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Abstract— The ability to synchronise the individual actions
within large groups is an adaptive response observed in many
biological systems. Indeed, synchrony can increase the efficiency
of a group by maximising the global outcome or by minimising
the interference among individuals. In any case, synchronisation
appears desirable for a robotic system as it allows to coordinate
through time the activities of the group. The main goal of
the experiments presented in this paper is the study of self-
organising synchronisation behaviours for a group of robots.
To do so, we do not postulate the need of internal dynamics.
Instead, we stress the importance of the dynamical coupling
between robots and environment, which can be exploited for
synchronisation, allowing to keep a minimal complexity of both
the behavioural and the communication level. We use artificial
evolution to synthesise the robot controllers, and we show how
very simple communication strategies can produce self-organising
synchronisation behaviours that scale to very large groups and
that can be transfered to physical robots.

I. INTRODUCTION

Synchrony pervades the world: examples of synchronous
behaviours can be found in the inanimate world as well as
among living organisms. One of the most commonly cited
synchronous behaviour is the one of fireflies from Southeast
Asia: thousands of insects have the ability to flash in unison,
perfectly synchronising their individual behaviour (see [1],
[2]). This phenomenon, reported by amazed travellers since the
seventeenth century, has been thoroughly studied and a self-
organising explanation has been proposed in order to account
for the emergence of synchrony [3], [4]. Fireflies are modelled
as a population of pulse-coupled oscillators with equal or very
similar frequency. These oscillators can influence each other
by emitting a pulse that shifts or resets the oscillation phase.1

The numerous interactions among the individual oscillator-
fireflies are sufficient to explain the synchronisation of the
whole population (for more details, see [3], [4]). Despite the
effort in understanding the above synchronising mechanism,
the adaptive significance of synchronous flashing is not clear
yet. Some tend to support a cooperative explanation, for which
a cluster of synchronous flashing would result in a very
attractive mating signal for faraway female insects. Others
support a competitive explanation, for which synchronous
flashing is a by-product of the individual attempt to anticipate
any other flash (see [2], p. 35). Similar explanations hold
for other synchronous behaviours observed in nature, such

1In some firefly species, it is rather the oscillation frequency that is
temporarily altered, having an effect comparable to a phase shift.

as frogs chorusing or crickets chirping. Despite the particular
evolutionary pressures leading to synchrony, the latter appears
to be a powerful mean for maximising the outcome while
minimising the collective effort and/or the interferences among
individuals. In this perspective, obtaining synchrony in a
robotic system is highly desirable, as it offers the possibility
to regulate through time the coordinated effort of a group.

The synchronisation behaviours observed in nature can
be a powerful source of inspiration for the design of dis-
tributed robotic systems. For example, the self-organising
synchronisation mechanism exploited by fireflies was suc-
cessfully replicated in a group of robots [5]. In this study,
the authors designed a specialised neural module for the
synchronisation of the group foraging/homing activities, in
order to maximise the overall performance. Much as fireflies
that emit light pulses, robots communicate through sound
pulses that directly reset the internal oscillator designed to
control the individual switch from homing to foraging and
vice versa. In a follow-up research, it was shown how similar
synchronisation mechanisms can be synthesised by artificial
evolution [6]. The authors evolved a cooperative foraging
behaviour incrementally. Initially, they rewarded the individual
ability to explore the environment and find the food source.
Then, evolution was continued in a social scenario, and the
emergence of communicative behaviours was observed. A
further evolutionary refinement led to the emergence of a
self-organising synchronisation behaviour based on exactly the
same mechanism that was hand-crafted in [5]. Other works
study synchrony as the coordination between the body parts
of a single robot: for instance, synchronisation issues were
considered while studying the gait of an hexapod robot [7].

