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Abstract— In this article, we present our research on the
evolution of morphology and behavior of complex creatures
in virtual environments. We propose to study the evolution
of creatures faced with different situations from crawling and
walking to more complex activities like climbing and skating.
Our creatures use solid 3D blocks and graphtals like Karl Sims’s
creatures and a new type of controller based on classifier system.
The results constitute a new step toward creatures adapted to
more complex environments.

I. INTRODUCTION

In this article we propose a new step in virtual creature
evolution. In recent years, many articles on evolving creatures
have been released [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. They often focus on the morphology and behavior
of one or two creatures but do not take into account the
complexity of their environment. In contrast, some simulations
focus on the interactions of population dynamics but deal only
with much simpler creatures [13], [14]. Our approach tries to
merge both approaches to evolve complete complex creatures
in complex environment. After a brief discussion on previous
approaches, we will present our system and focus on a new
type of controller based on classifier systems. We will then
show how evolved creatures are able to cope with various
situations caused by a complex environment.

The present work is organised as follows: in the next section
will present the works about evolving creatures. In the thrid
section of this article we will present a brief description of our
creatures. We will particularly emphasize our proposition to
use a classifier system as a tool to model complex activation
function. We will then present a set of benchmark tests to
evaluate our architecture and we will describe the results.
At the end we discuss how various fitness functions have
an influence on the phylogeny of creatures and on various
ideas for future studies. In the results section, we present the
best evolving creatures from our experiments. The study of
emerged strategies to resolve the various problems is promis-
ing and opens new perspectives. We discuss the influence
of fitness on the symmetry and modularity of creatures. To
conclude, we present some perspectives of the project and the
interest that a complex ecosystem environment presents.

II. RELATED WORK

There are many existing solutions for representing mor-
phologies and controllers. One of the first works was published

by A. Fukunaga, J. Marks and J.T. Ngo [15]. Karl Sims’s
creatures certainly remain the most evolved [8], [9]. He
has achieved evolutions bound by very few constraints and
obtained a large diversity of creatures giving birth to crawling
and swimming behaviors. Thereafter many works reproduced
his results with different approaches for the representation of
morphologies and controllers, such as the L-System creatures
of Hornby [3] and Lipson’s Golem project [5]. Their goals
were to optimize 3D creatures in relation to a preset fitness
inside a physics engine and to reproduce them in the real
world. Another approach to obtain more complex behavior
is to optimize a set of 2D creatures in a virtual pool by
means of natural selection [13], [14]. Each creature has an
amount of energy and tries to survive looking for food in the
environment. Dealing with simpler creatures, this approach
allows to simulate many creatures at one time. Komosinski
did the same experiment in a 3D environment [4]. Recently,
the EvolGL project [16] proposed to simulate a virtual world
with worms. The evolving worms belonged to herbivorous,
carnivorous and omnivorous species and developed different
strategies of survival.

These works distinguish two distinct ways to optimize
complex behavior evolving creatures: with a preset fitness or
by means of natural selection. The preset fitness approaches
continue to be improved with recent results, like evolving
flying creatures [7] and evolving creatures for fighting [6].
In these works, Miconi reproduced the Karl Sims’s creatures
and improved the co-evolution [17], [18], [12]. One promising
perspective for the morphology of creatures could be artificial
embryogeny to have a more complex representation of crea-
tures [19]. However, much could be improved to offer better
results in more complex environment [20], [21], [22]. The
works based on natural selection are becoming achievable and
will certainly be interesting to have more adaptive solutions
[16].

III. ENVIRONMENT AND ARCHITECTURE

A. Morphology

In present work, our creatures use a morphology based
on graphtals similar to those from Karl Sims’s ones [8],
[9]. The genotype represents the creature’s development. For
each creature we define a root node. Each node contains the
information of one block. Blocks are represented by solid 3D
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cubes. The data of cubes are their x, y and z sizes, color
and the link to the parent block if it is not the root block.
The link between two nodes will be represented by a type of
joint in the phenotype. A block could be linked with itself,
this providing the possibility of repeating the expression of a
node. The modularity is very visible in our results. We choose
not to explicitly represent the symmetry in our creatures as in
Karl Sims to study how the evolution could make it appear.

This morphology is not static but could be extended because
we want to keep the ability of generating various lifeform
inside our futur ecosystem. It provides us with good results
for our current simulations (Fig. 12) but we plan in the near
future to broaden the types of joints between blocks and types
of blocks defining the creatures’s morphologies.

