
The Gridbrain: an Heterogeneous Network for Open Evolution in

3D Environments

Telmo Menezes and Ernesto Costa
Centre for Informatics and Systems

of the University of Coimbra (CISUC)
{telmo, ernesto}@dei.uc.pt

Abstract— A reasoning system for autonomous agents under
open evolution is presented. The system’s design goal is to
bridge the gap between Artificial Life concepts and popular
computer simulation systems, namely 3D graphics engines and
Newtonian physics simulation engines, with possible applica-
tions to complex systems research and digital entertainment.
The theoretical model of a dual layered heterogeneous network
of components is proposed as a solution for reasoning in envi-
ronments where agents’ perceptions are provided as arbitrarily
sized vectors of symbols. A set of network components aimed at
spatial reasoning is presented. Algorithms designed to maintain
open evolution under real-time computational constraints are
proposed. Experimental results are presented and analyzed.

I. INTRODUCTION

The gridbrain is a reasoning system conceived for au-
tonomous agents that operate in simulated three dimensional
Newtonian physics worlds. An important goal for our work
is the possibility of using Artificial Life concepts, like open
evolution, in the development of generative 3D worlds.
We present not only a reasoning system, but also a set
of algorithms designed to maintain open evolution in a
society of agents. We aim at both scientific and engineering
applications. Scientific applications exist in the realms of
Artificial Life and Complexity Science, where simulation
is an important research tool. Possible engineering areas of
application are digital entertainment, educational software
and others where real time interaction with human users is
important.

We identified a set of challenges that must be addressed
to achieve this goal: real time constraints; abstraction of the
sensor/actuator model and facilitation of spatial reasoning.

Traditional Artificial Life systems like Tierra [1] or
Avida [2] focus on the study of biological processes by
establishing an analogy between living systems and computer
programs. These systems attempt to, in a reasonable amount
of time, simulate phenomena that occur in nature in very
large time scales. One problem is that the results of these
simulations tend to be meaningful only to scientists. We
are interested in showing these phenomena to non-scientists,
presenting them in the context of recognizable environments
that can be interacted with. Technological progress in the
digital entertainment industry provides us with very realistic
visualization and physical simulation tools. We attempt to
establish a bridge between Artificial Life concepts and these
environments.

We identify two types of real time constraints that must
be taken into account: the computational complexity of the
reasoning algorithm that agents execute and the time frame
under which open evolution produces visible improvements
and changes. The first type of constraint was considered
when designing the gridbrain model, while the second was
addressed by the evolutionary algorithms we propose.

Other Artificial Life simulations exist that are able to
display open evolution in 3D environments, notably Poly-
world [3], one of the inspirations for our work. These
simulations tend to operate under predefined world models
and use sensors and actuators that aim at mimicking nature
as much as possible. In Polyworld, one of the main sensors
for agents is a simulation of direct vision, in the form of
a pixel grid representing the point of view of the agent. A
reason for this drive to simulate realistic sensors, actuators
and world models is the application to robotics. We do not
contest the merit of this approach, but we want to propose a
different one aimed at a different set of environments.

In computer games, the common practice is to provide
agents with information about their surroundings in a pre-
processed form, usually analogous to vectors of perceivable
entities and their characteristics [4]. This is an approach
aimed at the engineering of pragmatic artificial intelligence
solutions. We believe this approach is also interesting for
scientific purposes, as it more easily allows for the definition
of sensor/actuator models at different abstraction levels. This
is an important feature for research in Complexity Science
due to the interdisciplinary nature of the field, ranging from
physical and chemical to social phenomena [5] [6].

The model we will describe is an evolution of a previous
one with similar goals [7], which was inspired by John
Holland’s work with the ECHO [8] simulation and showed
promising results. The experimental results were obtained
using Bitbang, an agent framework developed by our re-
search lab [9] and two open source software engines, one
for 3D visualization [10] and one for Newtonian physical
simulation [11].

In the next section we will describe the gridbrain theo-
retical model. Then mutation and recombination operators
will be addressed, followed by the proposal of a set of
components for spatial reasoning. The evolutionary process
will be discussed and experimental results presented.