The main goal of the experiments presented in this paper is
the study of self-organising synchronisation based on minimal
behavioural and communication strategies. Similarly to the
studies presented above, we follow the basic idea that if an
individual displays a periodic behaviour, it can synchronise
with other (nearly) identical individuals by temporarily modi-
fying its behaviour in order to reduce the phase difference with
the rest of the group. In [5], [6], synchronisation is based on
the entrainment of the individual internal dynamics through
communication: the internal oscillator defines the period and
the phase of the individual behaviour, and it is also responsible
for communication and synchronisation. In this paper, instead,
we do not postulate the need of internal dynamics. Rather, the
period and the phase of the individual behaviour are defined
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by the sensory-motor coordination of the robot [8], that is,
by the dynamical interactions with the environment that result
from the robot embodiment. We show that such dynamical
interactions can be exploited for synchronisation, allowing to
keep a minimal complexity of both the behavioural and the
communication level.

This result is a direct consequence of the attempt to obtain
a complete synchronisation of the robots movements. Much
as ballet dancers feature choreographed gestures, complete
synchronisation requires that robots perform perfectly syn-
chronous actions. Additionally, the robots’ perceptual flows
should be synchronised as well, resulting in a perfect en-
trainment of the dynamical relationship that each robot has
with the environment. This is a stricter requirement than
simply synchronising the robots’ activities, such as foraging or
homing in [5]. It however opens the way to the exploitation of
agent-environment interactions rather than internal dynamics.
In fact, a sequence of activities defines the phase of a periodic
behaviour with a coarse-grained time scale—e.g., the switch
from foraging to homing—while a sequence of movements
offers a much finer way to recognise the behaviour’s phase.

Now, the main problem is defining a robot controller able
to exploit the dynamical agent-environment interactions. We
use artificial evolution to search the space of the possible
behavioural and communication strategies for the synchroni-
sation problem [9], [10]. In particular, we avoid to explicitly
reward the use of communication, in order to leave evolution
free to explore the space of the possible solutions that lead to a
synchronous behaviour. This, however, makes the evolution of
communication particularly challenging. In fact, for commu-
nication to be in place, it is necessary to contemporary have
both the ability to produce a signal and the ability to properly
react to the perceived signal [11].

If the evolution of communication is not trivial, it is even
less trivial the exploitation of communicative interactions for
self-organisation. In this paper, we analyse the properties of
the evolved behaviours under a self-organising perspective,
evaluating their scalability to large groups of robots. Moreover,
we investigate the scalability of communication per se, in
order to evaluate the efficiency of the evolved strategy when
not constrained by the physical interactions among the robots.
Finally, we analyse the robustness of the evolved behaviours
by testing them on physical robots.

This paper is organised as follows. In Section II we present
the experimental setup devised to evolve in simulation the self-
organising synchronisation behaviours. Section III presents the
obtained results, analysing the communication strategies and
the scalability properties of the evolved controllers. Section IV
discusses the results obtained by testing the controllers with
physical robots. Section V concludes the paper.

II. EXPERIMENTAL SETUP

As mentioned above, in this work we aim at studying the
evolution of behavioural and communication strategies for
synchronisation. For this purpose, we define a simple, idealised
scenario that anyway contains all the ingredients needed for

Fig. 1. The s-bot. The traction system is composed by both tracks and wheels,
which ensure a good mobility over moderately rough terrains. The rotating
turret holds the microphones and the loudspeakers used for communication.

our study. The task requires that each robot in the group
displays a simple periodic behaviour, that is, moving back and
forth from a light bulb positioned in the centre of the arena.
Moreover, robots have to synchronise their movements, so that
their oscillations are in phase with each other.

The robots used in this experiments are the s-bots (see
Fig. 1), which are small autonomous robots having the ability
to connect one to the other and to self-assemble [12], [13].
The s-bot has a differential drive traction system composed
of tracks and wheels. Above the traction system, the turret
holds various sensory systems and the gripper for making
connections with other s-bots.2 The evolutionary experiments
presented in this paper are performed in simulation, using a
simple kinematic model of the s-bots. Each s-bot is provided
with infrared sensors and ambient light sensors, which are
simulated using a sampling technique [15]. In order to commu-
nicate with each other, s-bots are provided with a very simple
signalling system, which can produce a continuous tone with
fixed frequency and intensity. When a tone is emitted, it is
perceived by every robot in the arena, including the signalling
s-bot. The tone is perceived in a binary way, that is, either
there is someone signalling in the arena, or there is no one.

