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Abstract— A nonlinear dynamical system that exhibits limit
cycle behaviour is investigated through numerical simulations of
cardiac cells. This system’s self-organizing behaviour is charac-
terized aiming at harnessing it in an artificial system. Results of
circuit simulations for different configurations of an architecture
based on simple electronic elements are shown, characterizing self-
organization in an artificial electronic circuit.

I. INTRODUCTION

Some systems exhibit properties like robustness and adap-
tivity due to their self-organizing behaviour. These are desired
properties in artificial systems. This paper aims at under-
standing this behaviour and at investigating how it could be
harnessed in an artificial electronic circuit.

Self-organization and synchronization are phenomena ex-
hibited by dynamical nonlinear systems. In these systems,
the overall behaviour cannot be understood, predicted or
accounted for by the behaviour exhibited by the individ-
ual parts of the system. “Classical” examples of this non-
compartimentalization can be found throughout a variety of
diverse environments and disciplines, in animate and inanimate
matter; from the group behaviour exhibited by ants that
cannot be understood by studying each ant individually to the
operation of a laser and the supercondutivity of Josephson
junctions.

So how might we understand, interact with and harness
these systems that cannot be understood by simply looking
at the individual parts? Most nonlinear systems cannot be
understood analytically. However, state space analysis can
offer qualitative understanding about the behaviour and the
interactions between the variables.

Nonlinear systems are described (mainly) by their system
variables and control parameters [1]. The former are also
called dynamic variables and they evolve, change over time;
the latter are also called boundary conditions and they define
how these systems variables will change over time. In this
way, exactly the same system can exhibit completely different
behaviour over time depending on the control parameters. For
example, take a nonlinear system described by 2 competing
variables. For one set of boundary conditions these 2 variables
will come to a fixed, stable solution (e.g. V1=5 and V2=4). For
another set of boundary conditions there is no stable solution
and these 2 variables will oscillate forever, in what is called
a limit cycle. An additional concept that has to be introduced
when discussing nonlinear systems is the initial condition, i.e.,
the value of the system variables when t=0. Given the same

set of boundary conditions, the final behaviour of the system
can be different depending on these initial conditions.

We narrow our focus to understand systems that exhibit
rhythmic properties or limit cycles, such as excitable media.
These systems are as diverse as chemical reactions and hepa-
tocytes and share some common characteristics, namely self-
organization and robustness. This is due to the fact that in these
systems the overall behaviour, i.e. their functionality is not a
result of the function of single elements but a consequence of
the interaction of these elements.

The heart for example also exhibits these properties. It is
robust, considering the diversity of influences that act upon
it [2] but also adaptable to changes in the person’s psycho-
logical and emotional state, physical workload and chemical
balance [3]. Cardiac muscle can be seen as an excitable media
as the qualitative behaviour of cardiac cells can be modeled
by the FitzHugh-Nagumo (FHN) model, which is a generic
model for excitable media.

In the work presented we show numerical simulations of a
2D grid of elements that represent 2 types of cardiac cells: a
clump of self-oscillatory elements representing the Sinoatrial
node (SAN) cells on an otherwise non-oscillatory medium
representing the Atrial Myocardial (AM) cells. We investigate
this system by measuring the phase synchronization effect
of neighbouring cells for different coupling strengths: from
independent to totally coupled cells.

The properties exhibited by these natural systems and theo-
retically characterized here are desirable in artificial systems.
In electronic systems for example, components can function
differently after some time or fail. Generally speaking, current
methods are based on traditional architectures and are not ro-
bust to these faults. Different approaches to confer robustness
to artificial systems are being studied [4]. Robustness would
be specially important to Molecular Electronics architectures,
where defect densities for bottom-up assemblies may be as
high as a few percent [5][6]. It is in this context that we
then investigate how these rhythmic systems’ common self-
organizing behaviour could be harnessed in an artificial sys-
tem. We show circuit simulations of a 2D grid of circuit ele-
ments connected through resistive couplings and characterize
this system for different coupling strengths.