155

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

Fig. 1. The gridbrain abstract model. A set of valid connections is
displayed.

II. THE GRID BRAIN ABSTRACT MODEL

As shown in figure 1, the gridbrain consists of a network of
components which are placed in a grid. This grid is divided
in two layers, the first α columns belonging to the alpha
layer and the last β columns belonging to the beta layer. To
these two layers correspond different topological rules and
computational methods. The alpha layer is responsible for
analyzing perceptions relative to other entities in the world
and feeding the data resulting from this process to the beta
layer. The beta layer is responsible for general decision-
making.

There are five types of components: external perceptions,
internal perceptions, operators, aggregators and actions. Ex-
ternal perceptions are only allowed on the first column of
the alpha layer (A), the external perception column. Internal
perceptions are only allowed on the first column of the beta
layer (C), the internal perception column. Actions are placed
on the last column of the beta layer (E), forming the action
column. We will call the remaining columns in the alpha
layer the alpha middle zone (B) and the remaining columns
in the beta layer the beta middle zone (D). Operators are
allowed in both middle zones, while aggregators are allowed
only in the alpha middle zone.

External perceptions are relative to entities in the percep-
tion field of the agent. An external perception has an implicit
parameter, which is a numerical identifier of the entity it
refers to at that moment. As the alpha layer is evaluated
for every entity perceivable by the agent, each external
perception is instantiated for each one of these entities during
a computation cycle of the gridbrain. The usefulness of
external perceptions is maximized by placement in the first
column of the alpha layer. This is due to the fact that a
perception component accepts no input, while this location
makes its output available to all other components that accept
inputs. Internal perceptions are relative to some internal state
of the agent, and thus are placed in the beta layer. Unlike
the external type, internal perceptions are not parametric,
so no instantiation is needed. The same reasoning is thus
applied for its placement in the first column of the beta
layer. Action components cause the triggering of actions
when activated. Multiple actions may trigger in the same

Fig. 2. The generic component model.

computation cycle. Action components produce no outputs,
so they are placed in the last column of the grid. Operators
are computational components that produce an output that
is a function of its inputs. Operators are stateless, even
across multiple alpha passes of the same computation cycle.
Aggregators are also computational components, but they
preserve their state during alpha passes. They are used for
maintaining global views of the entity vector during the alpha
layer computation. The internal state of aggregators is reset
in the beginning of each computation cycle.

Connections are weighted and directed. The weight of
a connection is a real value in the [−1, 1] interval. In the
alpha layer only feed-forward connections are allowed, while
in the beta layer recurrent connections are also allowed.
Both the origin and the target components of these recurrent
connections must be within the beta layer. Connections may
skip columns. A component in the alpha layer may thus
connect to any other component with a greater column
number, while a component in the beta layer may also
connect to any component with a lesser or equal column
number if this column belongs to the beta layer.

This topology was devised to deal with the problem of
creating a simple representation for a network that must
perform computations based on the properties of a vector
of entities of arbitrary size. While the rules of component
placement are somewhat complicated, the representation of
the network for evolutionary or learning purposes is simply
a directed graph with weighted connections. Typically the
component placement will be predefined and equal for every
agent, all evolution or learning taking place by changing the
connections.

The component model is shown in figure 2. A component
has two input interfaces (one for feed-forward and another for
recurrent connections), one output interface, one computation
unit and one recurrent input buffer. Input interfaces define the
way inputs are stored. The computation unit defines how the
inputs are transformed into an output value and the output

156

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

interface simply transfers this output to the next components.
A specific component is defined by its input interfaces and
computation unit. The output interface and recurrent input
buffer are generic.

Recurrent connections are a way to preserve memory
between computation cycles. The values from recurrent con-
nections are stored in a buffer, and only processed in the
next cycle. This establishes a way to preserve memory in
the beta layer, at the same time not having to deal with
stabilization issues associated with recurrence in networks.
Depending on the components available, the beta layer may
be Turing complete, considering computations spread across
multiple simulation cycles. This is the case when a percep-
tron component is available, as a recurrent neural network
can be shown to be Turing complete [12]. Although Turing
completeness is not a strict requirement for Artificial Life, it
may be useful in some cases, for example as a simple way
to provide agents with memory.

