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Abstract– Self-directed learning is an essential component of 

artificial and biological intelligent systems that are required to 
interact with and adapt to complex real world environments.  
Inspired by psychological and neuroscientific data, many 
algorithms and architectures have been proposed in the field of 
developmental robotics that use novelty as a training signal.  
Such approaches are aimed at motivating the exploration of 
sensory-motor contingencies for which mental models have not 
yet been accurately formed, driving the agent to develop task-
independent competencies (such as understanding object 
affordances) without the need for explicit teaching.  However, 
novelty-driven exploration on its own leads to a number of well-
known problems that impede competence acquisition such as the 
attraction of agents to chaotic or unlearnable tasks and the 
temporary oversampling of aspects of the environment until they 
are no longer novel.  This paper contributes to the field, taking 
insight from neuroscientific data on selective attention 
(particularly the temporary “boredom” associated with recently 
seen stimuli and a counter preference for the familiar), to 
propose mechanisms that may help address the noted problems 
relating to developmental learning in robots.  Experiments 
conducted on an AIBO ERS-7 robotic dog demonstrate the 
potential of the approach. 
 

I. INTRODUCTION 

 
Flexible real-world problem solving often requires 

sensitivity to subtle task and object related features. For 
example, consider the task of changing a light bulb and the 
reasoning processes involved in selecting an object on which 
to stand in order to gain the appropriate height.  Although the 
resulting selection can be expressed symbolically (e.g., “the 
black chair”), the reasoning process itself is sensitive to low-
level task specific features such as the stability, shape, and 
weight-bearing characteristics of the available options.  In 
developing artificially intelligent “thinking systems”, it is 
doubtful that such subsymbolic sensitivities can be hand-
coded, or learned through explicit tuition.  Instead, learning 
appropriate grounded representations through interacting with 
the world is an important (and perhaps necessary) 
characteristic of artificially intelligent embodied systems. 

In learning to interact with the world, it has been well 
argued that intrinsic reward systems that promote the 
exploration of the environment and sensory-motor 
contingencies are necessary to explain the development of a 
range of competencies (such as grasping, walking and 
interacting with objects) that occur in the absence of external 

reward signals (see [1] for a review).  As such competencies 
emerge from the interplay between an agent and the 
environment however, the specification of potential intrinsic 
rewards alone does not necessarily lead to a deep 
understanding of the learning process.  Addressing this 
limitation, the field of developmental robotics has recently 
emerged that provides a grounded platform for examining the 
viability of various intrinsic rewards on autonomous skill 
acquisition.  This field not only provides insights into how 
self-directed learning may occur in biological systems, but 
provides algorithms and architectures that may be useful in 
training autonomous agents.  To date however, the field of 
developmental robotics still remains in its infancy, with the 
vary many proposed algorithms for self-directed learning not 
yet being demonstrated to scale well to unconstrained real-
world environments.   

This paper specifically explores issues surrounding the use 
of novelty as an intrinsic reward signal for the self-acquisition 
of skills in developmental robots.  As will be mentioned, 
novelty is a psychologically and neurologically plausible 
reward signal that has been widely used in the robotics 
community.  One of the limitations of this approach however, 
is that rewarding only novel sensory-motor contingencies 
frequently leads to a number of emergent behaviors that are 
detrimental to learning.  Through a series of simulations, this 
paper aims to highlight and explain some of these main 
detrimental emergent properties, and to propose 
neuroscientifically motivated extensions to generic learning 
architectures that may circumvent such problems.  In 
particular, it is argued that short-term habituation to recently 
experienced novelty (i.e. “boredom”) as well as an opposing 
attraction to the familiar are additional features found in 
biological systems that may address some of the main 
limitations associated with using novelty as an intrinsic 
motivator. 
 

II. BACKGROUND 
 

The factors that motivate an organism to interact with its 
environment and select certain actions over others has been a 
subject of much debate over the past century.  Early drive 
theorists argued that behavior is motivated by the desire to 
reduce tension caused by unmet biological needs such as 
hunger, thirst or sex (e.g., [2]).  However, since that time, 
psychologists have recognized that drive reduction theories 
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are insufficient to account for a wide range of human 
behaviors such as visual exploration, grasping, walking, 
language, the exploration of novel objects, and the general 
ability to exploit and manipulate the environment [1]. Instead, 
it has been argued that there exist additional intrinsic rewards 
that make pleasurable the vast amount of learning that is 
required to effectively interact with the world. Such additional 
drives that have been proposed include the need to explore, 
the need to effect a stimulus change in the environment, and 
the need to interact effectively with the environment [1,3,4]. 