This paper is organized as follows: In the next section we
present our method for measuring the phase synchronization
effect of neighbouring elements. In Section III we present the
results for the numerical simulations of the grid composed
of cardiac cells. In Section IV we present circuit simulations
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for two circuit configurations and finally in Section V we
conclude the paper discussing the results presented, suggesting
applications and future work.

II. MEASURING PHASE LOCKING ON THE GRID

Here we present our method for measuring phase synchro-
nization on the nonlinear dynamical systems we investigate.
These systems are typically composed of several parts or ele-
ments. We want to characterize these systems’ dynamical be-
haviour in different conditions. (It is important to mention that
our aim is not to fully characterize them as it has already been
achieved for diverse systems and conditions [7][8][9][10].)
The phase of the elements is calculated as [10][11]

φi(t) = 2π
t − τk

τk+1 − τk

+ 2πk (1)

where τk is the time of the k-th firing of the element. This
firing is defined by a threshold crossing of xi(t) at a suitable
value depending on the simulation.

We characterize the phase synchronization effect of neigh-
bouring elements on the grid by the quantity

si,j = sin2

(
φi,j − φi,j+1

2

)
+ sin2

(
φi,j − φi+1,j

2

)
, (2)

where i represents the line of the element and j represents
the column of the element on the grid. In this way the phase
synchronization is measured in relation to the neighbour on
the right and to the neighbour below.

A spatiotemporal average of si,j , i.e.,

S = limT → ∞

1

T

∫ T

0

⎛
⎝ 1

N

N∑
i=1,j=1

si,j

⎞
⎠ dt, (3)

gives a measure of the degree of phase synchronization in
the coupled system. For completely unsynchronized motion
S≈0.5, while for globally synchronized system S≈0.

III. CARDIAC CELLS SIMULATION USING THE BVP
MODEL

We investigate nonlinear dynamical systems that exhibit
limit cycle behaviour through numerical simulations of cardiac
cells. Cardiac muscle can be seen as an excitable media as the
qualitative behaviour of cardiac cells can be modeled by the
FitzHugh-Nagumo model [12], which is a generic model for
excitable media and can be applied to a variety of systems.
FitzHugh called his simplified model the Bon Hoeffer-van
der Pol model (BVP) and derived it as a simplification of
the Hodgkin-Huxley [13] equations. The model is able to
reproduce many qualitative characteristics of electrical im-
pulses along nerve and cardiac fibers and is described by the
following pair of differential equations:

dx

dt
= c(x + y −

x3

3
+ z) (4)

dy

dt
= −

1

c
(x − a + by), (5)

where a, b and c are constants satisfying the relations

1 −

2b

3
< a < 1, 0 < b < 1, b < c2 (6)

and z is stimulating current. The coordinate x shares the
properties of both membrane potential and excitability, while
y is responsible for accomodation and refractoriness.

We use this model to simulate the qualitative behaviour of
two types of cardiac cells as illustrated in Fig. 1: the SAN
(sinoatrial node) cells, which are autonomous oscillators and
the AM (atrial myocardial) cells, which are excitatory. The
phase plane for (4) and (5) is shown in Fig. 2.

Fig. 1. Representation of the SAN cells that receive an stimulus from
the autonomous nervous system, initiating an action potential that propagates
through the AM to the AVN. The SAN cells are not identical, but nevertheless
fire at the same frequency as they are phase locked.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Fig. 2. BVP phase plane for a=0.7, b=0.8, c=3 in (4) and (5). In this
simulation X represents the membrane potential and Y the recovery variable.
The solid line corresponds to the oscillatory situation: a stable limit cycle
for z=-0.4. The dashed line corresponds to an excitatory situation: the initial
condition (x,y)=(2,-1) was taken to the fixed point for z=-0.2.

