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Abstract – Concept-based multi-objective path planning, involves
search and optimization of conceptual path plans by way of their
particular solutions. The method, which has been recently
introduced by the authors in the context of interactive path
planning, is considered here using the -Pareto notion. Using
this approach the decision maker may explore the decision space
for concepts that have performances within a user-defined
distance from the Pareto-front. In particular the paper discusses
applications such as interactive path planning and re-planning. A 
simple "safe vs. fast" example is employed to demonstrate the
proposed approach. Finally, a short discussion is given to relate 
the ideas presented here with A-life.

I. INTRODUCTION

A non-traditional, yet most useful engineering approach to 

path planning is to view it as Multi-Objective Path Planning 

(MOPP) problem and to solve it using a Pareto approach (e.g.

[1], [2]). Pareto solution approach provides a set of Pareto-

optimal path plans that could be used to finally select one such

plan. Contradicting objectives for such a planning problem

may include criteria such as minimum path length (or 

associated time), and minimum exposure to a hostile observer

(e.g., [2]).

In a recent paper, [2], we have introduced a novel

methodology for MOPP, which is based on posing the

problem as a concept-based MOPP. In such a concept-based

approach the solution space consists of particular path

solutions which are related to conceptual path plans. The later 

are termed conceptual solutions, or in short concepts. Each of 

the sub-sets (concepts) contains all particular solutions that

belong to the same conceptual solution. Figure 1, which is

adopted from [2], depicts a typical example of a path-planning

situation. The marked paths are particular paths, each

associated with one of three concepts. A valid concept,

according to the given example, could be a path that begins

from the start point, by-pass the steep hill from the left, cross

the village, cross the road and go to the target. The conceptual

path solutions are clearly abstractive descriptions, whereas the

actual path should be a unique path that is associated with one

of the concepts.

The concept-based approach has been originated for

engineering design applications (e.g., [3] - [5]). Moshaiov and

Avigad, [2], has suggested the use of such an approach to 

allow progressive human intervention in path planning, and

demonstrated its applicability. The interactive approach

involves the subjective preferences of robot operators’ towards

conceptual path plans. Such preferences might possibly be

incorporated not just directly by concept preferences but also 

via sub-concepts [2].

 Figure 1:  Map of robotic operation area (from [1])

In the current study the interactivity aspects are not

explicitly included in the search. Yet, when the problem is

posed as a concept-based MOPP, as done here, it opens the

way to implicit (post-prior) interactivity. This means that the

Decision Maker (DM) may choose a concept, and a related

particular solution, from the obtained front based on both

objective preferences and concept preferences.

Here the motivation is extended to include not only such an 

implicit interactive concept-based approach, but also re-

planning issues. Re-planning is required when pre-execution

plans fails due to the appearance of unexpected obstacle. It is 

significant for re-planning to take advantage of pre-execution

planning as much as possible (e.g., [6]). With respect to this

paper, it is important to consider the use of the concept-based

path-planning in the context of memorizing useful information

for re-planning. This is explained below. Finding a Pareto-

optimal set could be viewed as ordering solutions with respect

to the objectives of a problem and memorizing the obtained set

for future use (selecting a solution). Such a future use, in the
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case of MOPP, may be influenced not only by future

preferences, but also by future changes in the planning domain

that may prevent the employment of certain optimal path

solutions. For example, suppose that path '1' and path '2',

which are depicted in figure 2 are a part of the Pareto-optimal

set of a given MOPP. Path '1' has a part that is adjacent to

obstacle 'A' and path '2' is not adjacent to obstacle 'A'.  Such a

situation is common when the problem involves both

minimum path length and the objective of maximizing some

measure of the distances between the path points and the 

obstacles. Assuming a small new obstacle 'B' has unexpectedly

appeared adjacent to the existing obstacle 'A' would require re-

planning. It is further assumed that the existence of obstacle

'B' eliminates the possibility of using path '1' in the re-planning

problem. Yet, due to its small size the newly introduced object

might not substantially change the planning domain.