B. Controller

The creature uses a classifier system [23], [24] as a
controller. The controller needs to activate the articulations
correctly (junction between the blocs). The requested signal
to do this needs to be continuous and must vary in time
according to the incoming information issued from the sensors.
This signal is generally a sine wave [4] or a composition of
periodical functions but it is also possible to compose a signal
from some preset patterns (Fig. 1). In this latter approach,
the main problem is to conserve the continuity of the signal,
while selecting the next adapted pattern. We start by defining
a data base of one thousand random generated patterns. We
then define one main composition rule: two patterns could be
appended to compose a part of the control signal only if the
following conditions are satisfied:

• Patterns are defined between [-1,1] and the same holds
for their minimum and maximum.

• If P1 and P2 are two patterns and P2 is appended to P1,
it is necessary that:

(
P1(1) − P2(−1)

)
< ε

where ε = 0.01

The classifiers control the selection of patterns. The entries
of the classifiers, which define the incoming information from
the environment, are the creature sensors. According to the
sensors’s state, a set of rules pointing to patterns in the data
base is triggered. The composed signal is used by the effectors
controlling the creatures’s muscles. If the resulting action is
satisfactory, the rules used to generate that action are rewarded,
otherwise they are penalized. The advantages of this method
lie in the fact that it is easy to enrich the used data base and
obtain more complex signals than those obtained by simple
primitive signal composition.

Another approach could be to use mathematical functions
(which may be generated by the use of Genetic Program-
ming [25] for example) to replace the pattern. However, there
are too many possibilities and we do not exploit all of them
here.

Fig. 1. Signal composed by a classifier system for a controller (x axis: steps,
y axis: velocity).

C. Genetic operator

1) Mutation: The mutations are operated on the graph,
hence if a mutation is operated on a node recursively repro-
duced, this mutation will affect all the blocks issued from this
node. This allows our structure to exhibit modular properties
such a pattern repetition.

The possible mutations on the graphtal:

• A new block could be added randomly to the graph.
• A block could be deleted randomly from the graphtal.

It is necessary to check whether or not this operation
is possible. This operation cannot be applied to the root
block. A part of the subgraph could be deleted by this
mutation if blocks are connected to the deleted block.

• A mutation could slightly and randomly move one of
the axes x, y or z of the parent block link between two
connected blocks.

• A mutation could slightly and randomly move one of the
axes x, y or z of the link between two connected blocks.

• A mutation could slightly and randomly center one of the
axes x, y or z of the between one block and its parent.

• A mutation could slightly and randomly center one of the
axes x, y or z of the link one parent and one of these
blocks.

• The size x or y or z of a randomly selected block can
be randomly changed.

• The number of iterations of a random node can be
randomly changed.

• The number of iterations of a random node can be
increased by one.

• The number of iterations of a random node can be
decreased by one.

• The axis of a random joint can be changed.

2) Crossover: We use the graphts method as in Karl Sims’s
works [8], [9] to reproduce two creatures. That is, we randomly
select one node in the graph of the first creature parent and
another one in the second parent. To finish, we permute the
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subgraphs issued from the selected nodes. This approch is
simple and gives us good results. We plan to implement the
other method by Karl Sims, crossover, the picking method
of Miconi [18] in the next step of our work and compare the
results to see the influence of the different methods of crossing
over.

3) Genetic algorithm: The population of the simulation is
initialized to one hundred individuals. Each creatures genotype
is randomly created according to a maximum number of
blocks. For a typical simulation, this number is generally set
to ten. This number could quickly increase by mutation of the
number of iterations on each node provided by the modular
definition of our genotype. Each individal’s performance is
then evaluated in the simulated environment during 40000
steps (40s). The fitness used to evaluate the creatures will be
described later for each experiment. For the selection process,
we use tournament selection between three individuals. The
rank of reproduction is seventy percent and that rank of
mutation is ten percent. The evolution stops when the desired
fitness is attained.

D. Breve

The implementation of a physics engine is a difficult task
requiring a great deal of work. Our choice was therefore to use
Breve [26], an engine based on ODE (Open Dynamic Engine).
This environement is well suited for artificial life simulation
because it provides a set of high level primitives which suit
the simulation of articulated bodies. Breve includes low level
physics dealing with torques and strengh computation, grav-
ity, collision detection but also several higher level property
computations. For example, Breve already implements a lot of
useful functionalities such as the quantity of light perceived
by an object that we plan to use in future experiments. Our
program is written in C++ and inserted in Breve as plugins.
In this way, our program is not dependent on Breve and can
be used as a library with another physics engine.

IV. RESULTS

We here show the ability of our system to evolve creatures in
different situations. In general, in our experiments, the fitness
tries to maximize the distance traveled by a creature. All the
creatures are recorded on videos1.

A. Walking on a flat floor

The first experiment is the traditional walk. This original
experiment is similar to the work of Karl Sims [8], who
presented the first one. Many works try to reproduce it. Its
goal is to optimize both the morphology and the controller of
a creature which has to walk on a flat floor environment.

