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Abstract—We propose a new modeling framework “Generative Network
Automata (GNA)” that can uniformly describe both state transitions and
autonomous topology transformations of complex dynamical networks.
GNA is formulated as an extension of existing complex dynamical network
models to include a new set of generative update rules that determine how
local network topologies will change based on the current local network
states and topologies. This paper introduces basic concepts of GNA, its for-
mal definitions, its generality to represent other dynamical systems models,
and some preliminary results of an exhaustive sweep of possible dynamics
found in elementary binary GNA with restricted updating rules.

I. INTRODUCTION

A variety of modeling tools have been proposed and uti-
lized in complex systems research [1], [2]. Typical tools in-
clude equation-based dynamical systems such as ordinary or
partial differential equations and iterative maps [3], and dynam-
ical networks such as artificial neural networks [4], [5], ran-
dom Boolean networks [6], [7], [8] and cellular automata [9],
[10]. While they are capable of producing strikingly complex
and even biological-like behaviors [11], [12], [13], [14], [15],
these tools commonly assume a system made of a fixed num-
ber of components, or variables. Their dynamics are considered
as trajectories of system states in a confined phase space with
time-invariant dimensions.

The rapidly growing network theory has demonstrated yet
another approach of complex systems modeling [16], [17]. It
has provided a way to consider dynamic addition, modification
and removal of components and their interactions (i.e., nodes
and edges) and their implications for system-level properties.
Among the most actively investigated issues in this field is how
statistical properties of network topology will be affected by
random and/or preferential addition (growth) and removal (er-
rors or attacks) of nodes and edges, and in particular, how net-
works can be more robust against the latter [18], [19], [20], [21],
[22]. Component addition and removal are typically assumed as
perturbations coming from external sources, not incorporated
into the dynamics of the system itself.

Researchers have recently started investigating dynamical
properties of networks with nontrivial complex topologies [23],
[24], [25], [26], [27], [28]. These studies are the forerunners
that attempt to merge the above two fields, considering how
states of networks with complex topologies will evolve over
time and respond to exogenous perturbations, though they are
still limited to networks with fixed topologies so far. Under-
standing the coupling between dynamic changes of states and
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topologies of networks is now recognized as one of the most
important problems to address [19].

When looking into real-world complex systems, one can
find many instances of dynamical networks whose topology (or
phase space dimensions and constitutions) keeps changing due
to the system’s own dynamical rules (see Table I). In all of
these systems, state transitions of each component and topolog-
ical transformations of networks are strongly intertwined with
each other. Neither conventional dynamical systems theory nor
modern network theory is sufficient to fully describe the dynam-
ics of such systems. There is a significant need for comprehen-
sive models of systems with dynamically varying topologies in
many cutting-edge fields, including system biology, human so-
cial dynamics, and communication infrastructure design.

We aim to address the above-mentioned lack of fundamental
theories for modeling complex systems by extending existing
complex dynamical network models to include a new set of gen-
erative update rules that determine how local network topolo-
gies will change based on the current local network states and
topologies. We call this model framework “generative network
automata (GNA).” The name indicates the integration of knowl-
edge accumulated in dynamical systems theory, network theory,
and graph grammar theory.

In the following sections we will introduce basic concepts
of GNA, its formal definitions, its generality to represent other
dynamical systems models, and some preliminary results of an
exhaustive sweep of possible dynamics found in elementary bi-
nary GNA with restricted updating rules.

II. BACKGROUND: GENERATIVE GRAPH GRAMMARS

The key characteristic of GNA is that it should have rules
for transformations of local network topologies as well as tran-
sitions of local states. Such network transformations may be
modeled as a rewriting process of local network configurations.
We will therefore introduce methods and techniques developed
in graph grammar theory [29], [30], [31], [32], [33] to construct
general formulations of GNA.

Graph grammars, studied since late 1960’s in theoretical
computer science, are an extension of formal grammars in
computational linguistics to discuss similar rule-based rewrit-
ing processes of graphs, or networks. They are used to model
generative processes of networks through repeated node and/or
(hyper-)edge replacements. “Generative” means that these re-
placements are driven by local topological features of the net-
work itself, and not by external sources of perturbation as typi-
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TABLE I

REAL-WORLD EXAMPLES OF DYNAMICAL NETWORKS WHOSE TOPOLOGY CHANGES DUE TO THE SYSTEM’S OWN DYNAMICAL RULES.