Therefore, re-planning could benefit from the memorized

knowledge, which has been acquired in the original MOPP,

namely the memorized Pareto-set. Path '2' might not

necessarily be optimal in the new domain of re- planning. Yet,

it is still a valid solution that can be immediately used, without

a need for further calculations.

 Figure 2: Re-planning example

The above example hints at a need to conceptually

distinguish between solutions. Clearly, distinguishing between

the optimal solutions, which are remote from obstacle 'A,' 

from those that are close to it, would support using the

memorized Pareto-optimal solutions for a re-planning

problem. This calls for the use of the concept-based approach

in the original planning problem if re-planning is expected,

and in particular for human-robot interaction in the planning.

In fact if a conceptual distinction would have been made

between the 'far' and the 'near' solutions, the re-planning would

become simple. In such a case only the former concept is 

feasible. It is noted that the re-planning problem is assumed

here to be a non-optimal problem by definition, whereas the

original problem is to be formulated as a concept-based

MOPP. Yet as stated above, with small variations of the

planning domain some solutions of the original problem are 

intuitively expected to be close to the optimal solutions of the

re-planning problem. This resembles the use of the original

planning to re-plan in the D* algorithm [6].

The interest here is on developing a method to relax the

Pareto-optimality condition with respect to the solution of

concept-based MOPP problems. In addition to the definition

of the relaxed problem, the paper provides a simple example

to demonstrate the usefulness of the proposed extended

concept-based approach to both interactivity and re-planning

issues. Finally, a short discussion is provided to relate the

ideas presented here to A-life. 

II. METHODOLOGY

This section starts with a clarification of the difference

between the regular approach to MOPP and the concept-based

one. Next, it provides a formal presentation of the suggested

extension to the concept-based approach.

A. Regular vs. Concept-based MOPP
A regular definition of a MOPP problem, which is hereby

termed regular MOPP, involves the search for the set of Pareto

optimal path solutions from the set of all particular solutions

that are feasible particular path solutions. Any particular path

is characterized by specific values of the problem decision

variables, which represent a point in the problem decision

space. The regular MOPP is formulated as a classical Multi-

objective Problem (MOP). Such a case involves a comparison

between the performances of all particular solutions in the

objective space for non-dominancy. The representation, in the

objective space, of the set of non-dominated solutions, is 

known as the Pareto front. The classical MOP is commonly

formalized, without losing generality, as follows:

)x(Fmin  s. t. (1)
n

RSXx

where x is the vector of decision variables. In general, x might

be subjected to equality and/or inequality constraints, which 

commonly include some bounds on the decision variables. A

solution , which satisfies all the constraints,

is called a feasible solution. The set X, of all feasible 

solutions, is called the feasible region in the search space S. In 

the classical MOP, which is defined in equation 1, y=F(x) is a

vector of K objective functions, where,

n
RSXx

(2)
T

K21 )]x(f),....,x(f),x(f[)x(F

and 2K . When the objectives are contradicting, there is no 

single solution to the above problem. The interest, in a 

classical MOP, is therefore on the trade-offs with respect to 

the objectives. The well-known concept of Pareto dominance

supports the exploration of such trade-offs (see appendix). A

path solution that its performances are included in the Pareto

front set of a regular MOPP is a Pareto-optimal path solution.

As explained in the introduction section and detailed in [2],

in a concept-based MOPP sub-sets of the entire set of path

solutions are associated with concepts. Such an association

could be, in principle, disregarded and the search for solutions

could be done as in a regular MOPP. Once found the Pareto-

optimal solutions could be divided in accordance with their

path '2'

robot

obstacle 'A'

start

target

path '1' added obstacle  'B'
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concept associations. Yet, it is beneficial from the search

point-of-view (see [7]) to explicitly pose the problem as a 

concept-based MOPP.