Recently, the field of developmental robotics has emerged 
that, in conjunction with neuroscientific data, has given much 
insight into how competencies (i.e. sets of effective 
interactions with the world) can emerge in the absence of 
external rewards.  One such factor that has been found to be 
an effective reward signal is stimulus novelty (e.g., [5-11]).  
That is, the discrepancy between sensory stimuli and that 
predicted by an internal world model can be used as a training 
signal to promote the exploration of aspects of an agent’s 
environment for which a mental model has not yet accurately 
formed. Although generic in nature, variants of this approach 
have been successfully applied to the acquisition of a range of 
competencies, such as the learning of object permanence, 
object affordances and language (e.g., [10,,11]).  Interestingly, 
the use of novelty as a reward signal automatically promotes 
exploration, manipulation, and mastery; the main intrinsic 
motivators identified by psychologists (as discussed earlier).    

Consistent with the algorithms prevalent in developmental 
robotics, there is much neuroscientific evidence to suggest that 
novelty acts as an important intrinsic reward signal in 
primates.  In particular, dopamine neurons of the ventral 
tegmental area and substantia nigra have been shown to elicit 
the same response to novel stimuli as they do to primary 
rewards such as food [12].  It has long been established that 
such cells are central to the processing of rewards that shape 
overt behavior (see [12] for a discussion).  FMRI studies 
suggest that stimulus novelty is detected in the hippocampus, 
where temporal predictions are matched against current 
sensory stimuli (e.g., [13,14]).  Apart from exciting cells that 
help shape long-term behavior [15], the hippocampal novelty 
signal is also believed to directly trigger the orienting response 
that directs attention towards the novel stimuli [16]. 

Although the utility of novelty-driven exploration and 
learning has been demonstrated in the area of developmental 
robotics on a range of tasks, there exist several unresolved 
issues that prevent its scalability to complex real-world 
environments.  Firstly, it is commonly highlighted that using 
novelty as an intrinsic reward signal will fail in environments 
where there are regions of unlearnable contingencies as the 
agents will be drawn to these areas (e.g., [11,17]).  For 
example, watching passing traffic would be innately 
interesting to such agents, as it is impossible to predict what 
type or color of car would appear next.  To circumvent such 
problems, and consistent with theories of human behavior, it is 
assumed that exploration should occur somewhere between 
situations of complete familiarity (boredom) and complete 
unfamiliarity (e.g. chaos) (e.g., [3,5]).  Although some 

algorithms have been proposed to promote exploration of 
tasks in which learning is actually occurring (e.g., [11,17]), as 
yet, they have not been demonstrated to function in large-scale 
complex environments.  Furthermore, such approaches are 
generally not neuroscientifically inspired, and thus provide 
little insight or explanation as to how self-directed task 
learning occurs in humans. 

In addition to the obvious side-effects of pure novelty-
driven exploration, there exists other related but non-obvious 
emergent behaviors that equally impede the scalability of the 
approach.  One such example, and the main focus of this 
paper, is the phenomenon of oversampling; the fixating of an 
agent on a specific task (at the exclusion of others) until it has 
been successfully mastered (e.g., [5,11]).  Such an 
oversampling of a sensory-motor contingencies may lead to 
the consequence of the action becoming prematurely 
“familiar”, and the action no longer being displayed.  As will 
be demonstrated in this paper, although not necessarily a 
problem for simple environments, oversampling can be 
impede the learning of more complicated tasks.  For example, 
many self-acquired competencies require a form of skill 
scaffolding, in which a simpler task (e.g., moving your hand in 
the direction of your gaze) needs to be performed in a wide 
range of contexts before its utility is discovered (e.g., the 
ability to touch a visible object).  This paper investigates 
(through a series of simulations), the nature and cause of 
oversampling, and provides neuroscientifically motivated 
mechanisms that may provide insights into how the problem 
may be addressed.  Implications as to how the proposed 
solution may be extended to help agents be directed away 
from unlearnable tasks is also discussed. 

