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Abstract – We used a computational approach to examine three questions
at the intersection of developmental biology and evolution: 1) What is the
space available for evolutionary exploration for genetic regulatory networks
(GRNs) able to solve developmental patterning problems? 2) If different
GRNs exist that can solve a particular pattern, are there differences between
them that might lead to the selection of one over another? 3) What are the
possibilities for co-opting GRN subcircuits or even entire GRNs evolved to
solve one pattern for use in the solution of another pattern? We used a Monte
Carlo strategy to search for simulated GRNs composed of nodes (proteins)
and edges (regulatory interactions between proteins) capable of solving one
of three striped cellular patterning problems. These GRNs were subjected to
a knockout procedure akin to gene knock-outs in genetic research. Knockout
was continued until all individual network components of the reduced GRN
were shown to be essential for function. This GRN was termed irreducible.
We found many different unique irreducible GRNs that were able to solve
each patterning problem. Since any functional GRN must include an irre-
ducible GRN as a core or subgraph, the space for evolutionary exploration
of pattern-forming GRNs is large. Irreducible GRNs that solve a particular
pattern differed widely in their robustness—the ability to solve a target pat-
tern under different initial conditions. These differences may offer a target
for selection to winnow out less robust GRNs from the set of GRNs found
in nature. Finally, subgraph isomorphism analysis revealed great potential
for co-option during evolution. Some irreducible GRNs appear in their en-
tirety within larger GRNs that solve different patterning problems. At much
higher frequency, subcycles are shared widely among irreducible GRNs, in-
cluding those that solve different patterns. Irreducible GRNs may form the
core elements of GRNs found in biological systems and provide insight into
their evolution.

Keywords – Genetic regulatory network, GRN, subgraph isomorphism, co-
option, evolutionary dynamics, modularity, development, pattern formation,
subcircuit, self-organization.

I. INTRODUCTION

Genetic regulatory networks (GRNs) that control develop-
ment are being deciphered through experimental approaches
propelled by advances in genomics and systems biology [1].
These GRNs for development are complex and robust, gener-
ating reproducible outputs over a broad range of initial condi-
tions [2]. Common themes in network architecture and reg-

ulatory logic are beginning to emerge (see [3], [4], [5], [1]),
including the use of evolutionarily conserved regulatory mod-
ules (kernels) and the existence of smaller regulatory circuits
that have been repeatedly co-opted for different ends in devel-
opment [1].

Extant GRNs in nature may not be the only ones capable of
controlling a particular aspect of development. Instead, GRNs
in nature may represent the one solution that was stumbled
upon in the evolutionary history of lineage. Once the solution
was “discovered,” it may have been frozen in place. The high
degree of conservation of many GRN architectural elements in
animal development suggests this possibility—but only if there
are other solutions open for random evolutionary processes to
discover.

We are interested in learning the dimensions of the develop-
mental GRN solution space for evolutionary exploration. We
approached this question by searching for GRNs that would
solve three different patterns that resemble the striped pat-
terns of pair-rule gene expression seen in the development of
Drosophila and other insects (see Fig. 1). Building on our ear-
lier work [6], we used a Monte Carlo strategy to identify net-
works that solve the three striped patterns. A genetic knockout
algorithm, similar in logic to the use of targeted gene knock-
outs to understand biological GRNs, was employed to remove
network components one-by-one until an irreducible network
capable of solving the pattern was discovered.

Our results suggest that the solution space for evolutionary
exploration is large. We find that each of the patterns can be
solved by many different irreducible GRNs. We also deter-
mined that there are significant differences in the robustness
of the networks. These robustness differences may generate
a strong selective pressure capable of winnowing out less ro-
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bust GRNs. Finally, we show that there are many possibilities
for evolutionary co-option of GRN subcircuits or even entire
GRNs to solve new patterning problems.

Fig. 1. Striped gene expression patterns in early Drosophila development.
Odd-skipped (green) and even-skipped (red) expression domains at cleavage
cycle 14. The left panel shows the nearly complete embryo; the right panel is

a closer view where each point is a cell nucleus. Image courtesy of Dr. J.
Reinitz. Mt. Sinai School of Medicine.