The concept-based MOP and its solution has been first

formalized in [3], in conjunction with engineering design

problems, where the term s-Pareto has been used. These are

re-stated here, with respect to the concept-based MOPP, for

the sake of completeness and clarity. We define nc sets of path

decision variables, one set for each conceptual path plan,

where the variables describe the paths of the concepts. The m-

th set of all the feasible path solutions, of the m-th path

concept, is denoted Xm, where , is the 

search space of the m-th path concept, and nm is the space 

dimension that is associated with the m-th path concept.

contains the decision variable vectors, x
m
, of the m-th path

concept,  for m = 1,….,nc , where the dimension nm

of the vectors, x
m
,  could in general be concept dependent. The

set X is the union of these nc sets such that 

mn
mm RSX mS

mX

m
m

Xx

(3)
cn

1m
mXX

The vector of objective functions  is given as

follows

YX:F

(4)

where , for m

= 1,..., nc , is the mapping, into the objective space, of the

particular solutions that are associated with the m-th concept.

The mapping of the m-th concept is done by using a set of

concept related objective functions with (or in

short ) as the k-th objective function.

YXxfxfxF m
Tmm

K
mmmm

:)](),..,([)(
1

)(
mm

k xf
m

kf
The above exposition supports the definition of a concept-

based MOPP similarly to a regular MOPP. The concept-based

MOPP is defined as the problem stated in (1), with the

minimization of F(x) as defined in (4), subject to (3). Concept-

based MOPs involve finding the Pareto-optimal concepts. A 

Pareto-optimal concept has been defined as a concept with at 

least one member of its sub-set to be a non-dominated solution

with respect to the entire feasible set of solutions [7]. We term

the solution to the concept-based MOPP as the concept-based

Pareto set, and designate it as . Similarly, the associated

front is termed the concept-based Pareto front (s-Pareto in [3]),

and is designated as . The end result, which is a Pareto set 

and its associated front, should help to understand the 

distribution of concepts' representatives on the front, rather 

than just specific path solutions as done in the regular MOPP.

CP

CPF

B. The extended concept-based MOPP

The extension of concept-based MOPs has been originally

suggested in [8] in the context of multi-objective design in 

nature and the artificial. Here the application of such an 

extension is studied in the context of MOPP. The extension is 

defined based on a combination of two ideas, namely the

definition of the concept-based MOP, and the notion of -

dominancy, (e.g., [8]). The general motivation, as presented in 

[9], for the suggested extension in the context of design in 

nature and the artificial, is that when dealing with concepts a 

resilient approach seems appropriate. Citing from [9] 

"Concepts are associated with clusters of points in the 

objective space, which are not restricted to the Pareto-front.

Solving for the concept-based Pareto set is therefore too

restrictive as it does not contain a full representation of the 

concept's associated performances. This means that any

comparison among concepts based on the resulting front of a 

concept-based MOP is inherently limited." This is illustrated 

in figure 3, which is adopted from [9]. The concept

represented by stars could be viewed as optimal with respect

to a certain region of the Pareto front, yet the one designated

by circles covers a similar region but spans to a larger part of

the front. With respect to changes of objectives from the upper

part of the front to the lower part of the front the "circle 

concept" appears to be more robust. Yet, the "star concept" is 

expected to be more robust to uncertainties on the goals of the 

design as related to the upper part of the front when the

solutions associated with the first rank and second rank are to 

be disregarded due to some design uncertainties. It should be

noted that human preferences, towards concepts and sub-

concepts, may push the solution away from the concept-based

Pareto-set, as explained in [5] where a subjective-objective

approach have been applied. All of this means that one should

not be satisfied just by obtaining the front when dealing with

concepts.

c
mm

n,..,1m,xxfor,xF)x(F

  Figure 3: Concept performances  (from [9])

The present exposition of the extended concept-based

MOPP is motivated not only by the above two main reasons

that appear to be applicable to both engineering design and

path planning problems. Here an additional motivation is due

to the understanding that re-planning is likely to occur in robot

applications, and therefore, memorizing solutions of the 

concept-based MOPP could be too restrictive (see additional 

discussion on re-planning in the introduction).
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In the extended concept-based MOPP the interest is not on

the performances of particular solutions along the front, as

done in the regular MOPP, nor on the association of such

solutions with concepts as done in the concept-based MOPP. 