The arena is a square of 6 × 6 meters. In the centre, a
cylindrical object supports the light bulb, which is always
switched on. The light intensity perceived by the s-bot’s
sensors decreases quadratically with the distance from the light
bulb. However, light can be perceived from every position in
the arena. At the beginning of every trial, three s-bots are
initially positioned in a circular band ranging from 0.2 to 2.2
meters from the centre of the arena. The robots have to move
back and forth from the light, making oscillations with an
optimal amplitude of 2 meters.

A. The Controller and the Evolutionary Algorithm

In the experiments reported here, artificial evolution is
used to synthesise the connection weights of simple neural
controllers with fixed architecture. The controller of each s-bot

2The assembling capability of the s-bots is not the focus of these experi-
ments. For more details on self-assembling s-bots, see [14].
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consists in a fully connected, feed forward neural network—
a perceptron network. The neural network has 11 sensory
neurons directly connected to 3 motor neurons. The sensory
neurons are simple relay units while the output neurons are
sigmoid units whose activation is computed as follows:

yj = σ

(∑
i

wijIi + βj

)
, σ(z) =

1

1 + e−z
, (1)

where Ii is the activation of the ith input unit, βj is the bias
term, yj is the activation of the jth output unit, wij is the
weight of the connection between the input neuron i and the
output neuron j, and σ(z) is the sigmoid function.

Four sensory neurons—I1 to I4—are dedicated to the
readings of four ambient light sensors, positioned in the front
and in the back of the s-bot. Six sensory neurons—I5 to
I10—receive input from a subset of the infrared proximity
sensors evenly distributed around the s-bot’s turret. The last
sensory neuron I11 receives a binary input corresponding to
the perception of sound signals. The activation states of the
first two motor neurons—y1 and y2—is scaled onto the range
[−ωM , +ωM ], where ωM is the maximum angular speed of the
wheels (ωM ≈ 4.5 rad/s). The third motor neuron controls the
speaker in such a way that a sound signal is emitted whenever
the activation state y3 is greater than 0.5.

The evolutionary algorithm is based on a population of 100
genotypes, which are randomly generated. This population
of genotypes encodes the connection weights of 100 neural
controllers. Each connection weight is represented with a 8-bit
binary code mapped onto a real number ranging in [−10, +10].
Subsequent generations are produced by a combination of
selection with elitism and mutation. Recombination is not
used. At each generation, the 20 best individuals are selected
for reproduction and retained in the subsequent generation.
Each genotype reproduces four times, applying mutation with
5% probability of flipping a bit. The evolutionary process is
run for 500 generations.

B. The Fitness Computation

During the evolution, a genotype is mapped into a control
structure that is cloned and downloaded in all the s-bots taking
part in the experiment (i.e., we make use of a homogeneous
group of s-bots). Each genotype is evaluated 5 times—i.e., 5
trials. Each trial differs from the others in the initialisation of
the random number generator, which influences both the initial
position and orientation of the s-bots within the arena. Each
trial lasts T = 900 simulation cycles, which correspond to 90
seconds of real time.