A. The Experimental Setup

We simulate a grid of 9x9 cardiac cells as depicted in Fig.
3. Each square shows the cells’ membrane potential (x) as a
function of time for independent, i.e. not coupled cells. The
cells in the center represent the SAN cells. These are self-
oscillatory and correspond to a limit cycle on the phase space
as shown in Fig. 2. The other cells represent the AM cells.
These are excitatory and therefore stable at their fixed point.
Their phase space corresponds to the dashed line in Fig. 2.
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Each cell corresponds to the pair of differential equations (4)
and (5). When coupled, they are connected to their four nearest
neighbours through diffusion of membrane potential (x) with
zero flux boundary conditions at the edges. The equations for
celli,j where i is its line and j its column on the grid are

dxi,j

dt
= c(xi,j + yi,j −

x3
i,j

3
+ z) + (7)

d(xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j)

dyi,j

dt
= −

1

c
(xi,j − a + byi,j). (8)

Following physiological description [14], the 13 SAN cells
at the center of the grid are weakly coupled when compared
to the 69 excitatory AM cells. If dp represents the diffusion
coefficient between SAN cells and d represents the diffusion
coefficient between AM cells, this means that dp is smaller d.
(At the boundary between the two regions, i.e. between AM
and SAN cells the coefficient is set to d.)
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Fig. 3. Grid of 9x9 cardiac cells. Each square shows the cells’ membrane
potential (x) in time for independent cells. The cells in the center represent
the SAN cells and are self-oscillatory whereas the other cells represent the
AM cells and are excitatory.

It is important to point out that, as in the heart, these SAN
cells are not identical. When independent, i.e. not coupled,
they fire at different frequencies as illustrated in Fig. 4a. When
coupled through diffusion (here dp=0.1 and d=0.3), the SAN
cells are phase locked, as shown in Fig. 4b, and the AM cells
propagate the stimulus, as shown in Fig. 4d.

B. Measuring Phase Locking and Synchronization

In order to characterize synchronization on an excitable
system several parameters can be varied. Specifically in our
example, where we model the behaviour of a clump of
oscillatory cells in an otherwise non-oscillatory medium [14]
aiming at investigating two types of cardiac cells, we could
vary:

• the size of the oscillatory area (set to 13 SAN cells);
• the size of the non-oscillatory area (set to 69 AM cells);
• the excitability of these cells (e.g. z=-0.4 for the SAN

cells and z=-0.2 for the AM cells).
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Fig. 4. Membrane potential (x) of the a) 13 independent SAN self-oscillatory
cells firing at different frequencies; b) SAN cells coupled with dp=0.1 and
phase locked c) AM cell (dashed line) on its fixed point for the uncoupled grid
and d) AM cell conducting the stimulus when the cells are coupled (dp=0.1
and d=0.3).

However, here we fix these parameters as we are interested
in determining the effect of the coupling strength, i.e. the effect
of the level of interaction among the cells, on the synchroniza-
tion of the grid. We measure the phase synchronization effect
of neighbouring cells (S in (3)) for different coupling strengths
(dp and d in (7)).

The graphs in Fig. 5 show these results. In Fig. 5a the dif-
fusion between the SAN cells is constant (dp=1). We measure
S for different diffusion coefficients between the AM cells
(0<d<1). The dashed line shows the phase synchronization
effect of neighbouring cells between all the cells on the grid
whereas the solid line show this measure only between the
SAN cells.

One can see that when the coupling is too weak (d<0.2) the
stimulus does not propagate. Therefore, even though there is
synchronization between the SAN cells (solid line S< 0.05),
there is no synchronization on the grid (dashed line S> 0.4).
On the other hand, when the coupling is too strong, (d>0.5),
the stimulus is “washed away” and synchronization is lost on
the grid as well as between the SAN cells.

There is then a well defined region of coupling strength
where the synchronization on this excitable system is main-
tained, i.e. for 0.2<d<0.5, 0.06>S>0.2.