 
III.  SIMULATIONS 

 
A.  The Task Environment 

The aim of the project described in this paper is to explore 
the phenomenon of oversampling in self-directed learning, and 
examine the efficacy of using short-term boredom (described 
and justified later) as a potential biologically motivated 
solution.  The environment chosen for this purpose is an 
extension of that described by [11] that was used to explore 
affordance learning using Intelligent Adaptive Curiosity (IAC) 
(an algorithm that uses detected decreases in novelty to 
promote the exploration of learnable tasks).   

The original environment described in [11] was fairly 
simplistic, consisting of an AIBO ERS-7 that learned to 
interact appropriately with an elephant ear toy (that could be 
bitten), a suspended toy (that would oscillate when “bashed”) 
and a second “adult” AIBO (that imitated the sounds made by 
the first robot).  The main limitation of this environment 
however, was that the AIBO was stationary, only being able to 
move its head, front legs and jaw in a set of prespecified 
motions.  Given the types of representations that were used 
and the fact that the objects of interest were also stationary, 
the affordances that were acquired were location specific.  
That is, learned affordances included such facts as that looking 
and “bashing” to the leftmost position would result in 
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oscillation (as this was the location of the hanging object), 
rather than more general location invariant rules of interaction. 
Although oversampling looked to have occurred in this 
environment (i.e. certain actions became prevalent at different 
times during learning), it was not deemed to be a problem, as 
it was interpreted as an indication that the various affordances 
were being explored in order of their complexity (consistent 
with the IAC algorithm). 

For the simulations described in this paper, we extended 
upon the above environment to include a more natural task in 
which affordances would need to be learned in a location 
invariant fashion (as opposed to mapping each affordance to a 
specific motor command).  This was achieved by allowing 
AIBO to turn both its head and body, so that objects could 
appear in any location.  Thus, to acquire the general skill of 
hitting hanging objects, AIBO would need to learn what motor 
action corresponded to hitting in each potential direction of 
current gaze (provided that a hanging object was visible).  
From previous experience, we were aware that such a task 
would be difficult to learn for algorithms that were susceptible 
to the oversampling problem.  Specifically, as oversampling 
promotes the exploration of only specific actions at a time at 
the exclusion of others, it was predicted that all the actions 
corresponding to a general skill (such as hitting a hanging 
object in any direction) would be unlikely to be exhibited 
together.  Thus it was postulated that such an environment 
would allow us to examine the problem of oversampling in 
self-directed learning and explore potential solutions.  

The extended environment that was used for our simulations 
consisted of an AIBO ERS-7 placed on a swivel chair that it 
could turn either left or right, with all relevant objects being 
placed at arms length (shown in Fig. 1).  The objects that the 
robot could interact with included a hanging toy that oscillated 
when “bashed”, a piece of foam at eye level that could be 
bitten, and a “Dora the Explorer” musical toy that would play 
a tune when one of its buttons was pressed.  Actions 
performed by the robot were sequential, chosen from fourteen 
preset motor commands: the AIBO could face a random 
direction (by swiveling left or right, or turning its head in one 
of 6 directions); it could perform a bashing movement with its 
front legs in one of six directions; it could perform a button 
pressing motion in one of six directions; or it could bite in the 
direction it was facing.  These specific actions allowed the 
robot to randomly explore its environment, and perform 
movements that would allow it to interact with the various 
objects. 

The sensory inputs to the system were chosen to allow the 
AIBO to acquire enough information about the environment 
and its internal state to select an appropriate action, and to 
detect what effect (if any) the action had on the environment.  
The inputs included AIBO’s current head position (of which 
there were 6 preset angles), whether or not a green, pink or 
yellow object was visible (corresponding to the hanging toy, 
the bitable foam and the musical toy respectively), whether or 
not its hand was seen moving, whether or not there was 
additional motion in the environment, whether or not an object 
was bitten on the last iteration, and whether or not a tune was 

heard.  As will be described later, the ability for the AIBO to 
see its own hand moving was included to promote actions in 
the direction of its gaze, facilitating affordance learning (as it 
is only when the AIBO was facing an object that the effects of 
its actions on the object would be detected).  The second 
motion detector was used to detect the presence of an 
oscillating object in its field of view (i.e. caused by the 
hanging object), but would also be activated whenever AIBO 
moved its head (as this would result in a major change in the 
visual field).   

