
Is there a Liquid State Machine in the Bacterium
Escherichia Coli?

Ben Jones, Dov Stekelo, Jon Rowe, Chrisantha Fernando∗

School of Computer Science, School of Bioscienceso

University of Birmingham
Birmingham, UK

Email: C.T.Fernando@cs.bham.ac.uk

Abstract— The bacterium Escherichia coli has the capacity to
respond to a wide range of environmental inputs, which have
the potential to change suddenly and rapidly. Although the
functions of many of its signal transduction and gene regulation
networks have been identified, E.Coli’s capacity for perceptual
categorization, especially for discrimination between complex
temporal patterns of chemical inputs, has been experimentally
neglected. Real-time computations on time-varying inputs can
be undertaken by a system possessing a high dimensional analog
fading memory, i.e. a liquid-state machine (LSM). For example,
the cortical microcolumn is hypothesized to be a LSM. A model
of the gene regulation network (GRN) of E.Coli was assessed for
its LSM properties for a range of increasingly complex stimuli.
Cooperativity between transcription factors (TFs) is necessary for
complex temporal discriminations. However, the low recurrence
within the GRNs autonomous dynamics decreases its capacity
for a rich fading memory, and hence for integrating temporal
sequence information. We conclude that coupling of the GRN
with signal transduction networks possessing cross-talk, and with
metabolic networks is expected to increase the extent of non-
autonomous recurrence and hence to facilitate enhanced LSM
properties.

I. INTRODUCTION

Maass et al [1] produced a model called the Liquid State
Machine (LSM). They hypothesize that a high dimensional
recurrent dynamical network designed such that it can act
as a universal analog fading memory can posses transient
internal states. In comparison to a traditional neural network
approach whereby the circuit represents a ’decision’ by
reaching one of many alternate stable attractors, the transient
states of an LSM are capable of being observed by linear
readout elements to produce stable outputs. This allows
robust real-time processing of time-varying inputs. All that
needs to be trained, is a readout module consisting of
linear perceptrons. Relatively few parameters are required to
specify the LSM, provided that a separation property can be
achieved1. Training (by evolution or lifetime learning) would
only need to take place on a layer of linear readout elements
instead of on the recurrent neural network itself.

LSMs have been successfully implemented in a wide range
of media, from spiking neurons in cortical microcolumns [2],

1The separation property requires that the distance between the trajectories
of internal states of the system is roughly proportional to the distance between
two different input streams that caused them.

Fig. 1. The proposed sequence discrimination experiment with E.Coli. See
text for details.

to the surface of water in a bucket [4]. They have been shown
to be capable of robust speech recognition and real-time
robot control [3]. Furthermore, multiple readout elements can
be trained to make different discriminations by observing the
same LSM.

We ask whether the GRN of E.Coli can act as a LSM and
subsequently whether E.Coli is capable of making complex
perceptual discriminations between temporal sequences of
chemical inputs. We test the hypothesis that the GRN acts
as the liquid, and that a structural intra-cellular protein or
a DNA sequence acts as the linear readout element. Within
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this framework, the free concentration of the DNA is taken
as a function of its evolvable binding affinities to the various
proteins and mRNAs whose production is controlled by the
GRN.

The model we build here is a first step at simulating the wet
experiment shown in figure 1. A population of E.Coli with
mean replication period greater that 1.5 hours are placed in a
flask, and exposed to the four possible combinations of high
and low temperature, and low and neutral pH. The pairs are
labelled using the binary coding scheme shown in part 1 of
figure 1. Various sequences of combinations are administered,
and perceptual categories are defined, e.g. as shown in part 2
of figure 1, ‘in phase’ is considered to be class 1 and ‘out
of phase’ is considered to be class 2. At regular intervals,
samples of E.Coli are removed and a microarray is then taken
to sample the state of the GRN; see part 3. Finally, a parallel
perceptron is trained to classify the set of microarray data into
the desired classes; see part 4. Our model of this experiment
predicts that a perceptron may indeed be expected to be able
to discriminate between complex environmental sequences to
which E.Coli were exposed, merely by observing the mRNA
concentration vectors, and therefore that E.Coli is capable
in theory of discriminating between temporal sequences of
inputs.