In Fig. 5b the diffusion between the AM cells is now
constant (d=0.3) and we measure the phase synchronization for
different diffusion values between the SAN cells (0<dp<1).
One can see that there is a critical point, a critical value of
coupling strength (dp=0.1) below which the oscillation on the
SAN cells is not synchronized and therefore the propagation
of the stimulus is not synchronized either.

These results characterize a self-organizing behaviour, as
according to Sole [2], the characteristics signatures of SO
would include:

• the creation of spatiotemporal structures in an initially
homogeneous medium;
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Fig. 5. Measure of the synchronization effect of neighbouring elements S
for different coupling strengths when a) the diffusion between the SAN cells
dp=0.1 and b) the diffusion between the AM cells d=0.3. The solid line shows
S measured between the SAN cells and the dashed line shows S measured
between all the cells on the grid.

• the possible existence of several stable states (multista-
bility) and

• the existance of bifurcations when some parameters are
varied: the behaviour of a self-organized system changes
dramatically at bifurcations.

In this context, the specific details of single individuals will
be rather irrelevant.

This self-organizing behaviour confers robustness and adap-
tativity to the heart. It is due to the interaction between the
cells that some cardiac arrhythmias, for example, cause little
disruption to the ability of the cardiac muscle to pump blood.

Could this self-organizing behaviour be harnessed on artifi-
cial systems, as we would like them to exhibit robustness and
adaptivity?

As we did here for the numerical simulations of cardiac
cells, we want to characterize self-organization on an artificial
system. Therefore, in the next section, we present the results
for the simulations of an electronic circuit.

IV. THE EQUIVALENT CIRCUIT

Aiming at harnessing self-organization and the consequent
properties of robustness and adaptativity in an artificial system,

in this section we show the results for circuit simulations of an
architecture based on simple electronic elements for different
configurations.

An electronic simulator of the BVP model was first sug-
gested by Nagumo [15]. We simulate a grid composed of
81 of these circuit elements as shown in Fig. 6. Results
for two circuit configurations are presented: i) an oscilla-
tory/excitatory grid, with monostable elements [15] and ii)
an oscillatory grid with bistable elements [16]. We used
LTSpice/SwithcerCADIII [17] in these circuit simulations.

Fig. 6. Circuit Architecture. Each element or ‘circuit node’ comprises of a
tunnel diode (TD), a capacitor (C), an inductor (L) and a resistor (R). These
nodes are connected through a resistor (r) and an inductor (L) with zero flux
boundary conditions at the edges.

A. The Oscillatory/Excitable Grid

As in the previous numerical simulation, here the circuit has
been configured so that the 13 elements in the center of the
grid are self-oscillatory and all other elements are excitatory
(as depicted on the grid in Fig. 3). The parameters of the
circuit elements in Fig. 6 for this configuration are: C=0.05μf,
L=4mh, R=115Ω and E=150mV. The characteristic curve of
the tunnel diode (TD) for these parameters is shown in Fig. 7.
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Fig. 7. Characteristic Curve of the tunnel diode (TD) with R=115Ω and
E=150mV.

We investigate this circuit when its elements are connected
in four different coupling situations as presented in Table I,
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TABLE I

MEASURE OF PHASE SYNCHRONIZATION (S) ON THE

OSCILLATORY/EXCITABLE GRID

Measure of phase synchronization
on the whole grid between oscillatory

elements
a) disconnected
r=50000 rp=50000 - 0.516
b) only oscillatory
elements connected
r=50000 rp=500 - 0.082
c) all the elements
connected
r=2500 rp=500 0.077 0.057
d) only oscillatory
disconnected
r=2500 rp=50000 0.217 0.419

measuring the phase synchronization effect of neighbouring
elements S of the whole grid, i.e. between the 81 circuit
elements, as well as only between the 13 oscillatory elements.

As in the previous experiment with the cardiac cells where d
denoted the diffusion between two AM cells, here r denotes the
value of the resistor on the connection between two excitatory
circuit elements whereas rp denotes the value of the resistor
on the connection between two oscillatory elements.