The fitness of a genotype is the average performance
computed over the 5 trials in which the corresponding neural
controller is tested. During a single trial, the behaviour pro-
duced by the evolved controller is evaluated by a 2-component
fitness function: F = 0.6 · FM + 0.4 · FS . The movement
component FM rewards robots that oscillate back and forth
from the light bulb. For each s-bot s, we look at the closest
and farthest distances from the centre of the arena (see the

A s,i
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Fig. 2. Computation of the individual movement fitness. The continuous line
represents the trajectory of a robot, which oscillates while circuiting around
the centre of the arena. The black dots represent the farthest and closest
distances reached. The arrow As,i indicates the oscillation amplitude between
the second and third point on the trajectory.

black dots in Fig. 2). We compute the oscillation amplitudes
As,i, with i = [1, M ], corresponding to the radial distance
covered between two consecutive points, as shown in Fig. 2.
Then, the individual movement fitness FM,s is computed as
follows:

FM,s =
1

M − m + 1

M∑
i=m

Θ(As,i/Ao), (2)

where Ao is the optimal amplitude (2 meters). The function
Θ(x) = 1 − |1 − x| simply rewards those oscillations that
better approximate the optimum. Given the maximum speed
of the s-bots, it is possible to compute the maximum number
of oscillatory movements having amplitude Ao that can be
performed in T control cycles, referred to as Mo(T ). In
computing FM,s, we consider only the last Mo(T ) oscilla-
tory movements performed, which corresponds to set m =
max (1, M − Mo(T )) as the first oscillatory movement to be
considered. The overall movement fitness FM is computed as
the minimum among the individual values of the single s-bots.

The second fitness component FS rewards synchrony among
the robots. Synchrony among two s-bots can be evaluated as
the cross-correlation coefficient between the sequences of the
distances from the light bulb. The cross-correlation coefficient
φxy of two distance sequences dx(t) and dy(t) can be defined
as:

φxy =
Φxy√
ΦxxΦyy

, Φxy =
1

T

T∑
t=1

dx(t)dy(t). (3)

The coefficient φxy can take values in [-1,1], where 1 indicate
perfect synchrony and -1 perfect asymmetry. The synchrony
component FS is computed as the product among the cross-
correlation coefficients of all possible pairs 〈x, y〉 among the
s-bots:

FS =
∏
x,y

max(0, φxy), (4)
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TABLE I

POST-EVALUATION RESULTS FOR THE BEST CONTROLLERS OF THE 20 EVOLUTIONARY RUNS. THE AVERAGE FITNESS AND THE STANDARD DEVIATION

COMPUTED OVER 500 TRIALS ARE SHOWN. BOLD VALUES REFERS TO EVOLUTIONARY RUNS THAT PRODUCED A COMMUNICATION STRATEGY IN WHICH

SIGNALLING WAS EXPLOITED FOR SYNCHRONISATION.

ci c1 c2 c3 c4 c5
F 0.63 ± 0.13 0.49 ± 0.16 0.58 ± 0.06 0.67 ± 0.07 0.65 ± 0.16

ci c6 c7 c8 c9 c10
F 0.56 ± 0.19 0.66 ± 0.02 0.51 ± 0.22 0.65 ± 0.12 0.55 ± 0.21

ci c11 c12 c13 c14 c15
F 0.60 ± 0.10 0.60 ± 0.11 0.73 ± 0.09 0.74 ± 0.07 0.68 ± 0.13

ci c16 c17 c18 c19 c20
F 0.65 ± 0.11 0.52 ± 0.14 0.56 ± 0.09 0.66 ± 0.16 0.61 ± 0.14

Notice that FS is bounded into the interval [0,1].
In addition to the fitness computation described above,

an indirect selective pressure for the evolution of obstacle
avoidance is given by blocking the motion of robots that
collide. When this happens, the performance is negatively
influenced. Additionally, a trial is normally terminated after
T = 900 simulation cycles. However, a trial is also terminated
if any of the s-bots crosses the borders of the arena.

III. RESULTS

We performed 20 evolutionary runs, each starting with a
different population of randomly generated genotypes. Af-
ter the evolutionary phase, we selected a single genotype
per evolutionary run, chosen as the best individual of the
final generation. We refer to the corresponding controllers
as ci, i = 1, .., 20. In order to evaluate their performance,
these controllers have been evaluated in 500 different trials.
The results are summarised in Table I, showing the average
performance and the standard deviation. It is possible to notice
that some controllers do not achieve a good performance,
while c13 and c14 outperform all the other controllers.

