
Abstract-- Mainstream video games are increasingly benefiting

from more sophisticated adversarial artificial intelligences. The

quality of these synthetic opponents is becoming a significant

competitive advantage that was once exclusively reserved for

graphics. This new generation of synthetic opponent relies on

dynamic planning systems such as STRIPS to realize realistic and

challenging adversarial behavior. Such systems have been

embraced by game developers as they provide for transparent

representation of agent state and behavior, have low CPU

utilization and are available in toolkit form. Concurrently, the

dramatic proliferation of parallel computational units in modern

hardware architectures is also facilitating the use of connectionist

models of artificial intelligence in gaming. However, significant

barriers such as neural network training set generation and

turnaround time for neural network development have inhibited

widespread adoption of such techniques. To overcome these

barriers, we present an infrastructure that automates neural

network development through the use of a genetic algorithm to

evolve the behavioral training set of an adversarial artificial

intelligence. The infrastructure uses an existing game,

Wolfenstein 3D, as a simulation environment. We compare the

effectiveness of the neural network generated by this system

against a manually constructed neural network and the original

game AI. All three models are pitted against human players.

Keywords: artificial intelligence, games, genetic algorithms, neural

network applications.

I. INTRODUCTION

Adversarial Artificial Intelligence (AAI), the simulation of

human-like opponents in a domain specific context, has been a

cornerstone of AI research since the inception of the field. One

of the original aspirations of the field was to create a chess

playing program that could routinely trounce grandmasters.

The original “Proposal For the Dartmouth Summer Research

Project On Artificial Intelligence” contained such a goal [1].

Algorithmically, devising such a chess playing AI proved to

be tractable. The initial component, the minimax algorithm,

was developed and proven by John Von Neumann in the mid-

40’s [2]. Combined with alpha-beta pruning, developed by

Manuscript received October 31, 2006.

This work was supported in part by the Indiana University-Bloomington

Cognitive Science Department’s Summer Research Grant and the Hutton

Honors College Summer Research Grant.

Daniel S. McFarlin (dmcfarli@cs.indiana.edu) is an undergraduate

pursuing a dual BS in Computer and Cognitive Science at Indiana University,

Bloomington, IN 47405 USA

Peter M. Todd (pmtodd@indiana.edu) is a professor of Informatics,

Cognitive Science, and Psychology at Indiana University, Bloomington.

Claude Shannon, chess playing programs have gone on to

challenge and best the world’s finest human player [3].

Achieving that goal in practice, however, had to wait nearly

50 years for computational resources to mature to the point

where the hardware could sustain and process the massive

search spaces required to win this two-player, zerosum,

transparent game [3].

Modern AAI theoreticians and implementers long for the

days of minimax, alpha-beta pruning and (relatively)

straightforward games like chess. The modern electronic

adversary now inhabits a rich, 3-D world where the gamestate

space dwarfs that of the “humble” chessboard. Where there

were once two players (one electronic, one human) there are

now an arbitrary number of human and electronic opponents.

Added to this is increasing demand for realistic, innovative

and doctrinally-sound adversaries. Note that realism in

modern AAI may include “artificial stupidity” as one of its

distinguishing characteristics [4]. This is a far cry from the

near-perfect chess-playing automata of old. However, just as

the original, algorithmically sound chess playing programs

were hamstrung by a lack of computational resources (both

processing speed and memory storage capacity), so too is

modern AAI in its most bleeding-edge incarnations: military

simulators and first-person-shooter (FPS) video games. These

time-constrained applications must (by virtue of their design

goals and intended purposes) feature realistic AAI that now

must compete with a host of other processes and functions for

vital CPU time and memory storage [5].