 
B.  The Agent Controller Model 

The environment chosen for the simulations was selected so 
that novelty could be used as an appropriate reward signal, 
allowing the use of relatively simple architectures and 
algorithms for learning.  Given the specific environment, the 
only action that would lead to an unpredictable consequence 
was that of turning, as the representations used did not allow 
predictions as to what objects, in any, would become visible as 
a result.  As random exploration is a desirable default behavior 
for the simulation, such residual “novelty” is beneficial rather 
than detrimental.  Thus rather than using a fairly complex 
algorithm such as IAC that promotes the exploration of 
learnable regions of the problem space, a more simple 
approach using novelty as a reward can be used so that the 
root cause and potential solutions to oversampling can be 
studied in isolation. 

Consistent with previous “curious” model-building control 
systems (e.g., [8,11]), the agent used in our simulations 
contained two separate learning modules: an action selection 
module (that selects an appropriate action given the current 
sensory input) and a prediction machine (that generates an 
expectation of the resulting sensory input).  Similar to [8] both 
the action selection module and prediction module were 
implemented within a common three-layered neural network, 
taking a sensory input vector and action vector as input (see 
Fig. 2).  The aim of the prediction module was to predict the 
resulting sensory state given the current state and action being 
performed.  For example, given that there was a hanging 
object in view, the network would learn that hitting in the 

Fig. 1.  The Task Environment.  An AIBO ERS-7 is mounted on a swivel 
chair surrounded by a hanging toy, a bitable piece of foam and a “Dora 
the Explorer” musical toy that it can learn to interact with.  
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direction of the current head position would cause the object 
to oscillate.  After each action was performed, the actual 
resulting sensory state was used to train the network to refine 
its predictions. 

In contrast to the prediction module, the action selection 
module output a single value that reflected the utility of 
performing a specific action given the current sensory state.  
In selecting the next action to perform, all 14 of the possible 
actions were fed in series through the module, with their 
corresponding utilities being calculated.  The next action to 
perform was selected using Softmax action selection with a 
Boltzman Distribution [18].  This procedure adds Gaussian 
noise to each of the selection strength values, choosing the 
action with the highest resulting value.  Using this approach, 
actions occur with a probability that is a graded function of 
their estimated utility.  After each action was performed, the 
action selection module was trained to better predict the error 
associated with the given action in the prediction module (the 
highest absolute difference between the predicted and actual 
sensory states on any one feature).  Using this discrepancy as a 
novelty signal, the agent gradually became biased to explore 
context-specific actions for which a mental model had not yet 
accurately formed, leading to the active exploration of the task 
environment. 

Specifically, the input layer of the implemented network 
consisted of a sensory input array containing 9 units and an 
action pathway containing 14 input nodes (see Fig. 2).  The 
sensory input array consisted of 6 nodes representing the head 
position (using a local coding scheme), with the remaining 3 
nodes being the binary feature detectors for each type of 
object.  The action array contained a single node for each of 
the 14 actions that the AIBO was able to perform.  When the 
“random exploration” action was chosen, one out of 8 possible 
motions would result with equal probability, corresponding to 
a swivel in the chair either left or right, or a head turn to one 
of 6 angles.  The output of the prediction pathway was a 
vector containing the 7 binary features representing external 
properties that may be affected by the action, including the 
presence of objects at the new location, and the generation of 
noise or motion. To simplify the learning process, and to 
better understand the representations learned by the network, 
the input to hidden layer weights were fixed to bind various 

variables together in a way that would allow the task to be 
learned within a single layer of trainable weights (i.e. the 
hidden to output weights).  Firstly, there were a set of hidden 
nodes corresponding to the outer product of the complete 
network input vector with itself.  This set of nodes thus 
included a binding of head and hitting position, of which there 
were 36 unique combinations (i.e. each combination being 
represented by a unique node).  A portion of these nodes 
(representing combinations in which the hitting action is in the 
same direction as the head) could be used to directly predict 
that movement will occur in the visual field (i.e. the hand 
would be seen), thus providing a useful representation to learn 
this mapping.  To facilitate the learning of object affordances, 
a similar representation was used, consisting of the outer 
product of the input vector with itself and the object 
identification vector (containing binary object detectors for the 
three possible objects).  Thus, there was unique node 
representing when a particular hitting action paired with a 
head position occurred in the presence of a specific object.  
Such representations contain nodes that could be directly used 
to predict if oscillation, noise or successful biting would 
occur.  Of course however, such representations also yield 
many features that are not useful for predicting the occurrence 
of object interactions (such as nodes corresponding to when 
actions and head movements are uncoordinated), thus still 
requiring a high degree of learning to master the task. 

