrium in a 
multiplayer repeated game [30] or as an evolutionarily stable 
strategy, that is, a strategy that could not be invaded by another 
competing strategy in a population who adopt it [31]. Seth's 
simulations [32] showed that a simple behavioral rule may 
account for both individual and collective matching behavior. 

Are we justified here in concluding that, at the individual 
level, PM is suboptimal and irrational'! Although the common 
wisdom in evolutionary psychology and ecological rationality 
is affirmative [7, 33, 341, I will argue that, \ h i e  PM is an 
efficient social heuristics, it is also an efficient, adaptive, 
individual heuristics in some contexts. This account uill be 
supported by findings in artificial life, neural networks 
simulations and neuroscience. 

111. THE (ARTIFICIAL) EVOLUTION OF PROBABILITY MATCHING 

In a recent study, Niv, Joel, Meili.ison and Ruppin [35; 
NJMR herafter] showed that PM evolves when the 
environment is highly uncertain. NJMR's model simulated the 
evolution of bees in a foraging environment. Instead of 
handcrafting the synaptic learning rule or evolving only 
synaptic weights or architectures, NJMR attempted to evolve 
the network's learning rule. 

The artificial bees forage a (virtual) 3D space where a 
portion of the ground is a 60 x 60 grid of blue and yellow 
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squares (see Fig. la). Each square represents a flower, and 
each color is a kind of flower that has a particular reward 
contingency, randomly modified at every generation and 
during the bee's life. A particular flower type (blue or yellow) 
may indicate either a constant 0.7 p1 nectar reward, or a 1.0 p1 
nectar in 20% of the occasions and 0 otherwise. The bee's 
"life" begins on a randomly assigned location, consists in 
moving from one flower to another while maximizing nectar 
intake, and ends after 100 of such trials. Its vision field is a 10' 
cone (see Fig. la) and the bee can, at each step, either maintain 
its orientation or reorient it randomly. The bee can go to any 
ad.iacent flower from where it is currently located after 
consuming all available nectar in the flower. This task is not an 
easy one: successfully foraging an environment is a problem 
similar to the Traveling Salesperson 1361, a problem known to 
be NP-complete. Thus foraging strategies must be efficient 
while simple, because the optimal solution involves complex 
computational capacities. 

The bee's brain is composed of three modules: 1) the 
"regular" specify the percentage of the yellow, blue and neutral 
patches in the visual field, 2) the "differential" indicate the 
temporal difference of these values (e.g., the difference 
between the actual percentage of yellow and the previous one), 
and 3) the "reward" module report the quantity of nectar found 
in the flower (see Fig. lb). NI modules are connected to a 
linear neuron P [mirroring the functioning of the VUMmxl 
neuron in real bees, cf. 371, whose output determines the bee's 
action. 

The bee's genome is composed of 28 genes coding for a 
parameter of the neural network architecture or dynamics: for 
instance, 15 code for the "innate" structure of the network; 7 
determine the existence or inexistence of each synapse; 6 code 
for the initial weight of the regular and differential module 
while the others specify the parameters of action and learning 
dynamics. A first generation of 100 bees was produced by 
generating random genomes. These bees foraged the 
environment and ended their life with a fitness score 
proportional to their average nectar intake per trial. That fitness 
score also determined their probability of reproducing. A 
genetic algorithm optimized the bees' performance by forming 
50 pairs of parents (matched according to their fitness score), 
combining their genome after mutation and crossover and 
producing 2 offspring per pair of parents. The offspring went 
foraging and the evolutionary process was repeated for 500 
generations. 

Nthough not all evolutionary runs were successful, those 
who were all ended up with a network architecture similar to 
Montague et al. model 1381: a dependency of the differential 
module on the reward module and a modification of these 
intermodule synapses correlated to the presence of reward. 
Selected individuals exhibited efficient reinforcement learning 
and developed a preference for the constant 0.7 p1 nectar 
reward, replicating observation of real bees in similar context 
[39]. When reward contingencies changed (switching between 
blue and yellow), the network's dynamics ad.iusted itself to the 

new payoff structure. Moreover, when implemented in a 
Kephera mobile robot, the neural network architecture led to 
similar behavior, suwesting that the embodied nature of 
foraging and learning was well represented in the simulation. 
Hence this simulation led to realistic learning rules and 
behaviors. 