The challenge for the modern AAI in military

simulators/FPS games can be summed up from the perspective

that academic AI models are too general to be specifically

useful whereas game implementer models are too specific to

be generally useful [6]. There is even some debate in the upper

echelons of the industry whether substantial investment in

next-generation (read: academically developed model-based)

AAI is worth the effort. John Carmack, the legendary game

designer who developed the engines for Wolfenstein 3D, the

Doom franchise and the Quake franchise, has recently stated

his view that AAI is mostly “a matter of scripting” and that

further investment in more advanced forms of AAI is

generally a “waste of time.” It should be noted that the

majority of top-tier AAI implementers vehemently disagree;

Carmack’s latest effort, Doom 3, was much lampooned for its

laughably bad AAI [7]. Despite Carmack’s statements to the

contrary, the significant utility of advanced AAI models is

generally agreed upon.

Evolving a Better Adversary: A Case Study in a

German Castle

Daniel S. McFarlin (Member, IEEE) and Peter M. Todd

229

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

1-4244-0701-X/07/$20.00 ©2007 IEEE

Connectionist and production-rule models developed in

academia are of enormous theoretical and practical importance

in many areas of cognitive modeling and simulation. Within

the context of the academy, such models are sufficiently fast

(though not generally run in real-time) and often constrained

to very specific subdomains to ensure that they are

computationally feasible and sufficiently easy to analyze and

explain [8]. The explanatory powers of these models and their

connection to human cognition would seem to suggest them

heavily for roles as AAI in games and military simulations.

The challenged is to find ways of constructing such systems so

that they reliably produce the desired adversarial behaviors.

Neural networks (NN’s), the pre-eminent connectionist model,

provide for a robust, generalized and adaptive mechanism

upon which to realize AAI behaviors. Additionally, there is a

substantial precedent for the use of NN’s in agent-based

behavioral models of artificial life [9].

Rather than implement an effort-intensive Good-Old-

Fashioned AI method of programming AAI behaviors, we turn

here to the use of artificial life methods for discovering

adaptive behavior in a more automated manner. In particular,

we employ genetic algorithms (GA’s) to evolve training

patterns for neural networks that will help control the AAI

behavior. GA’s have long been applied to the evolutionary

discovery of particular effective NN’s in various domains

[10]. More recently, they have also been applied to the

discovery of creative behaviors for characters in games [11].

In the rest of this paper, we demonstrate an empirical

comparison of two different such methods of automating AAI

development, and show that they can improve game-play

relative to the AAI built into one existing popular game.

II. THE PROBLEM OF TRAINING ADVERSARIES

Modern video games are benefiting from Moore’s Law in a

number of ways. Video game graphics are enjoying radical

improvements in resolution, realism and availability courtesy

of ever improving graphics processing units. Modern CPUs

are thus relieved of the burden of performing both graphics

and game engine calculations. As a consequence, game

engines are increasingly incorporating new features that were

previously computationally unattainable. Physics has emerged

as a new feature of modern games thanks to a multitude of

commercial and academic toolkits. Dedicated physics

processors contained on daughterboards are now available to

average consumers. Game designers are also integrating

highly sophisticated sound engines that employ a variety of

psycho-acoustic properties to create immersive and realistic

sound environments.

Finally, the artificial intelligence in games has gained

greater prominence as a competitive feature. F.E.A.R., the

2005 Game of the Year, won in no small part due to its

formidable adversarial artificial intelligence (AAI) [12] – [15].

In order to satisfy performance requirements and other

constraints, F.E.A.R. relied on a version of the STRIPS

planner to enable the AAI entities to engage in individual and

collective dynamic planning. Using A*, the planner

formulated a sequence of behaviors that satisfied a least cost

plan. The formulation of this sequence was amortized over

several game engine timesteps to ensure consistent game

performance. Despite these constraints, the AAIs exhibited a

remarkable degree of improvisation, adaptation and

coordination.