As the input to hidden weights were fixed, the trainable 
region of the network consisted of a layer of weights joining 
the hidden unit representations with the output layer.  This 
pathway was implemented as a single layered neural network 
using standard sigmoid activation functions, and training 
algorithms.  It should be noted however that the biases on the 
outputs of the “prediction module” were initially preset to a 
value of -3 (plus Gaussian noise), resulting in a predicted 
output of all sensory features close to 0.  This reflected the 
fact that the detection of the chosen features (such as 
movement or specific objects) are rare and should be 
considered initially “novel.” 

 
C. Simulation 1: Learning Hand-Eye Coordination 

The aim of the first experiment was to explore the efficacy 
of the simple agent at learning the given tasks.  As mentioned 
earlier, due to the oversampling problem, it was predicted that 
general skills (such as hitting objects irrespective of angle) 
would be unlikely to emerge.  Instead, it was postulated that 
different actions associated with a skill would be explored and 
exhibited at different times. 

The general environment chosen for the set of simulations is 
interesting in that main affordances that can be learned (i.e. 
hitting, biting or pressing corresponding objects), are 
somewhat needle-in-a-haystack type problems.  That is, for 
example, a hanging object lies in roughly 1/16 of the circular 
area that the AIBO can face, with there being a 1/12 chance 
that a random hitting action will be appropriate (i.e. 
coordinated with the height and direction of the object).  Thus, 
in this specific case, a successful interaction with the object 
will only occur in 1/192 of random trials (which of course 
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Fig. 2.  The Neural Network Controller.  Each separate input or action is 
represented by a separate network node (except where specified above). 
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would be far less probable if one were to scale up the 
environment).  In order to facilitate the learning of such tasks, 
other subtasks were added that acted as a form of scaffolding, 
rewarding behaviors that were useful in acquiring the more 
difficult tasks. 

The main subtask that was added to facilitate learning was 
that of hand-eye coordination, biasing the emergence of 
hitting or pressing motions in the direction of current gaze 
(irrespective of the presence or absence of an object).  With 
such a bias present, the probability of successful interactions 
with a hanging object are greatly increased (as the robot would 
be likely to attempt either pressing or hitting in the correct 
direction), facilitating affordance learning.  Such scaffolding 
can be readily seen in human infants, where many initial 
behaviors do not have a direct effect on the world, but are 
useful in learning more complicated tasks.  For example, 
newborn infants have been shown to spend up to 20% of the 
time touching their hands to their face [19], with such 
exploratory motions being viewed as a way to learn to control 
the dynamics of their bodies [20].  The bias for learning hand-
eye coordinated movements was implemented by using a 
feature that would detect the movement of the hand as a result 
of the previous action.  As hitting in the direction the robot 
was facing would lead to the surprising appearance of the 
hand, this action would be reinforced.  

In the first experiment described below, the aim was to 
explore the efficacy of the agent at learning the simpler task of 
hand-eye coordination, before scaling up to the more difficult 
environment.  For this experiment, objects were placed just 
out of reach (so that affordances would not be learned), with 
the only actions permitted being hitting (i.e. in one of 6 
directions), and random turning.  For this and the following 
experiments, a relatively slow learning rate of 0.01 was used 
to train the prediction network (to prevent catastrophic 
interference from recent events), and a faster rate of 0.1 to 
train the action selection network (as this is simply attempting 
to mirror the error from the first network).  A temperature 
value of 0.03 was used for the Softmax selection, resulting in 
a strong bias to exhibit actions with a higher associated error. 

Over 100 runs of 15000 iterations, using the simple 
architecture described earlier, the simulation consistently 
demonstrated oversampling, with specific behaviors being 
acquired and exhibited in a serial rather than parallel manner.  
As shown in Fig. 3 (in terms of the selection strength of 
various actions for an example trial), although initial actions 
were random, random head turning was quickly selected for as 
it would result in the “novel” feature of “movement being 
seen”.  This action was performed at the exclusion of other 
actions from iterations 300-1000.  Once the consequence of 
this action was well predicted by the network however, the 
selection strength dropped, allowing the exploration of other 
actions.  Rather than hand-eye coordination being learned in 
parallel for all directions, the task was learned in series, 
focusing on a particular angle at a time.  For example, 
between iterations, 1500-1800, AIBO repetitively hit in 
direction 5 (the direction that it was facing), preferring this 
action over all others.  Once the consequence of this action 

was well predicted, the system then focused on coordinating a 
new angle.  As shown in figure 4, the above pattern of 
acquisition was typical, with the agent only ever performing 
coordinated hitting across 40% of angles at a time (collapsed 
across 100 trials). 