II. APPROACH
Our approach was to model GRNs composed of nodes (pro-

teins) connected by a variety of edge types (regulatory interac-
tions between proteins) that simulate many of the regulatory
interactions that occur within and between embryonic cells. In
contrast to more explicit GRN models that consider the interac-
tion of transcription factors with cis-acting control sequences
of regulatory genes ([7], [8]), we chose a more abstract level
of modeling that only considered interactions between the reg-
ulatory gene products ([9],[3]).
A. GRN Space Representation

In this framework, GRNs can be described as a graph, where
each node represents a protein’s expression level and each edge
represents a regulatory interaction between proteins. A protein
is influenced when its production or degradation is controlled
as a function of another protein’s expression levels. Since pro-
duction and degradation are defined as rates of change, the
GRN is naturally modeled as a set of coupled differential equa-
tions ([8], [9], [10], [3]). Fig. 2(a) shows an example of a 3 pro-
tein, 4 edge GRN represented as a graph and Fig. 2(f) shows
the same GRN as a set of coupled differential equations.

Table I illustrates the edges that represent protein interac-
tions considered in this study. An edge j from node P1 to node
P0 contributes to the rate of change of P0 as a weighted expres-
sion of P1. Each edge j has a weight ωj that is the strength of
the influence of j (0.0 ≤ ωj ≤ 1.0) on the change in P0. Each
cell σ maintains its own set of protein expression values Pi(σ).
Edges implement intracellular interactions when P0 and P1 are
in the same cell and intercellular interactions when P1 is from
other cells.

In our model, pattern formation is over a 2D sheet of regu-
lar hexagonal cells (see Fig. 2), each operating the same GRN.
Within an individual cell, five simple intracellular protein in-
teractions are modeled (see Table I): A and B implement di-
rect up and down regulation [10], C and D control to the same
or opposite of an expression value [11], or E which imple-
ments a simple quadratic regulation used in reaction-diffusion
models [12] and [13]. Limiting functions f(x) = x2

(1+x2) and

(a) GRN Graph (b) Target Pattern

(c) Output Expression (d) k-means Clustering

(e) GRN inter-cell communication

(f) Coupled differential equations
dP0(σ)

dt = ω0(g(P2(σ))−P0(σ))
dP1(σ)

dt = ω1(f(P0(nW (σ)))−P1(σ))−ω2P2(σ)
dP2(σ)

dt = ω3(f(P1(nW (σ))−P2(σ))

Fig. 2. Example of an irreducible GRN (a) found by our system for solving
the 2-skip-1 target pattern (b). The letters on the edges of (a) indicate edge

types shown in Table I. The output protein expression levels are shown in (c).
Panel (d) shows the result of k-means clustering of the output expressions

levels from (c). The GRN mapped onto a strip of cells is show in (e) and its
coupled differential equations are shown (f).

g(x) = 1− f(x) are employed in C and D to model saturation
effects in protein production and degradation [11].

Over the sheet of cells, intercellular proteins influence
each other through both long-range and short-range signaling.
Edge F implements long-range signaling through diffusion [8].
Edges G-J implement short-range signaling, where a cell can
sense protein expression levels in directly neighboring cells
across contacting membranes as in [11], [2] and [3]. Edges G-J
enable a cell to signal to a specific geometric neighbor cell us-
ing nS ,nW ,nN ,nE , which return the cell directly neighboring
to the south, west, north and east respectively. Such directional
signalling is used in the embryo to build internal segment bor-
ders [2] and relies on sensing anterior-posterior, dorsal-ventral
and right-left polarity.

In [3] the definition of the cardinal directions was unam-
biguous because a sheet of square cells was modeled. In this
work with hexagonal cells, each cell has two neighbors in to
the north and two to the south. To avoid ambiguity, north-
south signalling occurs only with the single cell to the left. This
formalism enables the 90 degree rotation of both patterns and
GRNs to be well defined.