A planning system, rather than some other AI approach,

was employed for several reasons. The most compelling

reason was ease of modification and debugging. A level

designer could readily inspect the formulated plan, modify

game environment elements to influence an alternative plan,

and verify that a subsequently generated plan conformed to the

level design requirements. Decreasing the computational

expense was another reason. The planner could still function

while only inflicting a 1% load on the CPU. Nevertheless, the

latency requirements were such that only six game entities at a

time could engage in concurrent planning.

Modern and emerging hardware architectures offer

solutions to the computational expense challenge. The Xbox

360 contains a triple-core CPU in which each core is dedicated

to either graphics, game engine, or a miscellaneous operation

such as AI, physics or sound [16]. The forthcoming Cell

architecture from IBM has even greater computational power

and a higher degree of parallelism [17]. Once computational

overhead is no longer a significant constraint, the remaining

barriers to potentially more effective connectionist AAI

models are those that interact with the design, implementation

and maintenance of such models.

A. The Need for Adaptive Automated Network Training

One of the most significant barriers to connectionist models

in game AAI is the initial configuration of the training set.

Formulating the input tuples requires a deep understanding of

the representative input space, while generating corresponding

output values requires a full appreciation for desired agent

behavior. This combined task consumes a considerable

amount of time in terms of initial formulation, validation and

implementation. Additionally, the desired behavior for a given

input tuple may evolve to meet new performance and

difficulty requirements. Environmental constraints, such as

level size, may further affect such behavior.

Modern game development is a dynamic process in which

such requirements are in a constant state of flux up until the

final ship date. Constant tweaking is an integral part of this

process. Consequently, quick turnaround, maintainability and

predictability are the most desirable characteristics for AAI

development. Unfortunately, these characteristics stand in

general opposition to connectionist and other sub-symbolic

methods. Encouraging adoption of connectionist models

entails building infrastructure to automate the delicate and

time consuming connectionist development process while

preserving the benefits inherent to such models.

230

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

B. Two Connectionist Models

The following sections describe two different approaches to

designing connectionist models of AAI. In the first section, we

describe the development of a neural network in which the

entire training set is developed by a human domain expert. We

refer to this neural network as the human-guided neural

network (HGNN). This neural network architecture and its

supporting infrastructure form the basis for the subsequent

development of a semi-automated neural network evolution

system using a genetic algorithm-based simulation. We refer

to this model as the genetic algorithm-guided neural network

(GAGNN). These models are then compared, via play-testing,

to the original finite-state-machine (OFSM) model that

shipped with the original Wolfenstein 3D game.

III. INFRASTRUCTURE

A. Wolfenstein 3D

The initial connectionist approach (HGNN) combined a rule

system in the form of a probability-based finite-state-machine

with a neural network that determines state transitions The

source code is available on request. Understanding the

architecture first requires some understanding of the game.

Wolfenstein 3D (Wolf3D) is a 2D first person shooter (FPS)

released in 1992 for MS-DOS [18]. (The illusion of 3D objects

is provided by aspect permutations of 2D images called sprites

in comparison to true 3D models in modern games.) It is

written primarily in C and x86 assembly language. A

revolutionary game, it effectively started the FPS craze that

persists to this day. In the game, the player moves through a

fairly uniform level of rooms and corridors reach an elevator

that ascends to the next level. Various types of human and

non-human adversaries contest the player’s progress. The

player is armed with four possible weapons: a knife, a pistol, a

sub-machinegun and a machinegun. The player’s health

ranges from 0-100 as does the player’s ammunition level (the

ammunition is interchangeable among all firearms).

The most common enemy in the game is a lowly human

guard (see Figure 1) armed with a pistol containing an infinite

amount of ammunition. All of the AAIs in Wolf3D rely on

deterministic finite-state-machines (FSM) for their behavior

[19]. The transitions from one state to another are

deterministic. Some randomness is incorporated in the AAI

targeting accuracy and enemy detection. In some cases, the

AAI will not detect the player until the player moves to within

a certain proximity. In other cases, the AAI will actively look

for the player and detection will be quite rapid.