An important finding of this simulation is that bees naturally 
developed a strategy close to PM. While other simulations 
[ I  11, in line with the conventional justification of PM, construe 
this phenomenon as an outcome of competitive foraging, 
NJMR's model indicate that matching probability may emerge 
out of the evolutionary and reinforcement dynamics of agents 
situated in complex environment. This makes sense if one 
considers that PM is an adaptive strategy for radically 
uncertain environment. 

Fig. 1, fmn Niv c l  sl (2002). a) schematic reprsmmLaticn of  Ihc bss and its 
cnvimnmmt. b) Ihc neural nehvak of the bce (R-blue flowers, Y=ycllo~w, 

N=nculral, R=musrd) 

IV. AN ADAPTIVE HEURISTICS FOR RADICAL UNCERTAMTT 

Discussions about PM assume that probabilities are known 
when the decision is taken. Hence when it is asserted that 
animals or humans match probabilities, it is often implied that 
they do that in a context of first-order uncerrainiy: knowing 
that A will be rewarding in 70% of the occasions is uncertain 
knowledge because one do not know for sure what will be the 
next outcome (one can only know that there is a 70% 
probability that it is a reward). In some situations however, 
uncertainty can be radical, or second-order uncerfainiy: even 
the probabilities are unknown. When the assumption of known 
probabilities is dropped, the irrationality of PM is less obvious. 
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Under radical uncertainty, cognitive agents must learn 
reward probabilities. Learners in this setting must, at the same 
time, explore their environment in order to gather information 
about its payoff structure and exploit this information to obtain 
reward. They face a deep problem - known as the 
exploration/exploitation trade-off - because they cannot do 
both at the same time: one cannot explore all the time, one 
cannot exploit all the time and exploration must be reduced but 
cannot be eliminated. A well-known example of this trade-off 
is K-armed bandit problem. 

Suppose an agent has n coins to spend in a slot machine with 
K arms (here K=2 and we will suppose that one arm is high- 
paying and the other low-paying, although the agent does not 
h o w  that). The only way the agent has access to the arms' rate 
of payment - and obtains reward - is by pulling them. Hence 
she must find an optimal trade-off when spending its coins: 
trying another arm just to see how it pays or staying with the 
one who already paid? The goal is not only to maximize 
reward, but also to maximize reward while obtaining 
infomiation about the am1 i rate. Two types of error may 
appear: false negative (a low-paying sequence of the high- 
paying arm) or false positive (a high-paying sequence of the 
low-paying paying arm). 

To solve this problem, the optimal solution is to compute an 
index for every arm, updating this index according to the arm's 
payoff and choosing the arm that has the greater index [40]. In 
the long run, this strategy amounts to following decision theory 
after a learning phase. nut as soon as switching from one arm 
to another has a cost, as Banks & Sundaram [41] showed, the 
index strategies cannot converge towards an optimal solution. 
A huge literature in optimization theory, economics, 
management and machine learning addresses this problem 142- 
441. These researches look for the normative, optimal policy to 
adopt in K-armed bandit problems. Studies of humans or 
animals explicitly submitted to bandit problems, however, 
show that subjects tend to rely on the matching strategy [45]. 
In one study, for instance, [46], subiects were required to select 
between two icons displayed on a computer screen; after each 
selection, a slider bar indicated the actual amount of reward 
obtained. The matching strategy predicted the sub.ject's 
behavior, and the same results hold for monkeys in a similar 
task [47,48]. 

1 suggest that the pervasiveness of PM in nature is neither an 
accident nor a spandrel [49], and propose the following 
hypothesis: PM is an adaptation to uncertainy. Put differently, 
PM is a trait that was selected for its fitness-enhancing quality 
in uncertain environment. It is not the perfict strategy for 
coping with uncertainty but given the developmental, 
computational and ecological constraints that living beings 
face, this strategy is a "good enougW one that beats others. 
The maximizing strategy (choosing only the highest probable 
source of reward) is not the best one becawe it does not 
provide a robust reward intake across contexts. 