A GRN may have p proteins and e edges, where p ≤ e ≤
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TABLE I
THE POSSIBLE EDGES FOR A GRN

Label Description Definition

A P0 direct expression byP1
dP0(σ)
dt

= ωjP1(σ)

B P0 direct degradation byP1
dP0(σ)
dt

= −ωjP1(σ)

C P0 driven to same asP1
dP0(σ)
dt

= ωj(f(P1(σ))−P0(σ))

D P0 driven to opposite ofP1
dP0(σ)
dt

= ωj(g(P1(σ))−P0(σ))

E P0 quadratic regulation byP1
dP0(σ)
dt

= ωj(P1(σ)2 −ψj)

F P0 Diffusion with zero boundary condi-
tions

dP0(σ)
dt

= ωj
∂2P1(σ)
∂x2

=∇P1(σ)

G :J P0 driven to same as geometric neighbor
value ofP1 ; with i ∈ N,W,S,E

dP0(σ)
dt

= ωj(f(P1(ni(σ)))−P0(σ))

d(p2−p), where d is the number of edge types (d = 10). In this
work, GRN graphs are mostly sparse, with e� d(p2 − p), in
contrast to the fully connected networks of [10] and [3] where
e = d(p2−p). There are depep2p(e−p) possible GRNs, where d
is the number of edge types. In this study d = 10 (see Table I).
Fig. 2(a) shows an example GRN with 3 proteins and 4 edges
discovered by the knockout search method described in the fol-
lowing section. To determine the coupled differential equa-
tions of a GRN, the equations of each edge are composed, as
illustrated in Fig. 2(f). To solve a GRN implemented in a sheet
of q cells, each cell’s protein values are first set from a uniform
random distribution [0.5,1.0], then the p× q differential equa-
tions are numerically solved using the Runge-Kutta method
with dt = 0.05 until a fixed point is achieved (where the av-
erage update error ≤ 10−8 per cell). Fig. 2(c) illustrates the
output expression pattern formed when the differential equa-
tions in Fig. 2(f) are solved over a sheet of 15× 15 cells. In
this panel, the color of each cell is determined by mapping P0

to the red level, P1 to green and P2 to blue.
B. Pattern Formation and GRN Evaluation

In this work we study the space of GRNs that can solve a
small set of striped patterning problems similar to the patterns
observed in early Drosophila development. Fig. 1 shows an ex-
ample from Drosophila development and Fig. 2(b) shows one
of our model target patterns, referred to as a 2-skip-1. Other
patterns we studied are 1-skip-1 and 2-skip-2.

To quantify how well a GRN solves a particular target pat-
tern, the protein expression levels that result from solving the
coupled differential equations must be mapped to distinct cell
types using a combinatorial code. Then the assigned cell types
are matched against the cell types given in the target pattern,
and a count made of the mismatched cells.

Combinatorial codes partition the p-dimensional protein
spectrum into distinct regions, each corresponding to an as-
signed cell type [14]. Combinatorial codes enable each cell’s
fate to be established autonomously and are defined as combi-
nations of easily distinguishable thresholds of protein values.
A similar logic is used in the readout of the Hox gene combi-
natorial code to establish segment identity [15].

In this work, k-means clustering is used to discover a com-
binatorial code that best partitions the cells into k-types, where
k is the number of types in the target pattern. Each partition in
k-means clustering is represented as a centroid P̄j ,1 ≤ j ≤ k

Fig. 3. An example tree created by running the knockout method show in
Table II on a 2-Skip-1 GRN discovered by Monte Carlo Search. Each GRN
explored is shown with an example expression pattern. Nodes with light red

backgrounds represent failure, where the pattern cell mismatch percent
exceeds the 10% threshold.

such that the intra-cluster distance is minimized and the inter-
cluster distance maximized. A combinatorial code is extracted
from a set of centers by greedily picking proteins whose values
best discriminate the centers by using an information gain mea-
sure. Only proteins whose values are well separated are picked.
If such a set of proteins cannot be identified, a combinatorial
code cannot be found and the pattern evaluator fails. A suc-
cessful example is given in Fig. 2(d), with k = 2 since there are
two types in the target pattern. Two clusters are easily discrim-
inated by defining the combinatorial code: IF (P0(σ) > 0.5
and P1(σ) < 0.5) THEN σ is type one (red cells in Fig. 2(d))
ELSE σ is type two (green cells).