Fig. 8 shows the potential (V) measured on the 81 nodes
for the four coupling situations presented in Table I.
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Fig. 8. Potential (V) measured on the 81 circuit elements’ nodes for the 4
situations presented in Table I.

From these results, we observe that this grid’s configura-
tion would cause the excitatory elements to propagate the
stimulus once for every two oscillations, showing a n:m
entrainment [11]. Therefore, in order to measure the phase
synchronization effect between neighbouring elements (2)
becomes

si,j = sin2(
φi,j −

φi,j+1

2

2
) + sin2(

φi,j −
φi+1,j

2

2
), (9)

when, for example, celli,j is excitable whereas celli,j+1 and
celli+1,j are oscillatory.

When the grid is disconnected (Table I.a), the cells in the
center fire with different frequencies (as they receive different
initial inputs: 100, 120 or 140mV) whereas the other cells are
stable at 40mV (they don’t receive any input). This situation
is presented in Fig. 8a. Then, by connecting only the 13
oscillatory elements we can observe that they synchronize
(S=0.082), firing at the same frequency, as shown in Fig. 8b.
Following this situation, we then connect all the elements on
the grid. The oscillatory elements maintain the synchronization
(S=0.057) and the other elements propagate the stimulus in
an entrainment of 1:2 (S=0.077). If then the self-oscillatory
elements are disconnected, they lose their synchronization
(S=0.419) and consequently the entrainment on the grid is
lost.

As we concluded for the numerical simulations of cardiac
cells shown in Section III, these results also show that the
oscillatory cells have to be synchronized for the propagation
of the stimulus to be synchronized. In terms of robustness, we
pointed out that in the heart, it is due to self-organization and
the interaction between the cells that some cardiac arrythmias
cause little disruption to the function of the heart. For the
electronic circuit simulated here, in a situation like this where
the grid shows entrainment and the stimulus is transmitted
along the circuit nodes (Fig. 8c), it is straightforward to see
that this transmission and consequently the overall function
will not be affected if some elements are disconnected or
faulty (open circuit), as the transmission will proceed through
the neighbouring elements. However, the characterization of
the robustness of this circuit, i.e. the number of elements that
can be faulty without affecting its function, is subject other
parameters such as the grid size and the circuit elements’
characteristics.

B. The Oscillatory Grid

Inspired by the SAN cells that are autonomous oscillators,
and by the fact that they are phase locked even though
they are not identical, here we investigate the conditions for
synchronization when this circuit is configured to have all its
81 elements self-oscillatory.

The parameters of the circuit elements in Fig. 6 are now
C=0.05μf, L=4mh, R=500Ω and E=400mV. Consider the ideal
situation when the homogeneous grid has R=500Ω and an
input of 100mV on all its elements. The potential measured
on all its 81 nodes for this situation is shown in Fig. 9. As
all the elements are identical they fire together even being
independent.

However, just as in the SAN case, where the cells are
not identical, we want to investigate this grid with randomly
varying circuit elements. Therefore the elements can have the
resistance value R=480, 500 or 520Ω. The characteristic curve
for these elements is shown in Fig. 10 with the three different
load lines.

We simulate this nonhomogeneous grid of independent
elements with R=480, 500 or 520Ω receiving 10 different
randomly applied inputs varying from 96 to 114mV. Fig. 11
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Fig. 9. Potential (V) measured on the 81 independent nodes for the perfect
homogeneous grid.
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Fig. 10. Characteristic Curve of the tunnel diode with R=480Ω (dashed line
on the top), R=500Ω and R=520Ω (bottom) and E=400mV.

shows the voltages measured on the 81 circuit elements’ nodes
in this situation.

We then investigate the synchronization on this grid for
different resistive couplings (r in Fig. 6) measuring the phase
synchronization effect of neighbouring elements S in (3)
as well as the random global synchronization Sg, that we
determine by

sh,j = sin2

(
φh,j − φl,j

2

)
, (10)

where h for the 9x9 grid varies from 1 to 5, l from 6 to 9
and j from 1 to 9.