System Nodes Edges Example of states of nodes Example of phase space
changes

Organism Cells Intercellular communication
channels

Gene/protein activities Fission and death of cells
during the developmental
period

Ecological
community

Species Interspecific relationships Population Introduction and extinction
of species

Human soci-
ety

Individual Social relationships Social, economical, political
and/or cultural statuses

Entry and withdrawal of
individuals

Communication
network

Terminals,
hubs

Cables, wireless
connections

Information stored and
transacted

Addition and removal of
terminal or hub nodes

cally assumed in modern network theory.
A classic, and probably most widely known, example of

graph grammars is the Lindenmayer system, or L-system [34].
It is a simple rewriting system that can produce self-similar re-
cursive structures in a sequential string (in this sense, the L-
system remains within the range of classic formal grammars).
What makes this system outstanding is that it comes with an
interpretation algorithm that converts a resultant string into a
tree-like topological structure, which may appear just like a nat-
ural tree if parameters are appropriately chosen. This example
shows the capability of graph grammars to describe the emer-
gence of natural complex structures using a set of small local
rules.

Although their relevance to biology was initially recognized
[29], [35], application of graph grammars has so far mostly re-
mained within the range of computer science, such as pattern
recognition, compiler design, and data type specification, with
a primary focus on context-free rewriting rules [30], [31], [32],
[33]. It is also limited in that it does not consider dynamics of
network states. There has been some exceptional work done in
this field though [36], [37], where dynamical networks were ap-
plied to solve graph-theoretic problems such as diameter mea-
surement and closure detection. However, these studies did not
consider generative aspects of networks.

Most recently, a few models have been developed for gen-
erative processes of networks with some dynamical aspects in-
cluded [38], [39], [40]. These models are fairly complicated
and heuristically designed for specific problems, with neither
clean-cut theoretical foundations nor broad applicability.

To the best of our knowledge, our GNA framework is the first
to systematically integrate rewriting rules for transformations of
local network topologies into dynamical networks. Our aim is to
develop generalized theory of GNA that can be broadly applied
to the modeling of various complex systems.

III. DEFINITIONS OF GNA

A. Configuration

GNA is a network made of dynamical nodes and directional
edges between them. Undirectional edges can also be repre-
sented by symmetrically placing two directional edges between
nodes. Each node takes one of the (finitely or infinitely many)
possible states defined by a state set S. The edges describe

referential relationships between the nodes, specifying how the
nodes affect each other in state transition and topology trans-
formation. A configuration of GNA at a specific time t is a
combination of states and topologies of the network, which can
be given by the following:

• Vt: A finite set of nodes. This determines the phase space
dimensions of the system at time t. While usually assumed
as time-invariant in conventional dynamical systems the-
ory, this set can dynamically change in the GNA frame-
work due to addition and removal of nodes.

• Ct : Vt → S: A map from the node set to the local state
set. This describes the global state of the system at time t.
If local states are scalar numbers, Ct can be represented as
a vector with its size potentially varying over time.

• Lt : Vt → V ∗
t : A map from the node set to its own clo-

sure. This specifies a set of destinations of outgoing edges
originating from a specific node, representing the global
topology of the system at time t, which is also potentially
varying over time.

B. Dynamics

States and topologies of GNA are updated through a repeti-
tive rewriting process that includes the following three steps:

1. Extraction of part of the GNA (subGNA) that will be sub-
ject to change.

2. Production of a new subGNA that will replace the sub-
GNA selected above.

3. Embedding of the new subGNA into the rest of the whole
GNA.

The temporal dynamics of GNA can therefore be formally de-
fined by the following triplet 〈E,R, I〉:

• E: An extraction mechanism that determines which part
of the GNA is selected for the updating. It may be imple-
mented as a function that takes the whole GNA configura-
tion and returns a subGNA configuration to be replaced. It
may be deterministic or stochastic.