Each cell’s assigned type is compared with the type given in
the target pattern and a tally is made of misplaced cells. If the
target pattern has alternative rotations (or phases), all rotations
are tried and the best match is used as the mismatch percent.
Comparing Fig. 2(b) with Fig. 2(d) gives a mismatch of 2 cells
in 225 or 0.89%. To give an accurate evaluation, the GRN is
solved five times under different random initial protein condi-
tions and the mean mismatch percent returned. Five random
repeats were used in this study to minimize computation time
while serving as a reasonable estimate of the true mismatch
value. In this study a threshold value of 10% misplaced cells
is considered an acceptable solution since the output patterns
scoring below this threshold are clearly recognizable target pat-
terns.

C. Irreducible GRNs

An irreducible GRN is defined as a GRN where the removal
of any one component (protein or edge) results in loss of func-
tion. In this study, loss of function is the inability of the GRN

181

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



TABLE II
ALGORITHM DEFINING THE KNOCKOUT PROCEDURE

Algorithm Knockout(P,E,T )
Input:P = {p1,p2, . . . ,pk}, GRN proteins

E = {e1,e2, . . . ,eq}, GRN edges
T = Target cell pattern

Output: (P̃ , Ẽ), P̃ ⊆ P,Ẽ ⊆ E (a Knocked-Out GRN)
Begin

//Protein Knockout
for each pi ∈ P

P ′← P −{pi}
Ê←{ej ∈ E|ej connects to pi}
E′← E− Ê
if Mismatch(T,Solve(P ′,E′))≤ 10%
then return Knockout(P ′,E′,T )

//Edge Knockout
for each ei ∈ E

E′← E−{ei}
P̂ ←{pj ∈ P |pj is isolated w.r.t E′ }
P ′← P − P̂
if Mismatch(T,Solve(P ′,E′))≤ 10%
then return Knockout(P ′,E′,T )

return (P,E)
End.

to produce a target pattern meeting the 10% mismatch thresh-
old. To identify irreducible GRNs a knockout procedure, sim-
ilar to those used in a genetic approach to analyze biological
GRNs, was employed to reduce the size of GRNs found by a
Monte Carlo search of the GRN space (see [6] for details). This
knockout procedure starts with a GRN that accurately solves
one of the target patterns and identifies a smaller subgraph of
the original GRN that still adequately solves that same pattern.
Each protein and edge successfully deleted is termed an extra-
neous component.

Consider the knockout tree in Fig. 3. The parent GRN has
5 proteins and 12 edges representing the proteins and the inter-
actions among them, respectively. The knockout procedure is a
two step process. First, the proteins are removed (knocked-out)
one-by-one, then the edges are knocked-out one-by-one. At
every node in the knockout tree, every component of the par-
ent GRN is knocked-out one-by-one, and each resulting child
GRN is measured for its fitness with respect to the target pat-
tern. If a child GRN’s mismatch percent is less than or equal
to the threshold value, then it becomes the parent GRN and is
submitted to another round of the knockout procedure. Only
the first successful child GRN is pursued for further knockout.
Knockouts are repeated until none of the child GRNs meets the
threshold criteria. In this case the parent GRN is considered
to be the irreducible GRN. In this example shown in Fig. 3,
2 proteins and 8 edges were found to be extraneous, result-

ing in an irreducible GRN with only 3 proteins and 4 edges.
During the knockout of this GRN, which produces a 2-skip-1
pattern, we noted that one of the failure GRNs accurately pro-
duced a 1-skip-1 pattern. This indicates a close relationship
among GRNs for similar stripped patterns.

The knockout algorithm is formally defined as a greedy
depth-first search and is given in Table II. Two sub-routines
are called: Solve(P,E) which initializes the proteins and then
uses the Runge-Kutta method until a fixed point is reached, and
Mismatch(T,S) which matches the target pattern T against the
pattern created by the GRN and its combinatorial code. The al-
gorithm terminates when the attempt to delete each protein and
each edge fails to produce the solution pattern. The input to
the knockout algorithm is a GRN discovered by a Monte Carlo
search that solves a striped pattern. The output is defined as an
irreducible GRN that is both minimal in size and adequately
solves the target pattern T .