The selective mastering or exploration of one task at a time 
found in our simulations is not uncommon in the literature, 
being reported in many developmental robotics simulations 
(e.g., [5, 11]).  Rather than being a noted problem however, 
such oversampling has been interpreted as a form of staged 
learning that could potentially account for human skill 
acquisition [11]. However, in such simulations, each 
affordance to learn mapped directly onto a single action (for 
example, in [11], hitting and looking in the leftmost direction 
would move the hanging object).  In contrast, in our 
simulations, learning a general skill or affordance requires the 
mapping of a number of distinct motor commands.  For 
example, to successfully exhibit general hand-eye 
coordination, one must learn the motor commands associated 
with looking in each direction.  As highlighted by our first 
simulation, if angles are learned and mastered in a serial 
manner, the overall skill will never emerge.  Thus, the 
phenomena of oversampling does not seem to be a true 

Fig 4. Overt behavior of the simple agent averaged across 100 trials.  
Coordinated hitting only occurs synchronously in a couple of 
directions between iterations 3000-6000, with the system then 
regressing to random behavior (uncoordinated hitting). 

Coordinated 
Hitting Uncoordinated 

Hitting 

Fig 3. Selection strength of various actions demonstrating a serial 
exploration of competencies.  After an initial phase of head turning, 
coordinated hitting became temporarily strengthened in a number of 
different directions. 

Head Turning Hit 5 Hit 1 
Hit 6 

Hit 2 
Hit 3 
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reflection of human learning, but instead may actually be 
detrimental to skill acquisition. 

 
D. Simulation 2: The Implementation of Boredom 

As mentioned in [5], the nature of the oversampling 
problem is quite straightforward to understand.  Initially, all 
salient events (such as seeing a hand or causing an object to 
oscillate), will be unpredicted.  Each time such an event 
occurs, the corresponding action will be reinforced to occur 
more frequently in the given context (i.e. the output of the 
action selection network will be trained to give a higher value, 
to more closely match the prediction error). This increase in 
selection strength will itself increase the rate of sampling of 
the behavior, bootstrapping the process until the action is 
performed at a high frequency (potentially at the exclusion of 
many other important behaviors).  Once the consequence of 
this action is well-predicted however, the intrinsic reward 
once again diminishes, with the agent getting “bored” of 
exploring this sensory-motor contingency, moving on to other 
tasks. 

Apart from tasks such as ours in which oversampling 
prevents the exhibition of general competencies, oversampling 
in a developmental agent may be problematic for several other 
reasons.  As stated previously, oversampling is the temporary 
fixation on a task at the exclusion of others until it is 
completely mastered.  However, in the real-world there are 
many tasks which cannot be completely mastered (such as 
predicting the color of the next car that will appear out of a 
tunnel).  For such chaotic behaviors, the error in prediction 
will always be high, which may result in an agent getting 
permanently stuck in the exploration of the task.  A separate 
problem is that, in neural networks at least, if learning 
episodes are not interleaved, catastrophic forgetting of older 
information can occur [21].  Thus in such systems, it is likely 
that previously learned knowledge about sensory-motor 
contingencies may be corrupted if it is acquired in series and 
not consistently reexamined over time. 

 In order to address the above limitations, what is required is 
an additional feature of the learning agent that explicitly 
prevents oversampling and promotes the exploration of many 
activities in parallel.  Our suggested approach to achieving the 
parallel acquisition of tasks is motivated by studies of human 
attention and perception that demonstrate that attention itself 
is directed toward novel (as opposed to recently experienced) 
stimuli (e.g., [16,22]).  For example, in infant “habituation” 
experiments, when repetitively shown pairs of pictures, infants 
will spend more time looking at new as opposed to recently 
experienced images [23].  There is much evidence to suggest 
that this novelty signal is generated in the hippocampus, where 
fast context-dependent learning can occur [24].  Relevant to 
our study however, is that the fact that stimuli in a given 
context become rapidly familiar (over a few presentations), 
no-longer eliciting the novelty signal [25].  This habituation is 
viewed to be short-lived and context dependent [16].  It is our 
belief that such short-term boredom that helps direct attention 
away from the current stimuli, may be a viable and 

psychologically plausible mechanism for overcoming the 
phenomena of oversampling. 