• R: A replacement mechanism that produces a new sub-
GNA from the subGNA selected by E and also specifies
the correspondence of nodes between the old and new sub-
GNAs. It may be implemented as a function that takes
a subGNA configuration and returns a pair of a new sub-
GNA configuration and a mapping between nodes in the
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Fig. 1. GNA rewriting process. (a) The extraction mechanism E selects part
of the GNA. (b) The replacement mechanism R produces a new subGNA as a
replacement of the old subGNA and also specifies the correspondence of nodes
between old and new subGNAs (dashed line). This process may involve both
state transition of nodes and transformation of local topologies. The “bridge”
edges that used to exist between the old subGNA and the rest of the GNA re-
main unconnected and open. (c) The new subGNA produced by R is embedded
into the rest of the GNA according to the node correspondence also specified by
R. In this particular example, the top gray node in the old subGNA has no cor-
responding node in the new subGNA, so the bridge edges that were connected
to that node will be removed. (d) The updated configuration after this rewriting
event.

old subGNA and nodes in the new subGNA. It may be de-
terministic or stochastic.

• I: An initial configuration of GNA.
To fully implement the algorithm for simulating GNA dy-

namics, one needs a couple more commonly used procedures
such as the removal of the selected subGNA from the whole
GNA and the re-connection of “bridge” edges (edges that were
between the old subGNA and the rest of the GNA) when em-
bedding the new subGNA. Because the workings of these pro-
cedures are fairly obvious, we omit detailed explanations for
them. The above E, R, I are sufficient to define specific GNA
models. The entire rewriting process is illustrated in Fig. 1,
which visually shows how these mechanisms work together.

Note that this rewriting process, in general, may not be ap-
plied synchronously to all nodes or subGNAs in a network, be-

cause simultaneous modifications of local network topologies at
more than one places may cause conflicting results that are in-
consistent with each other. This limitation will not apply though
when there is no possibility of such topological conflicts, e.g.,
when the rewriting rules are all context-free, or when GNA is
used to simulate conventional dynamical networks that involve
no topological changes.

Although the definitions given above could be one of the sim-
plest possible formulations of GNA, it already has consider-
able complexity compared to conventional dynamical systems
models. The possibility of temporal changes of Vt and Lt par-
ticularly makes it difficult to investigate its dynamical proper-
ties analytically. While defying analytical treatments, however,
the updating process of GNA is algorithmically described and
hence their dynamics can be easily experimented through com-
puter simulation. We developed a preliminary GNA simula-
tion/visualization program in Wolfram Research Mathematica
for this purpose1. The results presented in this paper are ob-
tained using this simulator program.

IV. GENERALITY OF GNA

The GNA framework is highly general and flexible so that
many existing dynamical network models can be represented
and simulated within this framework.

For example, if R always conserves local network topologies
and modifies states of nodes only, then the resulting GNA is a
conventional dynamical network model, including cellular au-
tomata, neural networks, and random Boolean networks (Fig. 2
(a), (b)). A straightforward application of GNA typically comes
with asynchronous updating schemes, as introduced in the pre-
vious section. Since asynchronous automata networks can emu-
late any synchronous automata networks [41], the GNA frame-
work covers the whole class of dynamics that can be produced
by conventional dynamical network models. Moreover, as men-
tioned earlier, synchronous updating schemes could also be im-
plemented in GNA for this particular class of models, because
they involve no topological transformation.

On the other hand, if R causes no change in local states of
nodes, the resulting GNA is a purely generative model based
on traditional graph grammars, which may also be a network
growth model in modern network theory if appropriate assump-
tions are implemented in the subGNA extraction mechanism E
(Fig. 2 (c)).

V. COMPUTATIONAL EXPLORATION OF POSSIBLE

DYNAMICS OF SIMPLE GNA

We conducted computational exploration of potential dynam-
ics found in a restricted subset of simple GNA models, which
is intended to play a key priming role in our ongoing GNA re-
search similar to that of the work by Wolfram [9] in cellular
automata research. The preliminary results are summarized be-
low.

1 The Mathematica-based simulation program is still under active develop-
ment but may be available upon request.
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Fig. 2. Various dynamical network models simulated using GNA. These exam-
ples were represented in the same format of 〈E, R, I〉 (see text) and simulated
using the same simulator program. (a) Simulation of asynchronous 2-D binary
cellular automata with von Neumann neighborhoods and local majority rules.
Space size: 100 × 100. (b) Simulation of an asynchronous random Boolean
network with N = 30 and K = 2. Time flows from left to right. Nodes of ran-
dom Boolean networks are generally inhomogeneous, i.e., they obey different
state-transition rules. Here each node’s own state-transition rule is embedded
as part of its state, and the replacement mechanism R refers to that information
when calculating the next state of a node. (c) Simulation of a network growth
model with the Albert-Barabási preferential attachment scheme. Time flows
from left to right. Each new node is attached to the network with one edge. The
extraction mechanism E is implemented so that it determines the place of at-
tachment preferentially based on the node degrees, which causes the formation
of a scale-free network in the long run.