Since the knockout algorithm is greedy and only considers
single component deletions, it may not find the globally min-
imum GRN, but may discover a locally minima. Such a local
minima GRN may include a subgraph that if deleted as a unit,
would result in a still functioning GRN. A subgraph in a lo-
cal minima GRN may for example include cycles of up and
down regulation (edge types A and B) or north and south sig-
nalling (edge types G and I), that will disrupt the pattern for-
mation process if only one component is deleted, but maintain
the pattern when both are deleted together. To identify globally
irreducible networks, an exhaustive search deleting all possi-
ble subsets of components would have to be performed. Such
an optimal search was not done for this study due to compu-
tational limitations and the demonstrated effectiveness of the
single-step knockout procedure in identifying small GRNs.

D. Co-option among Irreducible GRNs
Co-option is the use of an element of one GRN by an-

other GRN, often for a distinct function. This work considers
two kinds of co-optable network elements: modules and sub-
circuits. We define a module as a fully functional GRN that
appears as part of another larger GRN. A subcircuit is defined
as a GRN cycle that occurs in two or more GRNs. In contrast
to modules, sub-circuits may or may not function as GRNs that
produce a recognizable pattern.

D.1 Modules: Subgraph Isomorphic GRNs

Modules are discovered by computing subgraph isomor-
phisms between all pairs of GRN graphs. A graph G1 is a
subgraph of G2 if under some one-to-one mapping between
the nodes of G1 and a subset of the nodes of G2, the in and out
edges of all nodes in G1 are always a subset of those of G2.
This problem is known to be P-space Complete in general. In
this study, we are interested in determining subgraph isomor-
phism between directed graphs with distinct edge labels, which
is known to be NP-Complete. The relatively small size of the
irreducible GRN graphs (see Fig. 6 for some examples) makes
it feasible to use an exact algorithm whose performance was
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Fig. 4. The distribution of unique irreducible GRN’s for the three target
patterns. The scale maps each color to the count of GRNs.

greatly improved through the use of edge-hashing [16]. All ir-
reducible GRN graphs were compared with all other GRNs for
all three patterns.
D.2 Subcircuits: Common Sub-cycles between GRNs

Subcircuits are computed by extracting all cycles from the
GRN graphs and performing pairwise comparisons over all cy-
cles. A cycle in a GRN graph of p proteins and e edges is
a feedback loop comprising of between 2 and e edges and is
characterized by the order of the edge types involved. To de-
termine common cycles between graph G1 and G2, we first
extract all cycles from each graph, then identify an intersection
under all possible rotations of each cycle. The complexity of
this computation is O(p2e3), which is feasible for the small
GRN graphs studied here.

III. RESULTS
This study first discovered a distinct set of irreducible GRNs

for each of the target patterns and considered their distribu-
tion with respect to size (number of proteins and edges). Next,
the robustness of the irreducible GRNs was measured and an-
alyzed with respect to network architecture. Finally, the com-
mon subgraphs and sub-cycles were identified between the ir-
reducible GRNs.

TABLE III
MONTE CARLO RESULTS

Pattern Number of GRNs
generated in the
Monte Carlo
Search

Number of GRNs
meeting the thresh-
old

Chance of
finding a
GRN meeting
threshold

1-skip-1 3,387,073 440 1/7,698
2-skip-2 4,422,289 205 1/21,572
2-skip-1 3,773,131 113 1/33,390

A. Identification of Irreducible GRNs
An extensive Monte Carlo search of the GRN space was

performed using 30 high performance workstations running in
parallel for 10 days. Each random GRN was generated by
first uniformly sampling the number of proteins 2≤ p≤ 8 and
edges p≤ e≤ 13, creating a random connected graph, assign-
ing random edge types (from Table I) then setting the initial
edge strengths randomly from the range 0.8 ≤ ωj ≤ 1.0. This
search identified 758 GRNs with mismatch percent below the
10% threshold over the target patterns (see Table III). A ran-
dom subset of GRNs was selected for each target pattern to
provide an approximately uniform distribution of GRNs over
the space of network sizes 2 ≤ p ≤ 8 and p ≤ e ≤ 13. Each
GRN solution was then processed by the knockout procedure
shown in Table II to identify its irreducible GRN. Finally, iso-
morphic GRNs were eliminated from the set of irreducible
GRNs using an edge hashing scheme [16]. This produced a
total of 13 1-skip-1 GRNs, 16 2-skip-1 GRNs and 7 2-skip-
2 GRNs. The distribution of irreducible GRNs is shown in
Fig. 4.
B. Robustness of Irreducible GRNs

Robustness measures the ability of a GRN to consistently
produce a high quality pattern under varying initial concentra-
tions of proteins and varying strengths of the interactions be-
tween them (ωj in Table I). All the irreducible GRNs demon-
strate robustness under varying initial concentrations.