As the last section showed, NJMR's simulated bees where 
situated in a bandit-like environment: they did not know the 

probabilities of reward and these probabilities changed at some 
point. Thus, in this environment, when cognitive systems able 
to record information about reward can differentially 
reproduce, natural selection leads to generations of individuals 
that match probabilities. 

A reasonable hypothesis about the neurological 
underpinning of this trait is that mechanisms guiding matching 
behavior are reinforcement learning algorithms realized by the 
brain's reward center. NJMR's evolved neural architecture, 
replicating Montague el al.'s architecture [38], implements a 
learning rule analogous to TD-learning, a u n s u p e ~ s e d  
learning rule that update reward estimation according to 
prediction error. Systems implementing TD-learning use the 
difference between sequential predictions to learn to predict 
accurately: whenever an unpredicted reward or absence of 
predicted reward is detected, TD algorithms revise prediction. 
Artificial Neural Networks and robots implementing TD- 
learning reproduced humans, primate and bees behavior [48, 
50-521. Neuroscience indicate that the TD mechanism are 
realized in neuromodulatory processes such as dopaminergic 
systems in vertebrates and octopaminergic systems in 
invertebrates [53]. Dopamineqic/octopaminergic systems 
provide homogeneous response and act as a common currency 
for a reward s i p a l  154, 551. One of the interesting feature of 
these neurons is that they also code for probability matching 
[48]. Therefore it is plausible that PM emerges of the learning 
dynamics of natural brains. Nevertheless, to be considered as 
an adaptation, the advantages of PM should be demonstrated. 

One must first note that PM is a simple heuristic: instead of 
tedious computations of indices, PM records the performance 
of an action with its rate of success and recall it when needed. 
Even simple systems like bees may rely on it. The only 
cognitive representation involved in action selection would be 
the reward rate: the system needs only to map this observed 
rate to motor planning. It is not the best policy available, but it 
is cognitively undemanding. Moreover, PM can be optimal in 
at least 3 circumstances. 

First, when probabilities are identical across reward sources 
(ex: 50-50, or 20-20-20-20-20). first-order uncertainty is 
maximal and in this case only is equivalent to second-order 
uncertainty: knowing that it will either rain or not tomorrow is 
tantamount to not knowing what will be the weather. In this 
case, PM, decision theory and Ideal Free Distribution all agree: 
the best solution is to sample every source in an equal 
proportion (unless it is easier to stick with one resource). Thus 
PM is optimal in this case. 

A second scenario where PM is optimal is when 
probabilities are unknown: in second-order uncertainty, every 
option is apriori  equivalent For instance, in a 2-armed bandit 
problem without any prior knowledge, the reward probability 
of A and B must be initially set to 50% and hence the optimal 
strategy is to try each option half of the time. Hence PM is also 
optimal in this case. 

A third case where PM is advantageous is in read.justing 
probability in a changing environment. For instance, in the 
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NJMR's model, foraging bees may learn that one flower type 
(say blue) has a 0.7 p1 nectar reward on all occasions, and the 
other type has 1 pl nectar in 20% of the occasions. The optimal 
policy, according to decision theory, would be to collect nectar 
only from the former. However, if the reward contingencies of 
the flowers change, sticking to a strict policy such as "collect 
nectar only on blue flowers" may be suboptimal if blue flowers 
become the less rewarding flower. If the agent follows a PM- 
style policy, the change in the flower reward rate will induce a 
change in the visit rate. In this setting, the PM strategy 
outperforms a rigid policy. NJMR's artificial bees 
demonstrated the adaptivity of PM, and switched their 
preferences when reward contingencies changed. This example 
highlights the optimality of PM in dynamic context. As 
Goldberg noted, "if the environment of decision is changing 
such that it is possible for the environment to go against our 
current thinking, then probability matching can hold the upper 
hand during the readjustment phase." [SG]. The problem of 
most of the solutions to armed bandit is that they assume the 
stationarity of the environment. If, however, the environment is 
non-stationary, PM is a better strategy. Here again, PM is 
optimal. 