The spatiotemporal average of sh,j

Sg = limT → ∞

1

T

∫ T

0

(
1

N

N∑
i=1

si

)
dt, (11)

gives a measure of the degree of the random global phase
synchronization in the coupled system, where N is the number
of random elements h,j. The results shown here is for N=80.
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Fig. 11. Potential (V) measured on the 81 independent nodes on the grid
with non-identical elements and noisy inputs.

The unsynchronized situation (r=50KΩ) shown in Fig. 11
can be compared to the synchronized situation shown in
Fig. 12, when the elements are coupled through a resistor value
r=200Ω. The measure of synchronization S and Sg for different
resistive couplings is shown in Fig. 13. The results show that
when r=50KΩ the coupling is too weak and the elements
are independent, showing no synchronized behaviour. With
a stronger coupling, (r≈10KΩ) there is no global synchro-
nization (Sg≈0.45). However the nearest neighbour measure
indicates that some clusters are synchronized (S=0.28). The
critical value then for this specific circuit configuration is
r=200Ω, below which there is no synchronization.
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Fig. 12. Elements connected with r=200Ω. According to our method, the
grid is completely synchronized, having the phase synchronization measure
of neighbouring elements S=0.001884 and the global phase synchronization
Sg≈0.012.

This result shows that synchronization could be maintained
on a random grid with noisy inputs if the elements where set
to interact within a specific range of coupling strength. As
we mentioned for the numerical simulations of cardiac cells,
these results for the circuit simulations presented here also
characterize a self-organizing behaviour.
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Fig. 13. The solid line shows the random global synchronization (Sg) and
the dashed line shows the phase synchronization of neighbouring elements,
(S) measured on the grid of 81 bistable oscillatory circuit elements.

V. CONCLUSION

This paper aims at understanding the self-organizing be-
haviour exhibited by a natural system and at investigating
how it could be harnessed in an artificial one. The results
presented show how the functioning of two types of cardiac
cells can be qualitatively understood and measured in terms of
self-organization. From this understanding we then investigate
how self-organizing principles could be applied to engineering,
on an oscillatory/excitatory grid as well as on a grid of
bistable self-oscillatory circuit elements. Synchronization was
demonstrated on the numerical simulation of cardiac cells
and simularly obtained for the electronic circuit simulation
for a certain range of resistive coupling between the circuit
elements.

These results suggest self-organizing principles would be
well applied on the design of architectures based on Molecular
Electronic components. A major challenge to the implemen-
tation of these architectures is the fact that the specific per-
formance of these elements can’t be guaranteed, what makes
current design approaches unsuitable for this substrate. An
architecture that is intrisically robust to unreliable compo-
nents would be desired [5]. Besides the fact that dynamical
behaviour can then be exhibited by systems composed of un-
reliable components, according to the Complexity Engineering
approach [18], this dynamical behaviour can be controlled and
applied to problems where current design approaches don’t
present the optimal solution. These are typically systems that
have to be adaptable (to an internal as well as an external
changing environment), robust to hard and soft failures and
flexible [19].

This dynamical nonlinear behaviour could also be applied to
new computational paradigms. Take for example a computer
chip, in which the electrical components are synchronized with
a master clock. This centralized design has some disadvan-
tages. 15 percent of the circuitry is wasted on distributing
the clock signal and the clock itself consumes 20 percent

of the power. But yet this centralized design is favored
because of its simplicity, because traditionaly we know how to
deal with centralized systems, whereas the alternative, many
local clocks interacting with each other, would require a
different perspective, a different approach, as well as more
understanding about what is happening for example with
cardiac pacemaker cells [20]. Self-organization offers new
opportunities, by showing phenomena that are not a result of
the function of the single elements but a consequence of the
interaction of these elements.
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