To measure the robustness of the GRNs we employed the
same methodology used by von Dassow et. al [2] where they
evaluated the robustness of a single network that creates seg-
ment polarity in Drosophila. The robustness of each irre-
ducible GRN was determined by setting each edge strength ωj ,
(1 ≤ j ≤ e) in turn to a uniform random number in the range
0.1 ≤ ωj ≤ 1.0 and then computing the mismatch percent of
the resulting pattern with respect to its target pattern. The pro-
cess was repeated 40 times for each GRN, then the mean and
standard deviation was computed. The results are illustrated in
Fig. 5. The standard deviation of the mismatch percent quanti-
fies the robustness of each individual GRN with low standard
deviation implying high robustness. Examples of GRNs with
high, median and low robustness for each target pattern are
shown in Fig. 6.

B.1 Modules: Subgraph Isomorphic GRNs

The results showing the sub-graph isomorphic relation be-
tween each pair of GRNs are given in Fig. 7. Each circle in
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1-skip-1
σ ε̄ p e

2 2
2 2
2 3
2 3
3 3
3 3
2 5
2 3
3 3
3 3
3 3
3 3
2 4

2-skip-1
σ ε̄ p e

5 6
3 7
4 5
5 6
4 5
3 4
3 5
3 5
6 9
4 5
4 5
3 4
3 4
3 4
4 6
2 4

2-skip-2
σ ε̄ p e

5 5
5 5
3 3
6 6
4 4
3 3
2 6

Fig. 5. The robustness of all identified irreducible GRN solutions for the 3
striped patterns. In each table, σ is the standard deviation of mismatch

percent, ε̄ is the average mismatch percent, p is the number of proteins and e
number of edges. The rows are sorted by σ so the most robust network is the
at the top and the least robust network at the bottom. The key for the colors

used to represent σ and ε̄ is on the right.

the figure represents a unique GRN, with the clockwise order
of each pattern corresponding to the order of robustness shown
in Fig. 5. Our results show that modules among irreducible
GRNs are rare. There are 630 possible uses of the GRNs as
modules (when the graph in Fig. 7 is fully connected), but only
9 (1.4%) are employed. Interestingly, only one module was
shared among GRNs that solve the same target pattern. In pat-
tern 1-skip-1, a p = 2, e = 3 solution GRNs was included as
a subgraph of a p = 2, e = 5 solution GRN. In this case, the
two extraneous components in the larger GRN form a north-
south regulatory cycle that disrupts the pattern when only one
edge is eliminated. All the other 35 irreducible GRNs appear to
be globally minimal. This result supports the effectiveness of
the greedy knockout procedure for the discovery of irreducible
GRNs.

There is a partial ordering relationship among the GRNs
solving the three striped patterns. The 1-skip-1 GRNs can be
used as modules within GRNs that solve the 2-skip-1 and 2-
skip-2 patterns. The 2-skip-2 GRNs also appear as modules
within the 2-skip-1 GRNs. We never detected a case in which a
2-skip-1 GRN was used as a module within any other pattern’s
GRN. This suggests that the 2-skip-1 pattern is more difficult
to solve, perhaps because of its asymmetry.

B.2 Subcircuits: Common Sub-cycles between GRNs

The results showing the common sub-cycle relation be-
tween each pair of GRNs is shown in Fig. 8. A sub-cycle is
feedback loop which occurs in two or more GRNs. A sub-
cycle, which functions as a subcircuit in biological GRNs, may
or may not operate as an independent pattern-solving GRN.
There are many more subcircuits among the GRNs than mod-
ules. We identified 56 (9%) out of a potential 630 pairs of
GRNs that could share a subcircuit. An analysis of these 56

Pattern Robustness
Highest Median Lowest

1-skip-1

2-skip-1

2-skip-2
Fig. 6. Examples of irreducible GRNs discovered for the three target

patterns. Edges are color coded based on whether they implement
intracellular control (blue) or intercellular signalling (purple).

common subcircuits using edge hashing yields ten unique sub-
circuits, six 2-edge cycles and four 3-edge cycles. In contrast
to modules, we found subcircuits that were shared between
GRNs that solve the same pattern. The 2-skip-1 GRNs had
28 shared subcircuits, the 1-skip-1 GRNs had 14, while the
2-skip-2 GRNs shared none.