Direct observation of the evolved behaviours showed that
in some evolutionary runs—9 out of 20—communication was
not evolved. In fact, either robots always signal or they
never do: in any case, there is no information transfer to be
exploited for synchronisation. This justifies the lower perfor-
mance obtained by the corresponding controllers, as shown
in Table I. These results confirm the difficulty of evolving
suitable communication strategies for synchronisation. In fact,
as mentioned in Section I, the evolution of signalling must
be accompanied by a suitable reaction to the signal. If this is
not the case, signalling may just interfere with the sensory-
motor coordination of partially evolved solutions. Therefore,
a certain number of fruitful mutations are required to obtain a
successful communication, which concerns both the signalling
behaviour and the reaction to the perceived signal.

Despite the above difficulties, 11 out of 20 evolutionary runs
were successful, resulting in simple communication strategies
in which signalling was exploited for synchronisation (the per-
formance of the corresponding controllers is indicated in bold
in Table I). All evolved solutions result in similar behaviours,
characterised by two stages, that is, phototaxis when the s-bots
approach the light bulb, and antiphototaxis when the s-bots

move away from it. Signalling is generally performed only
during one of the two stages. We can classify the evolved
controllers in three classes, according to the individual reaction
to the perception of a sound signal.

The first class—composed of c1, c4, c7, c19 and c20—
involves behaviours in which signalling strongly correlates
with antiphototaxis. This can be appreciated looking at the top
part of Fig. 3, in which the s-bots’ distances from the centre
and the group signalling behaviour are plotted through time. It
is possible to notice that whenever a robot signals, its distance
from the light increases and, vice versa, when no signal is
perceived the distance decreases. Synchronisation is normally
achieved after one oscillation and it is maintained for the rest
of the trial, the robots moving in complete synchrony with
each other. This is possible thanks to the evolved behavioural
and communication strategy, for which a robot emits a signal
while performing antiphototaxis and reacts to the perceived
signal by reaching and keeping a specific distance away
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Fig. 3. The synchronisation behaviour of c7. Top: s-bots’ distances from
the light bulb are plotted against the simulation cycles, in order to appreciate
the synchronisation of the individual movements. The coloured areas indicate
when a signal is emitted by any of the s-bots in the arena. Such a signal is
perceived by the robots and exploited for synchronisation (see text for details).
Bottom: the distance and signalling behaviour of a single s-bot are plotted
against the simulation cycles. From cycle 500 to 1000, a signal is artificially
created, which simulates the behaviour of an s-bot. This allows to visualise
the reaction of an s-bot to the perception of a sound signal.
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Fig. 4. The synchronisation behaviour of c13. See Fig. 3 for details.

from the centre of the arena. As shown in the bottom part
of Fig. 3, in presence of a continuous signal—artificially
created from cycle 500 to cycle 1000—an s-bot suspends its
normal oscillatory movement to maintain a constant distance
from the centre. As soon as the sound signal is stopped, the
oscillatory movement starts again. Synchronisation is possible
because robots are homogeneous, therefore they all present
an identical response to the sound signal that makes them
move to the outer part of the arena. As soon as all robots
reach the same distance from the centre, signalling ceases
and synchronous oscillations can start. To better understand
the synchronisation mechanism that characterises this class of
controllers, it is worth considering an s-bot as an “embodied
oscillator”, its individual behaviour being characterised by a
period and a phase. The latter is defined by the s-bot’s position
in its configuration space, which can be defined as the set of
possible distances and orientations with respect to the light
bulb. Whenever a robot perceives a sound signal, it resets the
oscillation phase by attaining a particular configuration—i.e.,
reaching and maintaining a specific distance and orientation
with respect to the light bulb. This reset mechanism results
in the complete synchronisation of the robots movements, as
it is exploited by the robots to reduce and cancel the phase
difference of their oscillations. Clearly, the phase reset is not
instantaneous, because s-bots need time to reach the target
configuration, due to their embodiment. It follows that the
reset configuration must be maintained for enough time to
let all s-bots converge. In conclusion, the evolved behavioural
and communication strategies allow a fast synchronisation of
the robots activities, because they force all robots to perform
synchronously phototaxis or antiphototaxis since the beginning
of a trial, as a reaction to the presence or absence of a sound
signal respectively. It also allows a fast synchronisation of the
movements thanks to the reset of the oscillation phase. Finally,
it provides a mean to fine-tune and maintain through time a
complete synchronisation, because the reset mechanism allows
to continuously correct even the slightest phase difference.