Figure 1

In-game screenshot of the test-level and AAI

Figure 2

Original State Diagram for Guard Unit

From a behavioral standpoint, the guard in the original

game could only be described as pitiful, though the

supposedly more advanced enemies are hardly any better. The

state diagram for the FSM used to control the guard is shown

in Figure 2. These AAIs generally charge or chase the player,

only stopping at predictable points along the pursuit route to

fire. There is little notion of self-preservation or tactics. Our

enhancements to the AAI involved three stages: doctrinal

changes, probability influences, and statistically influenced

state transitions. Finally, the FSM transitions were changed to

rely on a neural network.

The new behaviors added during doctrinal enhancement

consisted of evasive shooting behaviors called “strafe-and-

shoot” and tactical retreating behaviors. The former behavior

entails the AAI constantly and randomly moving in directions

that are perpendicular to the player. The AAI pauses briefly to

fire at the player. At no time during the maneuver does the

231

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

AAI reduce the distance to the player. Strafe-and-shoot is

effectively defensive in nature as it combines evasion with a

slightly impaired offensive capability as accuracy is penalized

by the constant movement. The tactic of greatest defensive

value is the tactical retreat. This retreat involves moving away

from the player in a staggered manner. Movement away from

the player is interrupted by firing. The AAI is effectively

covering its own retreat and hopefully forcing the player to

remain at a distance that prevents a close pursuit.

The next type of AAI enhancement, probability influences,

were incorporated primarily into the visual system of the AAI.

The AAI now detects the player with a probability that is

influenced by the AAI’s position, the lighting level and the

acoustics of the room and the AAI’s proximity to disturbances

such as the sound of gunshots. The modified state diagram

incorporating the NN is shown in Figure 3. The transitions in

the figure are influenced by the relative strength of the player

compared with the relative strength of the guard.

Figure 3

Modified State Diagram For Guard Unit

(Player/Guard)

Lighting and acoustic properties are fixed at compile time.

The original Wolf3D code had a probabilistic detection model

that influences the accuracy of the AAI’s observations of the

player such as the player’s health, weapons choice and

ammunition levels. These observations along with the current

health level of the AAI are collectively “fed” into the

adversary’s neural network. This network is a standalone

process that communicates with the Wolf3D executable via

the file system. Though not the most efficient inter-process

communication mechanism, it is one of the few available in

MS-DOS (which Wolf3D must be run in). The neural network

itself is written in C++ and compiled on Windows using the

MinGW C++ compiler and IDE.

The beginning of every behavior contains a function,

agent_think, that extracts the gamestate information

(subject to the probability influences described above) and

writes it to a file. The neural network detects the new file,

reads the data and writes a new file containing the behavior

that the AAI should next engage in. The neural network

contains four input nodes, 10 hidden layer nodes and one

output node. The network was trained on forty gamestate-

decision pairs. As described earlier, each gamestate is

represented by a 4-tuple containing the AAI’s current health,

the current health of the player, the player’s current weapon of

choice and the player’s ammunition level. The output decision

values range from 0 – 3: 0 corresponds to a decision to retreat;

1 is strafe-and-shoot; 2 is stationary shoot (where the AAI

comes to a complete halt and makes an aimed shot at the

player); and finally, 3 represents advance, in which the AAI

charges the player’s position. The decisions are arranged in a

spectrum from defensive to offensive. The training set was

intended to be representative of the gamestate space.

The network was a standard feed-forward network and

utilized back-propagation for weight-learning. It required

about three hours of training to reach an aggregate global error

of less than 10
-5

. Output from the network was categorized

based on a deterministic model that favored aggression in

cases where the AAI had previously performed an offensive

action and favored defensive actions when the last behavior

was defensive. The neural network did not posses any

recurrent properties and the rounding behavior occurred in

post-processing. Even with optimizations for the x86 CPU

architecture, the neural network was still quite processor

intensive and slow relative to the timeslice allocated for each

AAI’s thinking process. As a result, in some cases the neural

network’s decision would not be calculated in time, forcing

the AAI to continue with its current action until the AAI again

invoked the agent_think function. The delay, however, in

player action and AAI reaction is barely noticeable.