Each computation cycle of the grid brain is a sequence of
three steps: the first alpha pass sets the internal state of the
aggregators, the second alpha pass feeds data from external
perceptions to the beta layer and the beta pass fires actions.
Both alpha passes are executed one time for each entity in
the perception range of the agent, while the beta pass is
executed only once. An execution consists of looping through
the columns and inside each column through the rows. Each
component computes its output and then feeds it to the input
interfaces of all the components it is connected to, multiplied
by the weight of the connection.

Pseudo-code for a grid brain computation:
update all perceptions
clear action list
reset beta layer feed-forward inputs
reset all aggregators’ internal state

// first and second alpha passes
loop 2 times:

for each entity e in the agent’s perception range:
reset alpha layer feed-forward inputs

for each column c in alpha layer:
for each row r:

if component is external perception:
set external perception parameter to e
compute component at c, r
for every connection from this component:

output = output * connection weight
propagate output to target component \
feed-forward interface

// beta pass
for each column c in beta layer:

for each row r:
for every input i in component at c, r recurrent \
input buffer:

propagate input to component \
recurrent input interface
clear recurrent input buffer for component at c, r
compute component at c, r
if computation returned action a:

add a to action list
for every connection from this component

output = output * connection weight
if (target column > c):

propagate output to target component \
feed-forward interface

else
add output to target component recurrent \
input buffer

for every action a in action list:
execute a

III. MUTATION AND RECOMBINATION

The gridbrain was designed to be used in evolutionary
environments, so we will detail two conventional genetic
operations: mutation and recombination.

For each mutation, one of three atomic operations is
performed: creating a new connection, deleting an existing
connection or changing the weight of an existing connection.
The atomic operation to perform is chosen at random for
each mutation, each one having an equal probability of
occurrence. After experimenting with alternative approaches,
we found that giving deletion and creation of connection
equal probability of occurrence effectively prevents bloat.
Bloat, in the case of the gridbrain, is a useless increase in
the number of connections. When creating new connections,
the new connection to create is randomly selected from the
space of possible connections. This is done in a way that
guarantees equal probability to each possible connection.
Due to topological differences in the two layers (feed-
forward restrictions on the alpha layer and limitation of
recurrent connection to inside the beta layer), each column
has a specific number of connections that may originate from
it. This number is calculated through equations (1) and (2).
Being Ac the number of connections originating from alpha
layer column c, B the number of connections originating
from a beta layer column, α the number of alpha layer
columns, β the number of beta layer columns and h the
height of the grid we have:

Ac = (α + β − c) · h2 (1)

B = β · h2 (2)

Thus the total number of possible connections, T is:

T =
α∑

c=1

Ac +
α+β∑

c=α+1

B (3)

So an alpha layer column has a probability of being
selected as origin of the new connection of:

pcα = Ac/T (4)

And a beta layer column:

pβ = B/T (5)

For a connection with an origin in the alpha layer, the
target column is selected with equal probability from all
columns with greater column numbers. For a connection with
an origin in the beta layer, the target column is selected
with equal probability from all columns in the beta layer.
The origin and target rows are selected from the set of
possible rows with equal probability. This same strategy is
applied when generating connections for the initialization

157

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

of a random population of agents in the beginning of the
experiment.

Weight change is done by randomly selecting a delta value
in the [−1, 1] real interval and adding it to the current weight.
The new weight is capped by [−1, 1].

Recombination is done by the definition of connection
groups. Every time a new connection is created, it is tagged
with an integer value G such that 0 <= G < M , where
M is the number of connection groups predefined for the
experiment. When recombination between two agents occurs,
one of the progenitors is selected at random to provide its
connection set for each group. This strategy attempts to
promote the self-organization of functional groups in the
connection set.