The second class—composed of c5, c9, c13, c15 and c16—
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Fig. 5. The synchronisation behaviour of c14. See Fig. 3 for details.

features the same synchronisation strategy described above,
but with inverse movements. Here, signalling strongly corre-
lates with phototaxis, while robots move away from the centre
when no signal is perceived (see the top part of Fig. 4). Also
in this case synchronisation is the result of a reset mechanism:
whenever a signal is perceived, s-bots perform phototaxis and
keep a constant distance close to the light bulb (see the bottom
part of Fig. 4). As soon as the whole group reaches similar
distances from the centre of the arena, signalling ceases and
the oscillatory movement starts again. We observed here a
better precision in synchronisation, probably due to the steeper
intensity gradient perceived in proximity of the light bulb.
This allows to precisely maintain the reset configuration and
therefore to rapidly achieve a complete synchronisation.

The last controller—c14—makes a class on its own, produc-
ing a peculiar behaviour. In this case, it is rather the absence of
a signal that strongly correlates with phototaxis. The individual
reaction to the perceived signal can be appreciated looking
at the bottom part of Fig. 5. When the continuous signal is
artificially created (see simulation cycles 500 to 1000), the s-
bot performs both phototaxis and antiphototaxis. However, as
soon as the signal is removed, the s-bot approaches the light
bulb. This behaviour results from the evolved communication
strategy, which enables the synchronisation of the s-bots’
activities, that is, phototaxis and antiphototaxis. Differently
from the mechanism presented above, here there is only a
coarse-grained phase reset, which concerns the activities rather
than the very movements: s-bots initially synchronise only
the movement direction but not the distance at which the
oscillatory movements are performed (see the top part of
Fig. 5).3 Despite this limitation, this mechanism allows a
very fast and precise synchronisation of the s-bots’ phototaxis
and antiphototaxis, which is probably the reason why it was
evolved in the first place. In order to achieve a complete syn-
chronisation, an additional mechanism was synthesised, which

3Notice that this is a reset mechanism that works on a subset of the variables
describing the configuration space.
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Fig. 6. Scalability of the successful controllers. Each box represents the inter-quartile range of the data, while the black horizontal line inside the box marks
the median value. The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the box. The empty circles mark the
outliers. The horizontal grey line shows the mean value over 500 trials measured in the evolutionary conditions, in order to better evaluate the scalability
property (see also Table I).

allows to precisely entrain the movements of the robots on
a fine-grained scale. This mechanism influences the distance
covered by an s-bot during antiphototaxis: s-bots that are
farther away from the light bulb slightly bend their trajectory
and therefore cover a distance range shorter than the one
covered by the other robots in the same time. In this way,
the phase difference among s-bots is progressively reduced,
until all s-bots are completely synchronised (see Fig. 5 top).

A. Scalability of the Evolved Behaviours

The above analysis clarified the role of communication in
determining the synchronisation among the different robots.
In this section, we analyse the scalability of the evolved
neural controllers when tested in larger groups of robots. For
this purpose, we evaluated the behaviour of the successful
controllers using 3, 6, 9 and 12 s-bots. In order to evaluate the
performance, we use the fitness function defined in Section II-
B, but here we measure synchrony in a slightly different
way,4 computing the minimum cross-correlation coefficient
φxy among all possible pairs 〈x, y〉, as follows:

F̂S = min
x,y

φxy (5)

The obtained results are plotted in Fig. 6. It is possible
to notice that most of the best evolved controllers have a
good performance for groups composed of 6 s-bots. In such
condition, in fact, s-bots are able to distribute in the arena
without interfering with each other. An exception is given by
c1: in this case, the initial coordination takes longer time and
some robots move too distant from the centre of the arena,
either exceeding the arena bounds or being not able to perceive
the light bulb. In both cases, the performance is close to 0.