In this experiment, our fitness F is not the distance trav-
eled d but the average speed during the time t of evaluation
of the creature. F = d/t

One of the best results that we get is a tripod (Fig. 2.a).
This creature is not symmetric: it has only three blocks for

1A video with the best creatures is on the first authors’s home page:
http://www.irit.fr/∼Nicolas.Lassabe/videos/alife2007.mov

(a) (b)

(c) (d)

Fig. 2. (a) Evolving creature walking like a tripod. (b) Evolving creature
walking like a crabe. (c)(d) Creatures with a modular body

legs and one for the body and is not modular (no repeated
block). Various other creatures used interesting strategies to
move like a crab or have kinds of legs (Figs. 2.(b-d)) or rolling
(Fig 3.(a-b)).

B. Walking in a specific direction

In the experiment, we keep the same simulation and pa-
rameters but we change the fitness function. In this case, we
indicate a specific direction for the creature, for example, to
follow the x axis. The new fitness is F = |x|/t

One might imagine the results would be the same. In fact,
the creatures are optimized to go in this direction and this is
manifested by a perfect symmetry of the best creatures (Fig. 4).
An interesting feature our creatres’s morphology of creatures
is that they are composed of a modular body. This modularity
gives them a great efficiency. Among the best creatures are
kinds of worms with some legs allows than to walk with long
steps (Fig. 4(b-c)).

C. Thought trenches

In these experiments, we isolate the creature on a small
cube. Some other cubes are aligned with the first one separated
by trenches. The creature’s goal is to join the last cube. Many
strategies are possible like jumping over trenches. Or, if the
creature is tall enough; it could crawl to the next cube.

1) Interest of the experiment: The interest of this exper-
iment is that this situation often appears in reality and is a
difficult task to resolve. It is easy to improve the difficulty of
this task changing the width of the trenches. It is possible to
alternate the positions and heights of cubes.
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(a) (b)

(c) (d)

Fig. 3. (a)(b) Evolving creatures rolling. (c) Look like a robot (d) Creature
with a human profil

(a) (b)

(c) (d)

Fig. 4. (a) Evolving symmetric creature walking in a specific direction are
symetric. (b)(c) Modular evolving symmetric creatures with kinds of Legs.
(d) Creature Rooling

Fig. 5. Evolving creature walking cube by cube

(a) (b)

Fig. 6. Two evolving creatures on cubes.

2) Experiment: In the first simulation, the trenches are not
very large, just a quarter the width of the cube. The fitness is
defined to attract the creatures on the last cube. If the creature
falls down the fitness is divided by ten, to push the creature to
go in the direction of the next cube. It should not be possible
for a creature to mount on top of a cube. The best creature
uses its legs to cross the holes (Fig. 5.(b)).

D. Stair Climbing

The environment of the creature is often a flat floor. To
increase the difficulty, we try to see if an evolution could
generate a creature able to climb a stair. The difficulty could
be increased by the height of steps. In the first test, we set
up the height of the steps to half the average size of creatures
and the width as the average width of the creature. The fitness
is defined to indicate the direction to the top of the stair and
optimizes by speed to which the creatures go.

1) Interest of the experiment: Stairs are everwhere in daily
life, and can be of sereval diffirent types. It is a difficulty for a
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(a) (b)

(c) (d)

Fig. 7. (a) Evolving creature jumping step by step. (b) Evolving creature
climbing a stair. The body of the creature is modular with optimized legs to
quicly climb the stair. (c) Looks like a worm, (d) looks like a hand.

robot. Using evolving creatures to see the different strategies
to climb a stair is an interesting approch. The morphology, the
balance and the synchronisation of movements are difficult to
design to work on any stair [27].

2) Experiment: The best creature can climb to the top of
a stair quickly. The strategies employed are different. Some
creatures which move like a worm are able to climb almost
two steps at a time (Fig. 7.(c)). Others are perfectly designed
to jump step-by-step (Fig. 7.(a)). Once again, the bodies of
the best creatures are modular . Morever the creatures are
also symmetric (Fig. 8). If a creature has a good potential to
climb but is not totally symmetric, the evolution will optimize
the creature in this way. To improve the difficulty of the
experminent, we increase the height of the step and run a
new evolution. The best creature uses a new strategy to climb
the step using flat legs (Fig. 7.(d)).

E. Walking terrain

The world is rarely perfect, so, in this experiment, we design
a terrain with hills and dales. The amplitude of these heights
is ten times greater than the average size of the creatures.
The fitness is the distrance traveled divided by the time of
the simulation as in the walk experiment: F = d/t. Our
creatures have more difficulty in being effective in this type of
environment. This is because the environment is unpredictable.
The best results are less efficient than the creatures on the floor
but still have good performance (Fig. 9).

(a) (b)

(c) (d)

Fig. 8. Evolving creatures climbing a stair. The body of each creature is
modular with optimized legs to climb the stair quickly.

(a) (b)

Fig. 9. Evolving creatures crawling on a terrain.