A. Assumptions

We first need to note that there are infinitely many possible
mechanisms for E and R because there are no theoretical up-
perbounds in terms of the size of the old subGNA selected by E
(it could be infinitely large as the GNA grows) and the new sub-
GNA produced by R (it could be arbitrarily large by the design
of R). Making reasonable assumptions to restrict the possibility
of mechanisms for E and R is critical to facilitate systematic
study on the dynamics of GNA. Here we make the following
assumptions (Fig. 3):

1. States are binary (0 or 1).
2. Edges are undirectional (or more precisely, every connec-

tion between nodes is represented by two symmetric direc-
tional edges).

3. The extraction mechanism E always selects a subGNA by
(a) randomly picking one node u from the entire GNA (Fig.

3(a)),
(b) taking all the destination nodes of its outgoing edges

Lt(u) (Fig. 3(b)), and
(c) producing a subGNA “induced” by these nodes {u} ∪

Lt(u), i.e., a subGNA that includes all these nodes as
well as all the edges present between them (Fig. 3(c)).

4. The replacement mechanism R only refers to the state of
the central node in the selected subGNA and the local ma-
jority state within it. If there are equal numbers of 0’s and
1’s within the selected subGNA, one of them is randomly
chosen. This two-bit information will be used to determine
what will happen to the local configuration (Fig. 3(d)). The
following seven possible outcomes are made available:

(0) The central node disappears.
(1) Everything remains in the same condition.
(2) The state of the central node is inverted.
(3) The central node divides into two with the state pre-

served.
(4) The central node divides into two with the state inverted.
(5) The central node divides into three with the state pre-

served.
(6) The central node divides into three with the state in-

verted.
In cases where node division occurs, the edges that were
connected to the central node is evenly distributed to its
daughter nodes (Fig. 3(e)).

5. The initial condition I consists of a single node with state
0.

B. Methods

We carried out an exhaustive sweep of all the possible rewrit-
ing rules that satisfy the assumptions discussed above. Since
the extraction mechanism E is uniquely defined, it is only the
replacement mechanism R that needs to be varied. Here R is
a function that maps one of the seven possible actions to each
of the two-bit input patterns. Therefore the number of all the
possible R’s is 722

= 2401. To indicate a specific R, we will
use its “Rule Number” rn(R) that is defined by

rn(R) = a11 × 73 + a10 × 72 + a01 × 71 + a00 × 70, (1)

where aij is a numerical representation (numbers shown in italic
in the previous section) of the choice that R will make when the
state of the central node is i and the local majority state is j.

We simulated the GNA dynamics using asynchronous updat-
ing scheme for 200 rewriting events for each rn ranging from
0 to 2400. In each simulation run we recorded the temporal
changes of the number of nodes Nt and the average node de-
gree Kt once in every half unit of time. We then calculated the
average growth rate g and the temporal average of the average
node degree k as characteristic quantities of each rn. g was ob-
tained by averaging instantaneous growth rates (Nt+0.5/Nt)2

over the entire time series data. k was obtained by averaging
Kt over the second half of the time series data. The first half
was omitted to avoid the effect of initial large fluctuations due
to the small number of nodes. For each rn three independent
simulation runs were conducted and the average of their results
were used for the following analysis.

217

Proceedings of the 2007 IEEE Symposium on 
Artificial Life (CI-ALife 2007)



Fig. 3. Simplified GNA rewriting process used for the exhaustive sweep experiments. The extraction mechanism E (a) randomly picks one node u, (b) takes all
the destination nodes of its outgoing edges Lt(u), and (c) produces a subGNA induced by those nodes {u} ∪ Lt(u). The replacement mechanism R (d) refers to
the state of the central node u in the selected subGNA and the local majority state within it to determine what happens to the local configuration, (e) produces a
new subGNA as well as the correspondence of nodes between the old and new subGNAs based on the choice made in (d), and then (f) embeds the new subGNA
into the rest of the GNA.