IV. DISCUSSION

Three questions drove this work: What is the space avail-
able for evolutionary exploration for GRNs able to solve devel-
opmental patterning problems? If different GRNs exist that can
solve a particular pattern, are there differences between them
that might lead to the selection of one over another? What are
the possibilities for co-opting GRN subcircuits or even entire
GRNs evolved to solve one pattern for use in the solution of
another pattern?

We searched for all GRNs within the range of 2 protein-
2 edge to 8 protein-13 edge GRNs that could solve one of
three cellular patterning problems. GRNs of a given complex-
ity (number of proteins and number of edges) were subjected
to a mutational knockout analysis. Proteins and the connec-
tions between them (edges) were removed one-by-one to learn
if they were extraneous or essential for GRN function. Knock-
out of extraneous components was continued until a GRN was
discovered in which every individual component was essen-
tial for network function. Even though many of these GRNs
maybe local minima they were considered to be irreducible
in this study. These simple, functional GRNs are potentially
available for evolutionary discovery.

A. The GRN Space Available for Evolutionary Exploration

This work has identified a set of minimal and irreducible
GRNs that can solve a set of striped cell patterning prob-
lems using a Monte Carlo exploration followed by a knockout
procedure. Knowing the number and structure of irreducible
GRNs helps define the potential space available for evolution-
ary exploration since any GRN that can solve a pattern T must
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Fig. 7. Subgraph isomorphism (module) results. Each node in the circle
represents a single irreducible GRN. Red is 1-skip-1, green is 2-skip-1 and

blue is 2-skip-2. The node labels correspond to those in Fig. 5. An edge from
GRN i to j means that i is a sub-graph of j.

include as a subgraph or core element one of the available irre-
ducible GRNs for T , with additional components being extra-
neous.

There is evidence [10], [15] for the evolution of biologi-
cal GRNs that exceed the minimum required complexity (i.e.,
GRNs capable of reduction in this work). One explanation is
that extraneous components provide robustness when GRNs
are subjected to continuous mutation [10]. Identification of a
set of irreducible GRNs and the knockout procedure enables
the quantification of such extraneous components and the test-
ing of this explanation. Such complex networks may have
evolved through the initial discovery of simple ancestral GRNs
followed by their embellishment with extraneous components.

The GRN space was dense for all three patterns we in-
vestigated, with chances of randomly finding a solution rang-
ing from 1 in 7,698 for 1-skip-1 to 1 in 33,390 for 2-skip-1.
Among these 758 discovered GRNs, there were 16 unique, ir-
reducible GRNs that solved the 1-skip-1 pattern, 13 for the
2-skip-1 pattern and 7 for the 2-skip-2 pattern (Fig. 5).

Fig. 4 shows the set of minimal complexity solution GRNs
as a density plot for each target pattern: the count of irre-
ducible GRNs as a function of the number of proteins and
edges. Some observations included: 1) 1-skip-1 is the sim-
plest problem with the lowest required network complexity; 2)
There was a significantly broader distribution of network com-
plexity for solutions of the 2-skip-1 and 2-skip-2 patterns; and
3) For symmetrical patterns 1-skip-1 and 2-skip-2 most solu-
tions occurred when p = e and the network is a single cycle.
In contrast, the asymmetric pattern 2-skip-1 required solutions
where e = p + ∆e,∆e ≥ 1 with the extra edges forming new

Fig. 8. Graph sub-cycle (subcircuit) results. Each node in the circle
represents a single irreducible GRN. Red is 1-skip-1, green is 2-skip-1 and
blue is 2-skip-2. The node labels correspond to those in Fig. 5. Two GRNs

are connected if they share a common cycle.

cycles (see 2-skip-1 row in Fig. 6).