IV. A SET OF COMPONENTS FOR SPATIAL REASONING

Now that we have described the abstract model of the
gridbrain, we will detail a set of components conceived for
the development of agents’ brains that operate in a three
dimensional Newtonian physics simulated world. In the kind
of experiment we will describe latter, the agent is provided
with perceptions relative to other entities in the world. These
perceptions are of an heterogeneous nature. One kind of
perception is of a spatial relative nature. One example would
be the position of an entity according to a cartesian axis of
the agent’s frame of reference, normalized to a [−1, 1] real
interval. If perception A was the position along the X axis
and perception B was the position along the Y axis, a value of
-1 for A would mean that the entity was on the far left of the
agent’s vision field while a 1 value for B would mean that the
entity was on the bottom of the agent’s vision field. The same
logic may be applied to other vectorial values, for example
relative velocity. Another kind of perception is of a scalar
nature, for example the energy level of the agent normalized
to a [0, 1] real interval. Yet another kind of perception is
of a boolean nature, for example the existence of a certain
characteristic in an exterior entity, where 0 would mean the
inexistence of this characteristic and 1 its existence.

The underlying concept for the set of components we will
now propose is the merging of analogical signal processing
capabilities with boolean logic. We consider three operator
components: the threshold, the multiplier and the negator and
one aggregator component: the maximizer.

The threshold is equivalent to a common artificial neuron
used in neural networks. If the sum of all inputs reaches
a threshold value, the output is triggered. Our threshold
component uses the absolute value of this sum and has a
fixed threshold value of 0.1. This way, if the sum of all
inputs is in [−0.1, 0.1] the output will be 0, otherwise it will
be -1 if the sum of inputs is negative or 1 if it is positive.
The threshold value is fixed because we want all the specific
information of a brain to be contained in the connection
weights, so that mutation and crossover operators as well as
metrics are simpler to define. The threshold value determines
the minimum cut-off interval of the threshold. For a signal
propagated through a connection with weight w, the cut-
off interval for a threshold value of t is [−t/|w|, t/|w|]. As

w ∈ [−1, 1], the smallest interval possible is [−t, t]. Aiming
at general applicability we chose a low 0.1 threshold value.

The behavior of the component was chosen to be sym-
metrical for an easier mapping to the type of perceptions we
described.

The multiplier outputs the product of all the inputs capped
by -1 and 1. From a boolean logic perspective this operator
works as an AND gate, and from an analogical perspective
as an amplifier.

The negator outputs 1 if the sum of its inputs is 0 and
outputs 0 in any other case. From a boolean logic perspective
this operator works as a NOT/NAND gate, and from an
analogical perspective as a comparator.

The maximizer returns 1 if its state equals the maximum
value it has received so far and 0 in any other case. Notice
that though to negative connection weights, the maximizer
may as easily be used as a minimizer.

The multiplier and negator components, equivalent to
AND and NOT/NAND gates, define a complete boolean
logic system. A network of thresholds may express general
purpose analogical signal processing structures. The multi-
plier and negator perform more specific but commonly useful
analogical processing functions. We are aware that common
neural network artificial neurons, like the threshold, may be
used to express complete boolean logic [13]. However, the
purpose of this set of components is to provide expressive
building blocks for the class of problems we are studying.
This choice is expected to facilitate the evolutionary task of
finding viable agents and provide for smaller, less computa-
tionally intensive solutions.

V. THE EVOLUTIONARY PROCESS

The evolutionary process is implicitly defined by providing
the agents with reproductive actions. Unlike more conven-
tional evolutionary algorithms, there is no explicit fitness
function. The agents that are more capable and willing to
reproduce have greater chances of passing their genetic code
to future agents. This simple process creates evolutionary
pressure. In other Artificial Life systems, although there is
no explicit fitness function, there still exists a centralized
algorithm that takes care of creating new generations. We
chose to let the agents decide when to reproduce because
we expect this to create interesting trade-offs that contribute
to the goal of evolving complex societies. Current states of
the agent and of the world may determine different optimal
strategies in terms of energy management. An agent may
choose to delay reproduction to a point where it has more
stored energy, in order to maximize its chances of survival
after the reproductive action. Survival considerations may
dictate that it is better to use energy at a certain moment to
escape a predator or to take actions to increase the availability
of food in the future.