Though this model is a significant improvement over the

OFSM, it entails a considerable degree of human involvement

during development. Reducing human involvement in this

construction process is crucial. The next section examines this

problem and an implemented solution, after which we

compare the performance of the different approaches.

IV. EVOLUTION OF AN INFRASTRUCTURE

One important step in automating the connectionist model

development process is automatically determining the outputs

for the training set input tuples. In standard NN training, these

values are supplied explicitly by a developer [20]. The

developer bases the outputs on the desired agent behavior. In

the context of an FPS, such behavior generally includes

offensive and defensive maneuvers in conjunction with

weapons employment. Developing effective AAI behavior is

232

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

generally a trial-and-error process. This process is influenced

by the developer’s biases and many of the first iterations may

be undermined by preconceived notions of output behaviors

that, while sound in theory, fail to translate to effective

behaviors in the game environment. The ultimate effectiveness

of AAI behavior depends in large part on human player

behavior within the confines of the game environment.

This naturally leads to the insight that a neural network’s

output set can be derived from simulation in the game

environment with an opponent. Commercial game

development benefits from extensive human play testing.

Consequently, human opponent behavior can be drawn on

from recordings of play test sessions. These recordings

generally reveal common tactics and strategies employed by

human players. Traditionally, such recordings are generalized

into heuristics that guide refinement of the game environment

and AAI [21]. Such heuristics can be as simple as “enter an

unexplored room backwards,” or complex maneuvers such as

firing from cover. These heuristics can be further incorporated

into simulated human opponents and set against AAIs in the

embryonic state of development. In our approach, AAIs can

then be evolved over a series of simulated combat epochs.

This approach employs a genetic algorithm to refine the

behavior of an AAI set against a simulated human opponent.

We first evolve a sequence of behaviors that works well

against the simulated human for each possible input situation,

and then condense the evolved sequence down to a single

behavior to be performed in that situation. The details are as

follows.

A. GAGNN Implementation

The genetic algorithm operates on an initial randomly

generated population of chromosomes that each encode a

sequence of possible AAI behaviors [22]. For each input tuple,

specifying the initial state of both combatants (ammunition

and health for the human and the AAI), a different initial

population of AAI behaviors was generated and the genetic

algorithm executed to evolve better ones. The initial

population contained forty chromosomes of AAI behavior

sequences, with each of the 20 behaviors in the sequence

selected at random from a set of predefined primitive AAI

behaviors. The behaviors were represented using direct integer

encoding. One-hundred evolutionary epochs were run for each

separate population, which was sufficient to find the effective

behavior sequences. On average, a genetic algorithm run (100

epochs of 40 chromosomes) took 1.36 minutes.

During each epoch for each input tuple, a simulation was

conducted in which the AAI responded to the heuristic-based

simulated-human opponent by following the sequence of

behaviors specified by each chromosome. In other words, the

AAI’s behavior was “scripted” by the actions specified in each

chromosome being evaluated. Each behavior occurred in one

timestep of the simulation. The game environment was

restricted to a 10x10 unit empty room with the combatants

spawning at opposite corners. The simulation ran until the

AAI or the “heuristic human” opponent died or the behaviors

encoded in the chromosome were exhausted. The heuristic

human opponent employed a constant-distance shoot-and-

strafe tactic that maximized distance to the AAI. This distance

was augmented by firing the heuristic human’s weapon after

every perpendicular strafing movement. A record was kept of

the amount of damage inflicted to the heuristic human

opponent by a particular chromosome behavior sequence.This

This record was later used in the fitness function. simulation

was consistent with the actual game environment in that it

restricted the AAI to one behavior per timestep while the

heuristic human opponent was allowed two moves per

timestep. In other words, the simulated human is allowed to

fire and shoot in the same timestep compared to one action in

the same timestep performed by the AAI.