4We do not use FS (see (4)) because it is based on a product and it does
not scale well with the group size: for example, 10 robots form 45 pairs. If
φxy = 0.99 for all pairs—a very good behaviour—then FS ≈ 0.64.

Many controllers present a good behaviour also when
groups are composed of 9 s-bots. However, we also ob-
serve various failures due to interferences among robots and
collisions. The situation gets worse when using 12 s-bots:
the higher the density of robots, the higher the number of
interferences that lead to failure. In this case, most controllers
achieve a good performance only sporadically. Only c4 and
c7 makes exception, being able to systematically achieve
synchronisation despite the increased difficulty of the task.

B. Scalability of the Synchronisation Mechanism

The scalability analysis performed in the previous section
takes into account the complete behaviour, therefore including
collision avoidance. When the density of robots is too high,
the spatial constraints limit the synchronisation ability, because
avoiding collision interferes with the ability to maintain a
periodic behaviour and to synchronise with the rest of the
group. Moreover, possible collisions among robots prevent the
group from synchronising. In order to analyse the scalability
property of the synchronisation mechanism only, we evaluate
the evolved controllers removing the physical interactions
among the robots, as if each s-bot is placed in a different arena
and perceives the other s-bots only through sound signals.

Removing the robot-robot interactions allows us to test large
groups of robots—we used 12, 24, 48 and 96 s-bots. The
obtained results are summarised in Fig. 7. Not surprisingly,
c1 does not scale, being affected by the same problems
described above. A similar problem affects the behaviour
produced by c19. However, many controllers—namely c4, c7,
c13, c14, c15 and c20—perfectly scale, having a performance
very close to the mean performance measured with 3 s-bots. A
slight decrease of performance is justified by the longer time
required by larger groups to converge to perfectly synchronised
movements (see for example c7 and c20).

Some controllers—namely c4, c5, c9, c14 and c16—present
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Fig. 7. Scalability of the synchronisation mechanism. See the caption of Fig. 6 for details.

an interference problem that prevents the group from synchro-
nising when a sufficiently large number of robots is used.
In such condition, the signals emitted by different s-bots at
different times may overlap and may be perceived as a single,
continuous tone (recall that the sound signals are perceived in
a binary way, preventing an s-bot from recognising different
signal sources). If the perceived signal does not vary in
time, it does not bring enough information to be exploited
for synchronisation. Such interference can be observed only
sporadically for c4 and and c14, but it strongly affects the
performance of the other controllers—namely c5, c9 and c16.
This problem is the result of the fact that we used a “global”
communication form in which the signal emitted by an s-
bot is perceived by any other s-bot everywhere in the arena.
Moreover, from the perception point of view, there is no
difference between a single s-bot and a thousand signalling
at the same time. The lack of locality and of additivity is
the main cause of failure for the scalability of the evolved
synchronisation mechanism. However, as we have seen, this
problem affects only some of the analysed controllers. In the
remaining ones, the evolved communication strategies present
an optimal scalability that is only weakly influenced by the
group size.
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Fig. 8. Distances from the light bulb and collective signalling behaviour of
the real s-bots.