We still have a form of centralized control in the reproduc-
tive system, that was created to deal with two problems: the
initialization of the world to a point where the agents achieve
self-sustained evolution and computational power limits. The
first problem results from the fact that reproduction is a

158

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

behavior the agents must develop, and that to develop this
behavior the agents must evolve, which is assured by repro-
duction itself. It is thus necessary to provide for an initial
form of evolution that takes the agents to a point where
they develop reproductive technology. The second problem
is that very successful agents may reproduce and generate
a bigger population of agents than the simulation is able
to compute in reasonable time. This problem is especially
relevant to certain applications with real-time requirements
such as digital entertainment. The solution we found to these
problems is the reproduction buffer and the population limits.
The reproduction buffer is a FIFO (First In, First Out) list
of inactive agents of a predefined size. The population limits
are lower and upper boundaries for the size of the population
of agents. The first problem is addressed by executing the
following process at each world simulation cycle:

while population < population lower limit:
if reproduction buffer size <= 0:

if population > 0:
select random agent a from population
copy agent a to agent b
mutate agent b
place agent b in the world

else:
create randomly initialized agent

else:
select random agent a from reproduction buffer
copy agent a to agent b
mutate agent b
place agent b in the world

This process guarantees that a new agent is generated
if the population size goes bellow the lower limit. If both
the world and the reproduction buffer contain no agents,
random agents are generated. This constitutes a first phase
of evolution that works by brute force. This phase typically
lasts for a very short period because the slightest advantage
in the ability to conserve energy will give some agents an
advantage over others. If agents are present in the world but
the reproduction buffer is empty, agents are selected from the
world population for cost-free reproduction until the lower
population limit is achieved. The longer an agent lives, the
higher the probability of it being chosen for reproduction.
This defines a second phase where evolutionary pressure
exists towards the gathering of energy.

When an agent chooses to reproduce, a process takes place
that is described by the following pseudo-code:

copy agent a to agent b
add agent b to the beginning if the reproduction buffer

if reproduction buffer size > maximum reproduction \
buffer size:

remove agent from the end of the reproduction buffer

if population size < population higher limit:
select random agent a from reproduction buffer
copy agent a to agent b
mutate agent b
place agent b in the world

When the first agent reproduces, the system achieves
self-sustained evolution and the third phase starts. Notice
that the successful execution of a reproductive action does
not guarantee the propagation of the agent’s genetic code
to future generations but only to the reproduction buffer.

Evolutionary pressure is maintained because the more times
an agent reproduces the more likely it is that its genetic code
is transferred to the future generations. Mutation of genetic
code is done in the reproduction buffer to world transference
step. This is done to increase diversity.

The process described directly applies to reproductions
that only involve one progenitor and thus result from pure
mutation. If two progenitors are involved, the agent copied
to the reproduction buffer is a recombination of the genetic
code of the two progenitors. In all cases, mutation is only
performed when an agent is transferred from the reproduction
buffer to the world.

To summarize, during the bootstrap - phases 1 and 2
of evolution - the only way for an agent to increase its
chances of passing its genetic code to future generation is
by surviving longer. This is so because during these phases,
agents are selected at random for reproduction, and an agent
that survives longer is more likely to be chosen. Surviving
longer depends on the agent’s ability to gather and preserve
energy, creating evolutionary pressure to improve these skills.
When phase 3 starts, the ability and willingness to reproduce
becomes dominant in determining the chances of genetic
code propagation because all new agents are created from
the reproductions buffer. The only way for an agent to place
its genetic code in the reproduction buffer is to successfully
execute a reproduction action. This has the added advantage
of removing older genetic code - possibly belonging to other
agents - from the buffer, thus increasing the change of genetic
propagation. Energy gathering and preservation skills are still
indirectly important, since reproduction has an energetic cost.