After all chromosomes had been executed, the genetic

algorithm selected the top twenty most lethal (in terms of

damage inflicted) for reproduction. The lethality fitness

function has the nice side-effect of encouraging the AAI to

balance the need to inflict maximum damage with the need to

survive long enough to inflict a significant amount of damage.

The monogamous couplings of the top twenty population

members were randomly selected and two offspring were

produced per coupling. Offspring were produced by a

probabilistic combination of simple crossover and mutation.

Crossover occurred with a probability of .80 whereas mutation

occurred with an independent probability of .05. In the event

of mutation, four elements in the chromosome were randomly

replaced with a separate, randomly generated AAI behavior.

The generated offspring together with their parents formed the

new population for the subsequent epoch.

Once all epochs had been executed, the most lethal

chromosome was selected from the final population. The

arithmetic mean of the direct integer encoded behaviors was

computed with rounding dictated by the mode (most frequent

value): if the mode was lower than the mean, the mean was

rounded down, otherwise up. The mean was truncated in the

event of ties in value frequency. In all cases, the final mean

value was used as the output value for the supplied input tuple

in the neural network training set.

V. METHODS FOR TESTING AAI PERFORMANCE

Evaluating and comparing the performance of the original

FSM (OFSM), human-guided neural network (HGNN) and

genetic-algorithm-guided neural network (GAGNN) requires a

qualitative and quantitative analysis of game play testing that

pits a real human opponent against the AAI in the context of

the game environment. Wolf3D provides two fairly revealing

in-game metrics that are presented to the player at the

completion of a level. The metrics are level completion time

and current ammunition quantity. Though indirect, these

metrics provide a good insight into the quality of the AAI and

will be the basis for our comparison.

233

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

A. Experimental Setup

The opening level of Wolfenstein 3D was selected as the

test level due to the homogeneity of the AAIs present and the

ease of level navigation. The level contains ten rooms and

seventeen guard units. The medium difficulty settings (which

dictates AAI movement speed) was selected. Game play

occurred on a 1.8 Ghz Pentium M, 1 GB RAM Dell 800

running Windows XP. An FPS-veteran human player, who

was restricted to using the entry-level pistol weapon was

required to destroy all enemy units, minimize level completion

time, follow the same path for each trial and maximize health

and ammunition stores prior to level completion. These

requirements are consistent with the reward system in the

game which awards points in direct proportion to the amount

of health and ammunition present at end-level and the number

of enemies destroyed. Points are also awarded based on the

proximity of the player’s completion time to the “par time” for

the level which is generally a nearly unattainably short period

of time. High scores translate into additional game lives and

access to hidden features, which do not concern us here. The

aforementioned level-end metrics were recorded for the

human player after the completion of each trial, and 25 non-

interleaved trials were conducted for each of the three types of

AAI. The subject was able to discern which model he was

playing against as each model exhibited an obvious qualitative

difference.

B. Results

Table 1 contains the arithmetic means and standard

deviations for level-completion time and ammunition present

for the human player competing against each model. These

data properties were computed using SPSS.

Model Time (s) Std. Dev. Ammo Std. Dev.

OFSM 117.20 13.28 52.52 5.85

HGNN 169.72 35.10 50.84 5.02

GAGNN 141.04 23.68 48.80 6.49

Table 1: Arithmetic Mean and Standard Deviation for level-

completion time and ammunition for human playing against 3

model types.