IV. TESTS WITH PHYSICAL ROBOTS

So far, we have shown how artificial evolution can synthe-
sise efficient and scalable synchronisation mechanisms which
are based on minimal communication strategies. In this sec-
tion, we test the robustness with respect to the transfer to
physical robots. Among the best evolved controllers, we chose
c13 as it presented a high performance and good scalability
properties. The neural network controller is used on the
physical s-bots exactly in the same way as in simulation. The
sensor readings are taken every 100 ms, they are scaled in
the range [0,1] and finally fed to the neural network. The
outputs of the network are used to control the wheels and
the loudspeaker. The only differences with the simulation
experiments are in the experimental arena, which is four times
smaller in reality (1.5×1.5 meters), and accordingly the light
bulb is approximately four times less intense. An overhead
camera was used to record the movements of the s-bots, and
their trajectories were extracted using a tracking software [16].

The behaviour of the physical robots presents a good
correspondence with the results obtained in simulation. Fig. 8
shows the s-bots’ distance from the light bulb recorded during
a successful trial.5 It is possible to notice how synchrony is
quickly achieved and maintained throughout the whole trial,
notwithstanding the high sensors and actuator noise and the
differences among the three robots. The latter deeply influence
the group behaviour: s-bot happened to have a different
maximum speed which let them cover different distances in the
same time interval. Therefore, if phototaxis and antiphototaxis
are very well synchronised, as a result of the communication
strategy exploited by the robots, it is possible to notice some
differences in the maximum distance reached.

V. CONCLUSIONS

In this paper, we studied the evolution of behavioural
and communication strategies for the synchronisation of the

5See http://laral.istc.cnr.it/trianni/sync.html for
some movies.
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movements in a group of robots. The obtained results indi-
cate that self-organising synchronisation behaviours can be
successfully evolved, which also scale to large groups. We
adopted a minimal approach that does not postulate the need
of internal dynamics for the robots to be able to synchronise.
Instead, we stress the importance of the dynamical coupling
between robots and environment. Robots can be described
as embodied oscillators, their behaviour being characterised
by a period and a phase. In this perspective, the movements
of the robot correspond to an advancement of the oscillation
phase. Therefore, s-bots can control and modify their phase
simply by moving in the environment and by modifying their
dynamical relationship with it. In this way, simple and reactive
behavioural and communication strategies are sufficient to
implement efficient synchronisation mechanisms. Most of the
evolved solutions rely on a particular reset mechanism, that
allows robots to quickly achieve a complete synchronisation.
This mechanism is based on the identification of a particular
position in the configuration space in which s-bots do not
signal. This position corresponds to a particular phase of the
periodic behaviour, which is held until a signal emitted by
any other robot is perceived. When all s-bots reach the reset
position, the phase differences are cancelled and synchronisa-
tion is achieved. This is not the only mechanism observed in
the evolved solutions. One of the evolved controllers present
two synchronisation mechanisms, which allow a very quick
activity synchronisation—i.e., phototaxis and antiphototaxis
are immediately performed in perfect sync—followed by a
slower convergence to a complete synchronisation—i.e., s-bots
gradually entrain their movements.

We have also analysed the scalability of the evolved con-
trollers, showing that synchronisation can be obtained also
in large groups, despite controllers were evolved using three
s-bots only. However, when many s-bots are placed in the
same arena, the avoidance behaviour and possible collisions
strongly interfere with the ability to synchronise. This is the
principal limitation of the evolved controllers, which does not
allow to perform tests with large groups. However, we could
appreciate the scalability of the synchronisation mechanism
to very large groups by neglecting the physical interactions
among the robots. We tested the evolved controllers with
up to 96 s-bots, and we found that many evolved solutions
have a very good scalability. Few controllers presented an
interference problem at the level of the signalling behaviour,
that prevented robots from extracting a relevant information
to be used for synchronisation. Finally, we tested one of
the evolved controllers with the real s-bots, and also in this
case we could observe synchronisation, further proving the
robustness of the evolved controller.

In future work, we intend to study synchronisation under
two different perspectives. From one hand, we aim at inves-
tigating the adaptive significance of synchronous behaviours.
Here, synchrony should result only from the need to coordinate
the activities of a group. On the other hand, we are interested
in exploiting synchrony as a general principle—among others,
see for example [17]—to evolve cooperative behaviours.
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