VI. EXPERIMENTAL RESULTS - THE FLOATERS WORLD

To test and experiment with the gridbrain model we
defined a simulated world that we will call the ”floaters
world”. This world consists of an unmovable closed cubic
box of internal side 500, within which agents and food exist.
There is no gravity, so the agents have a total degree of
freedom in the three dimensions. Both the minimum and
the maximum number of agents allowed is 20, to reduce
randomness in the results caused by population fluctuations.
Agents have a mass of 1 and are physically modeled as
perfect spheres of radius 30. Food items have infinite mass
and are modeled as perfect spheres of radius 5. We chose
to run these experiments with unmovable food items, again
to reduce randomness in the results, in this case caused
by agitation in the world. Especially in the beginning of
simulation runs, agents tend to bump into food, making it
variably harder for future generations to eat. Experiments
with variable populations and movable food produced similar
results, but with less regularity. An air drag effect is modeled,
causing a force to be applied to objects in the opposite
direction of its linear and/or angular velocity. The value of
this force is a constant multiplied by speed squared. The
value used for this constant was 10. The purpose of the drag
is to make agents maneuverable.

An agent has the following actions available: go, yaw,
pitch, eat and reproduce. Go applies a linear impulse that

159

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

makes the agent go forward according to its current ref-
erential and has an energetic cost of 0.0001 per impulse.
Yaw and pitch apply rotational impulses relative to two axis
of this same referential, according to aviation conventions,
with a cost of 0.0001 per impulse. Eat allows the agent
to eat an item of food if the item is in both physical
contact with it and in its view range. Eat has an energy
gain determined by the energetic content of the food item.
Reproduce involves two progenitors and is initiated by one
of them. Reproduction is allowed if the initiating agent is in
physical contact with the other progenitor and has the other
progenitor in its view range. Reproduce has an energy cost
of 1.5, paid by the initiating agent. There are 5 connection
groups for recombination purposes and 10 mutations are
performed by reproduction.

An agent has the following perceptions available: hor-

izontal position, vertical position, proximity, is food and
energy level. Energy level is an internal perception, all
others are external. Horizontal and vertical position give the
relative position of an object according to the own agent’s
referential, normalized to a [−1, 1] real interval. Proximity

is 1 − relativedistance, where the relative distance is the
distance of another object according to the agent’s referential,
divided by the agent’s vision range. Proximity thus returns a
value in the [0, 1] interval. Is food returns 0 if an object is not
a food item, 1 if it is. Energy level gives the current energy
of the agent divided by its maximum energy, thus returning
a value in the [0, 1] interval.

Food is constantly supplied to the world, so that 250 food
items are always available. It is distributed uniformly in the
space inside the box. Each food item provides 1 unit of
energy. The agents have a cone of vision in front of them
that is defined by an angle of 150o and a range of 300.
Any entity that is contained in this cone will be seen by the
agent and thus processed in the alpha passes of the gridbrain.
The agents have a metabolic rate that makes them loose 0.02
energy units per simulation cycle. The maximum energy level
per agent is 10. If an age limit of 10 simulated seconds is
reached or the energy level drops below 0, the agent dies
and is removed from the world.

The physical simulation step is 0.01 seconds long.
Operator and aggregator components are distributed by the

middle layers of the agents’ gridbrains in and alternating and
regular fashion. If components A, B and C are available, they
will be distributed along the columns of the middle layers
in an ABCABCABC sequence. The agents have 10 alpha
middle layers and 10 beta middle layers. A conservative high
value of layers was chosen to reduce interference with the
results when comparing different setups of components.

Results where collected by storing information about each
agent when it dies: the time of death, the total amount of
energy gathered (including initial energy) and the number of
reproductions performed. This log is then analyzed by calcu-
lating the average energy gathered and number of reproduc-
tions per agent in a time period. The results presented are the
average of 30 simulation runs of 5000 simulation seconds,

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
ne

rg
y

Time (simulation seconds)

MUL NOT THR MAX
MUL MOT MAX

THR MAX
THR

Fig. 3. Evolution of the average energy gathered by agent (average of 30
simulation runs).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ep

ro
du

ct
io

ns

Time (simulation seconds)

MUL NOT THR MAX
MUL MOT MAX

THR MAX
THR

Fig. 4. Evolution of the average number of reproductions by agent (average
of 30 simulation runs).

discretized in time periods of 250 simulation seconds. We
consider total energy gathered and number of reproductions
to be a good indicator of agent performance in this scenario.