It should be noted that there are two different ways of count-
ing time steps in asynchronous simulations. One is simply to
count one rewriting event as one time step, which we call com-
putational time steps. The other is to measure the progress of
virtual time in a simulated world between each discrete events
by considering one rewriting event as taking 1/Nt of the unit
of time. This is based on the assumption that every node is up-
dated once, on average, per unit of time, which is a reasonable
and useful assumption especially when one wants to compare
results of asynchronous simulations with those of synchronous
ones. We call the latter notion of time simulated time steps. All
the t’s in this paper represent this simulated time steps.

C. Results

Figure 4 shows the distribution of characteristic quantities of
all the 2401 simple GNAs in the g-k space, where the large di-
versity of possible dynamics is demonstrated. The growth rate
g is positively correlated with the average node degree k, be-
cause using divisions into three nodes will both speed up the
growth of GNA and increase the node degrees. The distribution
becomes broader and more sparse for smaller g, and ends at
g = 1 which is the necessary growth rate to maintain the struc-
ture. Below this value is the regime where GNAs become ex-
tinct quickly, hence no positive k values are calculated. It is also
visible that there is a dense horizontal cluster around the area of
1 < g < 3 and k = 1.9. It was found that the generated GNAs
were typically string-shaped in this area, where most nodes had
two edges, resulting in k close to 2. Several samples of ac-

Fig. 4. Distribution of characteristic quantities (average growth rate g and
average node degree k) of all the 2401 simple GNAs plotted in a g-k space.
Sample cases shown in Fig. 5 are indicated with large dots.

tual network topologies and their temporal changes are shown
in Fig. 5, which confirms topological diversity generated by the
GNA framework.

The difference of dynamics between different rules can also
be seen in the time series plot of the node number Nt (Fig. 6),
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Fig. 6. Growth curves of all the 2401 simple GNAs superposed. Curves that go
along the t axis indicate that the GNA for these cases did not grow. Many other
rules showed rapid exponential growth processes. Between these two, there are
relatively fewer intermediate cases that exhibit slow and fluctuating growth.

where the rules may be roughly classified into (1) extinction
or no growth, (2) rapid exponential growth, and (3) interme-
diate cases that exhibit slow and fluctuating growth. The last
cases may be particularly interesting, because their growth pro-
cesses could be sensitive to local conditions, sitting in the criti-
cal regime at the boundary between two different dynamics, or
possibly regulated by some intricate mechanisms to slow down.

Figure 7 shows temporal changes of network topologies
found in this intermediate cases. Their behaviors are charac-
terized by relatively slow growth and occasional production of
separated network fragments due to a disappearance of nodes,
or a nonhomogeneous development of a linear GNA strand. The
former may be viewed as a precursory process of biological
replication. The latter may be qualitatively similar to Wolfram’s
Class IV dynamics, here taking place in expanding 1-D CA aris-
ing on a GNA. These remain no more than a speculation at this
time, and they will need further investigation.

VI. CONCLUSION

We proposed Generative Network Automata as a new gen-
eralized modeling framework that allows us to uniformly de-
scribe the dynamics of various complex systems that have been
handled with different modeling techniques so far. We hope
that it will help formulate many distinct complex systems in
the same “format”, enabling one to compare those systems sys-
tematically, to identify their commonness and uniqueness, and
to actively exchange knowledge between different fields. The
preliminary results obtained in the exhaustive sweep of sim-
ple binary GNA dynamics revealed a large diversity of possible
outcomes that may be modeled and simulated using this frame-
work.

As our research on GNA is still at its launching stage, there
are many things to be done in the near future. The effective-
ness of GNA must be evaluated through its applications to the
modeling of real biological, social, and/or engineered complex
systems. Specific areas of application we are currently plan-
ning to include are the modeling of decentralized control mech-
anisms of multicellular organisms, team development and deci-

sion making processes in complex organizations, and dynamical
hierarchies in evolutionary systems.

One problem that needs to be solved immediately is the com-
putational inefficiency of our current GNA simuator. To resolve
this problem we plan to develop a specialized modeling and
simulation platform software that runs as a native application
rather than a script implemented on another software. This new
platform will be used for interactive modeling, analysis and vi-
sualization of results, as well as computationally efficient large-
scale simulations of GNA. It would provide substantial horse-
power for GNA research, similar to DDLab for dynamical sys-
tems research [42].
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