F. Skating

The interaction within the environment is an important issue
in improving the complexity of evolving creatures. In general,
we underestimate the capacity and the power of adaptivity of
evolving creatures. Many experiments need to be tried to find
out their real limit and their potentialities. In this experiment,
we define a kind of skateboard composed of four wheels and
one large board. The goal is to see creatures could use it
whether to move in some direction. For this, the creatures fall
down close to the skateboard. The creature and the skateboard
are two different objects and do not have any connection
between them. The function fitness is defined to maximize
the distance covered with skate ds.

F = d + ds − (d − ds)

Many strategies shows employed: some creatures jump on
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(a) (b)

Fig. 10. (a) Evolving creature skating by jumping on the skate. (b) Evolving
creature pushing the skate.

(a) (b)

(c) (d)

Fig. 11. (a)(b) Evolution of creatures few generations later. (c) Evolving
creatures pushing a cube. (d) Cooperation between evolving creatured.

the skate to slide with it (Fig. 10.(a)), others push it and run
behind it (Fig. 10.(b)) and others go up and push from the
back to move. These results show the ability of the evolving
creatures to be adapting to the environement.

G. Cooperation

In the last experiment, the goal is to push a block in the
right direction. The block is defined to be too big for only
one creature to push. For this experiment, one creature and his
clone are initialized for each simulation in the environment.
The fitness is to maximize the distance traveled by the wall
dw (center of gravity) in one direction (axis x): F = dw. In
this experiment, the best creatures are bigger to push the wall
(Fig. 11) and give every good results. In the future, we plan
to improve this experiment, using two different creatures.

Fig. 12. The project of our ecosystem

V. DISCUSSION

These results prove the possibility of using a new kind
of controller based on classifier systems to control evolving
creatures in various activities. The next step is to emerge our
system inside our virtual ecosystem with plants and various
lifeforms. We have already started this implementation [28]
(Fig. 12).

A. Implementation

For the moment, the lifeforms and most of the plants
have been implemented. An evolution of the creatures with
a preset fitness presented in this article give some good
results. For the final simulation, we will use Breve network
implementation to distribute all the calculations on different
machines. The complete simulation will require a great deal
of computation and will not be computed on a single machine.
Every lifeform is implemented in C++ in different plugins and
these plugins are interfaced with Breve. We try to maintain a
maximal flexibility to add different lifeforms in order to get
the broadest, most various and interesting results possible.

B. Why ecosystem?

The realization of an ecosystem can allow the generation
of lifeforms able to adapt to a dynamic environment, the
specification of species and the emergence of life cycles. The
interest of simulating such virtual ecosystems are several. In
the field of biology, it could lead to a better understanding
of the evolution and extinctions of species as well as of
some mechanisms of life [29]. The evolution of morphology
and behavior in relation to a specific environment has an
interest for the design of robots and their controllers [30], [5],
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[31]. A complex environment should generate adapted survival
strategies during evolutions cycles.

Interesting questions are whether different evolution sce-
narios can emerge from an identical initial environment and
whether the environment complexity is a relevant criterion on
the emergence of different survival strategies [20], [21], [22].
If that were the case, how does one evaluate complexity? What
are the elements necessary for the emergence of complex life
forms and behaviors? Is the use of a complex physics one of
these elements or can biological complexity be supported by
simpler physical models? What is the importance of the in-
teractions? These are open questions, which may be answered
through experimentation with a complex artificial ecosystems.

VI. CONCLUSION

We have shown that it is becoming possible to evolve
virtual creatures in complex environment that provide us with
physical simulation but also with some kinds of interactions
between the creatures and the simulated world. The imple-
mentation of such ecosystems becomes essential to encourage
the development of complex adaptation strategies and to
provide more complex behaviors, which were not possible
to obtain in simple worlds. It will also allow regrouping
evolving simulations of several species to cope with pilogeny
dynamics (appearance and extinction of new species) inside
one application (i.e., one world) and therefore, allow observing
the relations between the evolved species. For that purpose
we propose a new approach which uses classifier systems as
controllers as an alternative to the use of neural networks.
Several experiment were analyzed which exhibit a strong
link between the fitness function and the morphology of the
evolved creatures in terms of symmetry and modularity.

VII. PERSPECTIVES

The next step for our project will be to propose some
paths to improve the interaction within the environment, and
also to confront the evolved creatures with more complex
situations to exhibit their adaptation abilities. Introducing an
evolving language between the creatures could be interesting
and would allow a significant increase in the number of
evolving strategies. It could also be very valuable to change
our morphogenesis definition allowing genotypic re-use. This
could lead us to an evolving system based on the artificial
embryology paradigm where a compact genetic code could
lead to the growth of complex structures. Another possibility
for the controller could be to compose patterns by genetic
programming as we do in generic composition patterns [32].
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