Figure 3 present the results for energy gathered using
different component setups. The perception and action com-
ponents formerly enumerated are never changed, but we are
interested in determining the impact of the several proposed
middle layer components in agent evolution. We found setups
using multipliers, negators and maximizers to perform simi-
larly to setups using thresholds and maximizers. Combining
negators and thresholds with the maximizer also yields simi-
lar results. In this experiment, the generalist capacities of the
threshold seem to be sufficient. We then experimented with
removing the maximizer and found the pure threshold setup
to be the best performer. Initial testing showed setups with

160

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
ne

rg
y

Time (simulation seconds)

THR AGG
THR

THR2 AGG
MUL NOT THR MAX

Fig. 5. Average of 30 simulation runs of the evolution of the average
energy gathered by agent. (25 food items)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
ep

ro
du

ct
io

ns

Time (simulation seconds)

THR AGG
THR

THR2 AGG
MUL NOT THR MAX

Fig. 6. Average of 30 simulation runs of the evolution of the average
number of reproductions by agent. (25 food items)

only multipliers or negators to not promote any evolution
at all, so they were discarded from further experimentation.
Figure 4 shows similar results for the average number of
reproduction per agent.

We repeated the experiment changing the number of food
items available to agents by an order of magnitude. There
are now 25 food items available in the world at any moment,
with an energy content of 5. This scenario presents a much
harsher challenge to agent evolution. As can be seen in figure
5, a threshold-only setup now underperforms the multiplier,
negator, threshold and maximizer (MUL NOT THR MAX)
setup during most of the time, converging in the end. At
this point we wanted to test the impact of aggregation
using a more general approach than the maximizer, so we
introduced a new component, the aggregator threshold. This

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
ne

rg
y

Time (simulation seconds)

THR AGG
MUL NOT THR MAX

Fig. 7. Evolution of the average energy gathered by agent in the predators
experiment.

new component is equivalent to the old threshold except that
it is considered an aggregator, so it is not reset between alpha
passes. The aggregator threshold is labeled as ”AGG” in
the graph. As can be observed, the threshold and aggregator
threshold configuration obtains the best performance of all
setups considered. We also wanted to test the importance of
the threshold symmetrical behavior (as discussed in section
IV), so we introduced a new component, the THR2, which
behaves more like a conventional artificial neuron. If the sum
of its inputs is equal or greater then 0.01 it fires, outputting
1, otherwise the output is 0. As can be seen, the THR2 AGG
setup is the worst performer in the experiment.

Figure 6 shows similar results for reproductions per agent.
In the final experiment we tested the two most promising

setups from previous experiments - the THR AGG and the
MUL NOT THR MAX under a new scenario. There are now
two competing species. We call them species in the sense that
no reproduction is allowed between them. In this scenario,
each species is the predator of the other. The eat action is
replaced with a shoot action, with an energy cost of 0.02.
The agent may shoot at any moment. The nearest object in
a cone with 50% the angle of the vision cone will be the
target. If no target exists, the energy is still expended and
nothing happens. Any agent shot is destroyed. Shooting an
agent of the other species gives 1 energy unit to the shooter,
while shooting an agent of the same species gives a 10 energy
unit penalty. Agents have now different colors according to
species: one is red and the other is blue. Agents are provided
with 3 new external perceptions: is red, is blue and is target.
Is red and is blue return 1 if the object is of that color,
0 otherwise. Is target returns 1 if the object is the current
target, 0 otherwise.

As can be seen in figure 7, the THR AGG setup now
underperforms the MUL NOT THR MAX setup. Besides
spatial navigation, this scenario involves crucial decisions of

161

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

a boolean nature. The use of the boolean-oriented MUL and
NOT components seems to pay off.