C. Analysis

The OFSM model AAI is firmly the “easiest” challenge to

the human player based on the collected metrics and player

interviews. The “par time” for the first level is 90 seconds. In

comparison, the mean level-completion time for playing

against the OFSM was only 27 seconds greater. Additionally,

the player completed the level with the greatest amount of

ammunition in reserve. In general, higher level-completion

times signify a need for backtracking in order to shore up

depleted health by obtaining health packs seen earlier in the

level. Smaller ammunition reserves signify a tendency to

engage in firefights with the AAI at longer range as lethality is

inversely proportional to distance from the target. A human

player can exploit his advantage in firing and moving in a

single timestep (compared to the two timesteps needed by the

AAI) by moving perpendicular to the target AAI (i.e.,

strafing). This forces the AAI to expend a timestep to orient

itself to the human player and then another timestep to fire.

This strafing strategy is generally regarded as the most

effective strategy in Wolfenstein 3D which is why it served as

the basis for the heuristic human adversary in the GAGNN

model. Consequently, the genetic algorithm produced an AAI

whose behavior was marked by a bias to defensive maneuvers.

In other words, the GAGNN AAI has a tendency to maintain

its distance from the player and only typically only fires using

a defensive strafe-and-shoot maneuver. Combined with the

observed AAI’s tendency to retreat to more defensible

positions, the lowest mean ammunition reserve value agains

the GAGNN AAI indicates that the AAI’s defensive posture

forced the human player to expend more ammunition to

compensate for the long range lethality penalty. Additionally,

the GAGNN’s long average level-time completion and its

middle-rank standard deviation is indicative of the enhanced

difficulty relative to OFSM and the greater consistency of

opposition quality relative to HGNN. Finally, the arithmetic

mean of the genetic-algorithm generated output values for the

NN training set in this case was 1.3. This corresponds roughly

to a strafe-and-shoot defensive posture.

In contrast, play against the HGNN exhibited the highest

standard deviation for level-completion time. This arose from

the greater aggression exhibited by AAI in the game. The

average human-guided output value (the output value

associated with a particular input tuple by the human domain

expert) for the neural network was 2.5 which corresponds

roughly to stationary shoot in which the AAI remains

stationary to improve shooting accuracy at the expense of

defensive protection. The highest standard deviation is also

attributable to the tendency of the AAI to engage in kamikaze

tactics after sustaining near fatal levels of damage. As a last

resort, the AAI charges the player in the hopes of inflicting the

greatest amount of damage before being destroyed. This tactic

is not consistently effective as it depends on the AAI’s initial

distance to the human player. The initial distance varies across

AAI’s in the level depending on a random position that is

determined every time the level is loaded. The kamikaze

behavior influences the ammunition usage as well. By

charging, the AAI allows the human opponent to expend less

ammunition as the lethality increases when the AAI closes the

gap. Conversely, the AAI may be in a position to inflict some

grievous damage before being destroyed leading to a high

degree of variability in game play. While a high degree of

variability may be desirable to human players in the final

product, consistency in AAI behavior is a valuable asset to

level designers and game developers who must reconcile the

maintainability issues of variable AAI behavior with the need

to integrate such behavior into a cohesive game atmosphere

and environment. Thus overall, for effective game adversary

development, the more consistent and easier-to-produce (due

to automation) GAGNN approach may be preferable.

234

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated an infrastructure that is

capable of automating a significant and resource intensive

stage in the development of connectionist models of AAI. By

utilizing a tool from artificial life, the genetic algorithm, to

explore a behavior space in the simulated game environment,

developers are able to utilize the game itself as a testbed for

evolving challenging AAIs. The AAIs exhibit behavior that is

intelligent, effective and engaging. The GAGNN model

performs comparably to domain expert guided neural

networks (HGNN) while incurring only a fraction of the

development cost thanks to the use of an automated “heuristic

human” opponent for evaluating AAI strategies in the actual

gaming environment.

Future developments of this approach should embrace more

sophisticated fitness measures, such as difficulty metrics that

measure whether an AAI’s play will be “good for beginners.”