The aim of this paper is not to argue the cause or loci of 
temporary attentional habituation, but rather, to explore the 
utility of such habituation in the prevention of oversampling,  
Simulation 2 examines the architectural addition of attentional 
habituation into the simple controller network described 
earlier.  In implementing such habituation, a number of 
assumptions are made: firstly, that habituation of the novelty 
response is fairly short lived, and secondly, that habituation 
occurs to recently experienced patterns of sensory activity 
rather than individual features (for example, a yellow banana 
would still be viewed as novel and interesting, following 
inhibition to a yellow ball).   

In the following model, attentional habituation was 
implemented using a simple mechanism.  Firstly, the sensory 
array (a binary vector) for the last 5 patterns was held in 
memory (i.e. a short-term storage of information).  The 
probability of looking away (i.e. for attention to be directed 
elsewhere), was calculated as a linear function of short-term 
familiarity of the current sensory input.  Specifically, if the 
current sensory pattern occurred once in short-term memory, 
there was a 30% chance of looking away, if it occurred twice, 
there was a 60% chance, etc. (reaching a threshold of 100% 
for four or more occurrences).  Redirecting attention away 
from the current stimuli was achieved through the triggering 
of the “random exploration” action leading to either random 
head movement or the turning of the robot on the swivel chair. 

Apart from implementing a form of short-term boredom to 
promote exploration, a second modification was made to 
prevent the system regressing to random behavior.  That is, in 
the previous simulation, the intermittent reinforcement of 
seeing unpredicted objects during random exploration was not 
sufficient for this action to be significantly strengthened.  As a 
result, after coordinated hitting was explored, the system 
would once again regress to uncoordinated hitting (see Fig. 4).  
To circumvent this problem, and allow intermittent rewards to 
better shape behavior, different learning rates on action 
selection strengths were used for when the actual sensory error 
was higher or lower than what was predicted by the action 
selection network.  Specifically, when the actual error was 
higher than predicted (corresponding to a “surprising event”) 
the action would be highly reinforced (by using a learning rate 
of 0.1), whereas if the error was lower than expected, the 
action would more slowly decay (using a learning rate of 
0.01).  This differential learning strategy used to promote 
intermittently reinforced behaviors was also biologically 
motivated, reflecting the fact that dopamine neurons send out 
a strong positive signal at the presence of an unpredicted 
reward, and a weak negative signal when an anticipated 
reward does not occur [12]. 

Apart from the adaptations described above, using exactly 
the same parameters and method for the first experiment, the 
simulation was retested. As can be seen in Fig. 5 (showing 
overt behavior collapsed across 100 simulations), 
oversampling no longer occurred, with coordinated hitting 
being learned across all angles.  However, over time, as would 
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be predicted, the consequences of coordinated hitting became 
well-learned, with the error (and related selection strength) 
decreasing over time.  As a result, this behavior diminished.  
Unlike the previous experiment however, random exploration 
was reinforced, becoming the default action over time. 

 
E. Simulation 3: Scaffolded Learning 

The aim of simulation 3 was to explore the self-acquisition 
of affordances, using novelty as a reward signal.  For this 
simulation, all of the objects specified earlier (i.e. a hanging 
toy, a bitable piece of foam, and a musical interactive toy) 
were added to the environment.  As the objects were only 
located in one location in AIBO’s circular environment, 
random movement (i.e. head or body rotation) would result in 
a small probability that each object would be visible.  As 
mentioned earlier, to facilitate learning of this needle-in-a-
haystack type problem, hand-eye coordination was reinforced 
(through the initially unpredicted appearance of the hand), so 
that the degrees of exploration would be reduced when an 
object was present.  That is, when an object was present, the 
robot would be biased to either attempt a pressing or bashing 
object in the direction of its gaze as opposed to the other 5 
possible angles.  Thus, it was postulated that there would be 
an increased probability that the behavior would be 
appropriate for the object.  In contrast to pressing and bashing 
motions, biting did not require scaffolding, as the action was 
automatically coordinated with current gaze, and as such was 
an easier task to master. 