II. METHODS

A. Topology

The gene transcription network of E.Coli is available from
various sources such as RegulonDB and Ecocyc, [5], but
we chose Uri Alon’s [6] modification of Shen-Orr’s data [7]
due to its convenient format. It consists of 577 interactions
between 116 TFs and 419 operons. The topological properties
of the network [8] and the dynamical properties of species
operons [10] of the network have been investigated [9], and it
is found that the GRN is arranged largely in a feed-forward
hierarchy but with some recurrence [11]. The dataset only
gives the topology and sign of interactions, i.e. whether a TF
is an activator, a repressor or a dual, at a particular Operon.
It does not provide Km values for binding of TFs to the
operator, nor does it provide information about cooperative
interactions between TFs at the same Operon, or between
operators at a distance by DNA looping [12] . In the absence
of such thermodynamic data for most TFs, we were forced
to generate the parameters from ‘reasonable’ statistical
distributions.

B. Transfer Functions

The formalism of Bintu et al [12] is used to describe the
transfer function at each node (Operon) due to the interaction
of TFs with the RNAP (RNA Polymerase). The probability that
an RNAP is bound to an Operon is given by the equation,

Pbound =
1

1 + NNS

PFreg
e∆εpd/kBT

, (1)

where NNS is the number of non-specific binding sites for
RNAP (5×106). P is the number of RNAP molecules (2000,
[15]). Freg is a regulation factor that describes the effective
increase (Freg > 1) or decrease (Freg < 1) of the number
of RNAP molecules available to bind to the promotor.
∆εpd = kBT ln(KS

pd/KNS
pd ), with kB = 1.38 × 10−23

joules/K (Boltzman’s constant), T = 280K, KS
pd and

KNS
pd = 10000nM are the equilibrium dissociation constants

for specific binding and non-specific binding of RNAP to this
promotor. Values of KS

pd are generated randomly according to
a log normal distribution with the mean 544nM, and variance
267nM. For example, the lac promoter has KS

pd = 550nM
and the T7 promoter has KS

pd = 3nM.

TFs stabilize or destabilize the binding of the RNAP to the
promotor in a manner described by Freg (see Table 1 from
[12]). Freg for a simple repressor, R, is

Freg =

(

1 +
[R]

KR

)

−1

(2)

with KR being the equilibrium dissociation constant of the
repressor, generated from the log normal distribution with
mean 0.1nM and variance 0.04nM. Note the tendency for
repressors to bind more strongly than RNAP molecules on
the whole. Freg for a simple activator, A, is,

Freg =
1 + [A]

KA
f

1 + [A]
KA

(3)

where f = e−εxp/kBT , with εxp/kBT being the ’glue-like’
interaction between TF (x) and RNAP (p). It is randomly
generated according to the log normal distribution with mean
−3.14, and variance 0.93. KA is generated from the same
distribution as KR. Freg for dual repressors, R1 and R2,
cooperatively interacting is,

Freg =

(

1 +
[R1]

KR1

+
[R2]

KR2

+
[R1]

KR1

[R2]

KR2

ω

)

−1

(4)

where ω = e−εx1x2
/kBT is the cooperativity factor,

εx1x2
/kBT being drawn from a log normal distribution with

mean 1.6 and variance 1.13. Freg for dual activators, A1 and
A2, cooperatively interacting is,

Freg =
1 + [A1]

KA1

f1 + [A2]
KA2

f2 + [A1]
KA1

[A2]
KA2

f1f2ω

1 + [A1]
KA1

+ [A2]
KA2

+ [A1]
KA1

[A2]
KA2

ω
(5)

Where a promotor is controlled by a single TF, then either
equation (2) or (3) is used to calculate Freg . Where there is
more than one TF acting on a promotor, for each possible pair
of TFs, a cooperative interaction is generated with probability
Pc, typically set to 0.3. Any TFs not included in cooperative
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interactions are assumed to act independently on the RNAP
according to equation (2) or (3). On a complex promotor
with more than one TF, the total Freg is given by the product
of component Fregs calculated for each cooperative pair and
each independently acting TF.