B. Selection for Robustness
Given that there are many possible GRNs open for dis-

covery, are there differences between these core elements that
would favor the ultimate selection of one over another? One
feature of GRN operation that may provide a selective advan-
tage is robustness [17], [18]. We examined the robustness of
each irreducible GRN over randomly generated and widely
varying protein and edge-strength values. Large differences
were seen in the robustness of GRN pattern formation as a
function of network complexity (Fig. 5). For irreducible GRNs
that solve 2-skip-1 and 2-skip-2 patterns, there is a trend for
networks of intermediate complexity to be more robust than
those at either extreme of complexity. In addition, it appears
that GRN graphs with low in- and out-degree and sparse cy-
cles had higher robustness, which can be seen in Fig. 6. Note
that more densely connected networks (where e ≈ d(p2 − p))
appear to have poor robustness (consider the three least robust
networks in Fig. 6), perhaps because the two proteins are in-
fluenced by multiple overlapping cycles. A significant conclu-
sion drawn from this part of the investigation is that if robust-
ness is a target of selection, then of the many networks initially
discovered by evolution, only those with high-robustness core
GRNs are likely to remain after long-term selection.

C. There Are Many Opportunities for Co-Option
An important aspect of GRN architecture and its evolution

is suggested from analysis of GRNs that control animal devel-
opment. This feature is the existence of subcircuits and mod-
ules that appear frequently in GRNs employed in the devel-
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opment of divergent lineages, such as Drosophila, sea urchin,
and the chordate Ciona [15]. The appearance of these simpler
sub-elements opens the possibility for evolution by co-option
of existing network modules and subcircuits. By combining
previously evolved network features, new patterning problems
can be solved. Co-option of existing subcircuits and modules
also may provide a mechanism to escape traps of local fitness
maxima in the GRN fitness landscape.

We examined whether and to what extent the irreducible
GRNs discovered here shared architectural features. Such
shared features, especially if they appear frequently, may illu-
minate potential evolutionary trajectories through co-option in
the evolution of pattern forming GRNs. We discovered exten-
sive overlap in many architectural features in GRNs that solved
the three different target patterns.

Network elements have been referred to by a variety of
terms that include kernels, subcircuits, switches, and modules
[1]. We searched for sharing of two types of network elements,
referred here as modules and subcircuits. In this work modules
were defined as a subgraph within a larger GRN that is ca-
pable of operating on its own to solve a pattern problem. A
subcircuit is a conserved (duplicated in at least two irreducible
GRNs) network feedback loop that may or may not operate as
an independent GRN.

Four different modules exist within irreducible GRNs that
solve the 2-skip-1 and 2-skip-2 patterns (Fig. 7). These mod-
ules are independent GRNs that solve the 1-skip-1 or 2-skip-
2 patterns. In contrast, sharing of subcircuits is more exten-
sive and complex (Fig. 8). Subcircuits are shared both within
GRNs that solve a single patterning problem (e.g., see the ex-
tensive subcircuit sharing in many 2-skip-1 GRNs) and be-
tween GRNs that solve two different patterning problems (e.g.,
the extensive subcircuit sharing between the 1-skip-1 and 2-
skip-1 GRNs.). In addition, some subcircuits that appear in
the 1-skip-1 GRNs are used to solve more complex patterns.
For example, a subcircuit within the 2-protein, 2 -edge 1-skip-
1 GRN appears in 5 different GRNs able to solve the 2-skip-1
pattern.

The significance of these findings is that the possibilities
for evolutionary co-option at the module and especially sub-
circuit levels are vast. Modules evolved for one purpose can
be further evolved by the addition of new proteins or new in-
teractions between existing proteins to form a new GRN for
another purpose. Subcircuits utilized within one GRN can be
duplicated and utilized by another GRN. An earlier modeling
study has shown that gene duplication opens many possibili-
ties for GRN evolution [19]. Significantly, subcircuits do not
have to be independently functional to expand the potential of
the evolutionary search space. The potential of co-option is the
creation of an expanded GRN capable of solving a completely
different patterning problem. The GRN evolved by co-option
is a mixture of the old and the new.

Although the focus of this work was on pattern forma-
tion during development, the conclusions concerning the wide

space of GRNs available for evolutionary discovery and the
abundant opportunities for co-option to increase complexity
are likely to apply to other fundamental biological processes,
including the evolution of intracellular signal transduction cas-
cades and metabolic networks.
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