VII. FINAL REMARKS

In this first publication about the gridbrain model, we
tried to present the motivations for its design and a set of
experimental results that justified its relevance. We are aware
that much more experimentation has to be done, as there are
many aspects of the system to study: impact of mutation
rates and number of recombination component groups, other
mutation operators, other components, the utility of recurrent
connections in the beta layer and, not less importantly,
more interesting scenarios leading to more complex agent
behaviors. We believe that the experimental results showed
that the dual layer design is effective in providing a reasoning
system for agents that perceive the world as vectors of
objects. We also believe that the importance of alpha layer
aggregation and the study of alternative components became
established.

A new class of components will be studied for the beta
layer, attempting to facilitate memory and synchronization.

Another bio-inspired approach that was considered when
designing the gridbrain, but not discussed in this article,
is speciation. By introducing new alpha and/or beta middle
columns in evolved brains, we will attempt to simulate evolu-
tionary forks, where new species develop new functionalities,
layering upon previous, already established capacities.

One important reason we chose to work in physically
simulated worlds is that we believe complexity arises from
co-evolution with the environment. Future work will contem-
plate parallel evolution of physical traits in the agents. One
simple example would be to evolve the air drag constant
of the agents in the scenarios formerly presented, thus
establishing an interesting trade-off: maneuverability versus
energy saving.

One subjective but nevertheless relevant aspect of the
results we obtained is of a visual nature, and can not
be conveyed in this article. The combination of realistic
physics simulation and open evolution made the agents, at
many points, appear to human observers to have an organic
behavior, as opposed to a more mechanic behavior normally
associated with computer simulations. Although it can not
easily be measured, it is a goal of our work to provide this
kind of experience to human observers.

ACKNOWLEDGMENTS

The first author would like to acknowledge grant
SFRH/BD/19863/2004 from Fundação para a Ciência e

Tecnologia (FCT), Portugal.

REFERENCES

[1] T. S. Ray, “Evolution and optimization of digital organisms,” Scientific
Excellence in Supercomputing: The IBM 1990 Contest Prize Papers,
Athens, GA, 30602: The Baldwin Press, The University of Georgia,
pp. 489–531, December 1991.

[2] C. Adami and C. Brown, “Evolutionary learning in the 2d artificial
life systems avida,” in Proceedings of Artificial Life IV, R. Brooks, P.
Maes, Eds. MIT press, 1994, pp. 377–381.

[3] L. Yaeger, “Computational genetics, physiology, metabolism, neural
systems, learning, vision, and behavior or polyworld: Life in a new
context,” in Proceedings of the Artificial Life III Conference, 1994.

[4] S. Rabin, “Ai game programming wisdom.” Charles River Media,
2002.

[5] M. Waldrop, “Complexity: The emerging science at the edge of chaos.”
Simon & Schuster, 1992.

[6] B. Pullman, “The emergence of complexity in mathematics, physics,
chemistry, and biology.” Princeton University Press, 1997.

[7] T. Menezes and E. Costa, “A first order language to coevolve agents
in complex social simulations,” in Proc. of the European Conference
on Complex Systems, 2006.

[8] J. H. Holland, “Hidden order - how adaptation builds complexity.”
Addison-Wesley, 1995.

[9] T. Baptista, T. Menezes, and E. Costa, “Bitbang: A model and frame-
work for complexity research,” in Proc. of the European Conference
on Complex Systems, 2006.

[10] N. Gebhardt, “Irrlicht engine.” [Online]. Available:
http://irrlicht.sourceforge.net

[11] R. Smith, Open Dynamics Engine - v0.5 User Guide, 2006. [Online].
Available: http://www.ode.org

[12] H. Hytyniemi, “Turing machines are recurrent neural networks,” in
Proceedings of STeP’96. Finnish Artificial Intelligence Society, 1996,
pp. 13–24.

[13] M. Hassoun, “Network realization of boolean functions,” in Funda-
mentals of Artificial Neural Networks. MIT Press, 1995, ch. 2.1.1.

162

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