The value of Pbound is used to calculate the rate of mRNA
production at an Operon by assuming that the RNAP produces
mRNA at 50 nucleotides per second and that the average
length of mRNA is 1000 nucleotides. This gives an mRNA
production in Moles of mRNA per second for a cell of volume
1.5×10−15 of 3.6×10−8 Msec−1Operon−1. Each operon is
assumed to be present in copy number 1. Protein production
rate is first order in [mRNA] and is assumed to be 15 amino
acids per second. This gives a value of protein production of
apx 0.0001Msec−1per Mole of mRNA in an E.Coli sized cell.

The rate of decay of mRNA is first order and is given
by the log normal distribution with mean 4.85 minutes and
variance 4.08 minutes. The rate of decay of protein is also
first order and is given by the log normal distribution with
mean 4.05 minutes and variance 28.25 minutes. These values
are scaled by 4.3 × 10−3 to give a decay rate with units
Msec−1 per Mole of Protein.

The KR or KA of a transcription factor can be altered
by external signal molecules (inhibitors), which bind to
the TF and alter its chances of binding to the operator.
The extent of inhibition by a signal molecule is given by
calculating a modified K, given by Kmod = K/(1 + [I ]/KI),
with KI drawn from a log normal distribution with mean
0.09 × 10−3M, and variance 0.07 × 10−3M. Typically in
experiments where the E.Coli is stimulated, external signal
molecule concentrations are administered in a square wave
with baseline 0M and plateau 0.001M.

The network is initialized with low concentrations of TFs,
e.g. 10−8M, and allowed to settle to its steady-state. The
volume of the cell is assumed to be 1.5×10−15 Liters. A C++
program is written to run the ordinary differential equations
by Eular Integration with a fixed time-step of 0.003 seconds,
for 1800000 time-steps. The entire stimulus duration is 1.5
hours, apx 3 times the minimum replication period of E.Coli.
If much shorter stimulus durations are used, the transcription
network does not have time to display significant differences
in mRNA or protein concentrations.

C. Discrimination Tasks
1) The XOR Problem: The XOR problem is a linearly

non-separable problem, i.e. a single-layer perceptron cannot
solve it. The inputs {0,0} and {1,1} must be classified as
class 0, and {0,1} and {1,0} must be classified as class 1.
Therefore a simple threshold that could be used to solve the
OR or AND tasks cannot be used to solve the XOR task.
Each digit of the XOR input is represented as a randomly

chosen 50% of inhibitor concentrations. ‘1’ is represented
as a high concentration, and ’0’ as a zero concentration
of inhibitors. It is assumed that instantaneous changes in
inhibitor concentration can be induced, although it is our
intention to add a much more realistic signal transduction
model in further work. The stimuli are presented in the
order shown in figure 2. The perceptron is then trained to
discriminate class 1 from class 0 on the basis of the mRNA
and protein concentrations alone.

2) Distinguishing the phase of two signals: A and B:
Imagine that the first digit of the XOR input represents
some chemical A in the environment, and the second digit
represents some chemical B. Can a perceptron be trained
to distinguish between an environment in which A and B
occur together at the same time compared to an environment
in which A and B occur in-between each other? This is
effectively a special case of the XOR task, produced by
clustering the presentations of classes; see figure 3. When the
00 and 11 inputs are presented repeatedly, this is equivalent
to A and B occurring together. When the 10 and 01 inputs
are presented repeatedly, this is equivalent to A and B
occurring in-between each other, i.e. in phase but shifted
by half a period. In fact the same class definition as the
XOR problem is used since a chain of 00 and 11 inputs will
be in class 0, and a chain of 01 and 10 inputs will be in class 1.