More advanced gaming engines should be adopted as they

become publicly available. The Unreal engine has been

heavily adopted for AAI research as it offers true 3D

environments. Massively-Multiplayer Online Games

(MMOG) such as “World of Warcraft” ,which contain

hundreds of thousands of players participating simultaneously,

can provide ample opportunities for fitness evaluation against

a staggering variety of human opponents. MMOGs also

provide a fertile testing ground for the underdeveloped area of

cooperative artificial intelligence. It is hoped that the further

development of these approaches will facilitate wider adoption

of connectionist models in mainstream gaming, which will in

turn provide for more accessible and robust AAI research

environments based on these games.

ACKNOWLEDGMENTS

We are indebted to the advice and insight of Rob Goldstone,

Drew Hendrickson and the anonymous reviewers.

REFERENCES

[1] J. McCarthy, J. Minsky, Rochester, Shannon, “A Proposal For the

Dartmouth Summer Research Project on Artificial Intelligence,” 1955.

[2] J. Von Neumann, “Theory of Games and Economic Behavior,”

Princeton, NJ: Princeton University Press, 1944.

[3] J. Schaeffer, “Gamut of Games,” in AI Magazine, fall issue, 2001

[4] L. Linden, “The Use of Artificial Intelligence in the Computer Game

Industry,” in AI Game Programming Wisdom, fall issue, 2001.

[5] J. Carmack, “Opening Statements,” Quakecon,

www.gamespy.com/articles/641/641662p3.html, 2005.

[6] D. Isla, “Dude, Where’s My Warthog? From Pathfinding to General

Spatial Competence,” in proceedings of AIIDE Conference, 2005.

[7] P. Tozour, “Spot the Irony,” blog entry, www.ai-blog.net, 2005.

[8] A. Hoffman, “On the Computational Limitations of Neural Network

Architectures,” Technical Report, University of New South Wales

Computer Science Dept, 2005.

[9] R. Wray and J. Laird, “Synthetic Adversaries for Urban Combat

Training,” www.soartech.com, 2004.

[10] G.F. Miller, P.M. Todd, and S.U. Hedge, “Designing Neural Networks

Using Genetic Algorithms,” in Proceedings of the Third International

Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann,

(pp. 379-384), 1989.

[11] J. Hong and S. Cho, “Evolution of Emergent Behaviors for Shooting

Game Characters in Robocode,” in Proceedings of Evolutionary

Computation, vol. 1, 2004, pp. 634–638.

[12] J. Orkin, “3 States And A Plan: The AI of F.E.A.R.,” in proceedings of

Game Developers Conference, 2006.

[13] J. Orkin, “Agent Architecture Considerations for Real-Time Planning in

Games,” in proceedings of Artificial Intelligence and Interactive

Entertainment Conference, 2005.

[14] J. Orkin, “ Towards Real-Time Planning in Games,” in proceedings of

AAAI Game AI Workshop, 2005.

[15] J. Orkin, “Applying Blackboard Systems to FPS,” in proceedings of

Digital Media Collaboratory, UT Austin: 2003.

[16] J. Stokes, “Inside the Xbox 360, part I: procedural synthesis and

dynamic worlds,” in Ars Technica, 2005.

[17] J. Stokes, “Introducing the IBM/Sony/Toshiba Cell Processor,” in Ars

Technica, 2005.

[18] J. Romero and T. Hall, “Wolfenstein 3D,” Dallas, Texas: id Software,

1992.

[19] J. Carmack, “Wolfenstein 3D: Source Code,” Dallas, Texas: id

Software, 1995.

[20] M. H. Cheong, “Functional Programming and 3D Games,” technical

report, University of New South Wales Computer Science Dept., 2005.

[21] P. Spronk and E. Postma, “Online Adaptation of Game Opponent AI In

Simulation and Practice,” Game-On, 2005.

[22] M. Mitchell, “An Introduction to Genetic Algorithms,” Cambridge, MA:

MIT Press, 1998.

235

Proceedings of the 2007 IEEE Symposium on
Artificial Life (CI-ALife 2007)