Therefore, PM is a policy adequate for radical uncertainty: 
whether this uncertainty comes from probabilistic distribution, 
lack of information or environmental change, it is a rational 
policy to adopt and it is found in vertebrate and invertebrate 
nervous systems. Besides being efficient in uncertain contexts, 
it also efficient in social foraging (see section It), hence this 
suggests that PM is an adaptive heuristic that may be useful in 
a lot of settings, individual or not. It does not imply that PM is 
always rational: when probabilities are known and the 
environment is stationary, the best strategy is still the 
maximizing one. Yet the difficulty with this situation is that it 
is an idealization and thus rarely occurs. Therefore, 
maximizing is a solution for a problem almost nothing on Earth 
faces, because one may never know whether the observed 
probabilities are adequate and refer to stationary processes. 
Signal detection 1571, natural resources, weather, climate, 
competition and the complex economy of biological markets 
158, 591 are sources of uncertainty. There are of course 
exceptions: in the course of human history, we invented 
statistics and probability theory, and we must reason 
sometimes as if ow probabilities represent accurately fixed 
properties. In these formal contexts, maximizing is the rational 
policy and behavioral studies indicate that it may emerge when 
certain conditions are present: greater cognitive abilities of the 
subjects, 1601 larger incentives, feedback and training 1611. 
Thus one must distinguish contexts where PM is really 
suboptimal from contexts where it is a good heuristics for 
coping with uncertainty. It is irrational in context where 
information is - or should be - considered to be complete and 
reliable. 

V. CONCLUSION 

The philosophy of ALife does not need to focus only on 
epistemological and metaphysical issues. Questions more 
limited in scope may figure in a natrrra/istic agenda, where 
ALife and other disciplines are woven together. Natural 
rationality, the research and evaluation of decision-making 
mechanisms, is an instance of naturalistic inquiq that integrate 
ALife. Hence the present paper focused on the nature and 
adaptive function of probability matching. Contrarily to claims 
according to which PM is either irrational, a by-product of 
heuristic and biases or only rational in competitive foraging, I 
argued that PM must be construed as an adaptation to 
uncertainty. Neuromodulatory processes in nervous systems 
induce TD-learning, a robust and efficient learning rule that 
tends to match probabilities, and PM's efficacy was 
demonstrated in second-order uncertainty contexts. NJMR 
simulated the evolution of foraging bees in bandit-like 
environments and showed how evolution and development 
lead to P M  This, plus the fact that PM is both ubiquitous in 
nature and efficient in uncertain contexts, supports the 
hypothesis of PM as an adaptive heuristic that evolution and 
leaning bring about. Thus in this sense, PM could be 
considered as an evodevo adaptation Because life is often a 
big K-armed bandit problem, evolution selects developmental 
systems that adjust themselves efficiently to their radically 
uncertain envkmment: 

A system that learns through prediction learning need not 
have the path frorn goal to reward specijed, in contrast to 
frxed behavioral patterns, such as stimulus-response learning. 
Instead, the patl~from goals to rewards rnoy be lefr open and 
discoverable via learning, resultin% in flexible action. 
Evolution, then, moy shape the pattern of basic rewards 
anirnals are nrotiwted to obtain, but the behavioralpat11 is lefi 
open to discovery, as are more complex relations among 
predictors. [62] 

Although the behavioral path is left open to discovery, 
nervous systems have the propensity to disoover PM 
generations after generation because of it simplicity, 
naturalness and usefulness. This hypothesis is more general 
than the strict Ideal Free Distribution explanation of PM, 
according to which its only adaptive advantage is in 
competitive foraging, and hence treats competitive foraging as 
a specific kind of uncertainty problems solved by PM. Further 
simulations and empbical work will be needed to test this 
hypothesis. 
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