D. Linear Readout by Multiple Perceptrons
A variant of the P-delta rule [13] is used to train multi-

ple perceptrons to classify the stimuli into their appropriate
classes. Protein and mRNA concentrations are used (sepa-
rately) as inputs to each perceptron making up the collection of
parallel perceptrons. Summation of the outputs of the percep-
trons gives an indication of the certainty of the classification.
If the classification is incorrect, then the perceptrons that failed
to classify correctly are updated. The perceptron weight update
equation for a single perceptron is,

wi+1(t + 1) = wi+1(t) + η (d(t) − y(t)) xi(t) (6)

The bias weight, w0 is set to -1 for all perceptrons; d and y
are the target and computed outputs respectively for the whole
input vector x, and η is the learning parameter. In line with
the P-delta rule, the weight values are also stabilized to yield a
parameter µ, which can either be positive or negative (equation
7). The value ε is set to 0.1 throughout and the parameter γ,
which specifies the margin around zero, is set to 0.01, also
throughout.

µ =

{

+ε if γ ≥ w · x ≥ 0
−ε if −γ ≤ w · x < 0

(7)

Depending on the output of the dot product w · x, therefore,
the value of µ is either positive of negative. It is then factored
in to the weight update equation,
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Fig. 2. Perceptrons trained on random presentation of 00,10,01,11 cases,
requiring XOR classification. Top 2: The top graph shows mRNA concen-
trations over time, followed below by the target classes superimposed upon
the summed output of 50 perceptrons (Dotted line), with MSE = 0.07

The binary two digit number indicates which of the combinations of the two
inputs were presented at that period. Bottom 2: As above, but perceptrons were
trained on protein concentration rather than mRNA concentration. MSE =

0.08

Fig. 3. Parallel perceptrons were trained to discriminate between in-phase
and out-of-phase chemical ’spikes’. Top 2: The top graph shows mRNA
concentrations over time, followed below by the target classes superimposed
upon the summed output of 50 perceptrons (Dotted line), MSE = 0.02.
Bottom 2: As above, with perceptrons trained on protein concentrations,
MSE = 0.03.
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Fig. 4. Most important TFs and mRNAs involved in the classifications for
the XOR, and AB tasks.

wi+1(t + 1) = wi+1(t) + η (d(t) − y(t)) µxi(t) (8)

In effect, the value ofµ establishes a margin around the dot
product w · x, preventing the dot product from getting too
close to zero.

III. RESULTS

Figure 2 and 3 show the outputs of a trained parallel
perceptron on the XOR and the AB task. In both cases
the parallel perceptron imperfectly, but significantly above
chance, identifies the target classes correctly. The mean
squared errors are shown in the figure captions, and are all
less than 0.1. Both mRNA and protein concentrations can
be used to make the classification. Performance is in fact
better on the AB task in figure 3 than on the randomized
presentations of the inputs in figure 2. Further experiments
are required to test the capacity of the trained perceptron to
generalize to stochastic noise in the data, and to reordering
of class presentations. A perceptron capable of generalization
from the XOR classification task should be able to exhibit
good performance in the AB task.

The most important mRNAs and proteins involved in the
classification (i.e. those with the largest perceptron weights)
were examined for all 4 cases and shown in table 4. These
may differ given different random initializations of K values.

IV. CONCLUSION

Neural network metaphors have been used to describe the
information processing taking place within GRNs [14]. We
undertook to assess the capacity of the GRN of E.Coli, at
least the version found in [6], to behave as a liquid state
machine. Only partial success in solving the XOR problem
was achieved, although good performance in the AB task was
observed. Further experiments are required to systematically
test whether other intra-cellular networks in E.Coli could
contribute to produce a richer LSM than is possible
using the GRN model alone, which is of relatively low
dimensionality, and contains limited recurrence. For example,
signal transduction networks and metabolic networks will
be added to the model, and their contributions to the LSM
will be examined. The protein decay rates in the current
model are somewhat too rapid. In real life many proteins

have decay rates much longer than the lifetime of an E.Coli.
This suggests the possibility that perceptual discriminations
could actually take place over many generations. Our model
does not consider the effect of cell division. We hope that
an experimentalist may be encouraged to conduct a similar
experiment in a wet lab.
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