As show in Fig. 6 (depicting the average behavior across 
100 trials), using the same parameter settings as the previous 
experiment, scaffolded learning occurred naturally in the 
system without any additional modifications.  As seen in this 
figure, the more basic task of coordinated hitting was learned 
quickly and early, but started to extinguish around 12000 
iterations.  In contrast, when an object was in view, 
appropriate hitting or pressing actions (which were initially 
facilitated by the coordinated hitting behavior), continued to 
be promoted even up to iteration 50000.  During this phase, 
the biting affordance was also displayed heavily, although 

peaking earlier, due to the relative simplicity of the sensory-
motor contingency being learned. 

In summary, this simulation exhibited distinct phases of 
behavior, firstly, learning to coordinate hand and head motions 
(irrespective of whether or not an object was present), and 
then later exhibiting only object appropriate actions (i.e. 
exploring the environment until an object was detected, and 
then interacting with it directly until sensory inhibition forced 
the agent to move on).  Such a phase of object appropriate 
interactions was temporary however, as the consequences of 
each action could be accurately learned over time, leading to a 
final stage of exploratory behavior in which all objects were 
disregarded. 
 

IV: DISCUSSION 
 
In self-directed learning, an agent actively explores the 

environment in order to build an accurate world model and to 
develop task-independent competencies.  Much 
neuroscientific and psychological evidence has been presented 
in the literature to suggest that novelty may act as an intrinsic 
motivator that facilitates the process of skill acquisition by 
motivating an agent to explore aspects of the environment for 
which an accurate mental model has not yet formed.  As 
mentioned in this paper however, novelty by itself is not 
sufficient to explain the acquisition of competence, as it may 
lead to several emergent behaviors that impede learning.  For 
example, exploration driven by novelty can lead to a form of 
bootstrapping in which a specific action is oversampled at the 
exclusion of others.  Likewise, novelty seeking may cause the 
agent to prefer chaotic and unpredictable regions of its task 
environment.   

What is evident in current research (both in the practical 
application of developmental robotics and in understanding 
biological systems) is that mechanisms that promote the 
exploration of only moderate levels of novelty are required.  
This paper attempts to propose a solution to the various 
problems associated with novelty-driven search through  
gaining inspiration from psychological and neuroscientific 
research.  In particular, we argue that much insight may be 

Fig 6. Scaffolded task learning.  After an initial phase of coordinated 
hitting, this behavior regresses to random exploration around iteration 
12000, but continues hitting when objects are present. 

 

Hit when object present 

Turn 
Hit when no object present 

Turn when no 
object present 

Fig 5. Parallel exploration of competencies across 100 trials.  After an 
initial phase of head turning, coordinated hitting was exhibited in all 
directions. 

 

Coordinated hitting in all directions 

uncoordinated hitting  
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gained from understanding the role of the hippocampus on 
attention and selection, and how dopamine neurons encode 
rewards and process intermittent reinforcement.  In particular, 
it is evident that there are short-term inhibitory effects on 
attention to recently experienced stimuli that may help prevent 
an agent from oversampling the interactions with a particular 
object or environment.  In this paper we demonstrate that a 
relatively simple account and implementation of this process 
can lead to the scaffolded learning of competencies that are 
otherwise unlearnable in agents of the similar complexity. 

With respect to possible extensions to this work we note that 
there exist other aspects to the way in which the brain guides 
attention that may also be highly relevant in understanding 
developmental learning.  In particular, as argued by [20], there 
may be two quite distinct pathways that guide attention: a 
pathway via the hippocampus that directs attention towards 
novel stimuli (habituating rapidly as emulated in our 
simulations), and a second pathway through the cortex that 
draws attention towards familiar stimuli. As a result of these 
parallel pathways, the brain may be biased to attend to novel 
aspects of familiar situations and environments.  Thus, it may 
be the case that understanding the interactions between these 
various pathways may hold the key to understanding how to 
bias an agent to explore only moderate levels of novelty; an 
essential behavior in the general acquisition of competence. 
This proposal is in contrast with approaches such as [11] and 
[17] in which regions of the environment in which learning is 
predicted to be likely are explicitly calculated and used as a 
reinforcement signal; a mechanism for which no direct neural 
mechanism has been identified. 

In conclusion we argue that possible solutions to current 
salient problems in the area of developmental robotics might 
be found through a greater understanding of the role of the 
cortex and hippocampus on directing attention, and the role 
that the dopaminergic system plays in the processing of 
rewards and novel stimuli. 
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