The focus of the extension done here is rather on obtaining the

set of particular paths that are associated with concepts that 

have not only performances along the Pareto-front but also at 

its vicinity. For this purpose a relaxed version of the Pareto

front, namely the -Pareto front is used (see [8]). Similarly to

the notion of dominancy as detailed in the appendix, a vector

is said to ),...,( 1 kuuu -dominate  , denoted by

, iff >0. Without

losing generality the extended problem is defined with respect 

to the min-min optimization problem as:

v

vu
iiii and,vu},k,...,1{i

)x(Fmin   ,  s. t. (5)Xx

The minimization operator uses the notion of the -

dominancy to find the extended concept-based Pareto set,

, and its associated extended "front" , which are 

defined via the Pareto set of the concept-based MOPP,  and 

its front,  , as follows.

*
eCP

*
eCPF

CP

CPF

)6(},..,1},..,1{

),()(:|{:
***

cc

i
i

m
m

CimmeC

niandnm

xFxFPxxXxP
and

,

}Px:)x(Fy{:PF eC
*
m

*
m

m*
eC

(7)

The above definition of the extended concept-based MOPP

allows humans to define their vicinity of interest with respect 

to the behavior of path concepts near the Pareto front. This is 

done by way of the vector, which is used in the definition of 

the -dominancy. As discussed above this allows flexibility 

with respect to both interactivity and path re-planning. The 

following section provides a demonstration of the applicability

of the extended concept-based MOPP.

III. CASE STUDY

This study involves the objectives of minimizing path length

and exposure to a hostile observer. The robot, which is taken

as a point in this example, is allowed to move along the grid

lines of a 10x10 working space without crossing through any

of the four line-obstacles (marked by bold lines) as shown in 

figure 4. Each path is defined by a list of four points. All paths

begin at the same starting point (5,0), and finish at the same

goal (5,10). The paths are distinguished by the coordinates of

the second and third points, which are given in table 1 per all

paths of the example. The robot is restricted to move from 

each point of the path to the next one by moving first in the x

direction and then in the y direction. This restriction is used 

here to simplify the example and make it tractable for hand-

calculations. The last restriction also means that a Manhattan

distance is used to calculate the path length.  The first index of 

the path number, as given in the path index columns of the

table, indicates the conceptual path number. The second

number of that index refers to the particular path that belongs

to the concept. For example both paths 1.2 and 1.4 belong to

the 1
st
 concept.

 Figure 4: Problem representation

 Table 1: Path Description

3
rd

Point

2
nd

Point

Path
index

3
rd

Point

2
nd

Point

Path
index

0,85,45.10,81,41.1
1,85,45.21,81,41.2
0,86,45.30,82,41.3
1,86,45.41,82,41.4
4,85,46.14,81,42.1
5,85,46.25,81,42.2
6,85,46.36,81,42.3
4,86,46.44,82,42.4
5,86,46.55,82,42.5
6,86,46.66,82,42.6
0,89,47.10,83,43.1
1,89,47.21,83,43.2
0,810,47.30,84,43.3
1,810,47.41,84,43.4
4,89,48.14,83,44.1
5,89,48.25,83,44.2
6,89,48.36,83,44.3
4,810,48.44,84,44.4
5,810,48.55,84,44.5
6,810,48.66,84,44.6
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Table 2, and 3 show the Manhattan distance of the path and

the exposed traveling distances (approximated) for two 

different detectors (Case 'A' and 'B' respectively).

Table 2: Path Performances (case 'A') 

Exp.

(app.)
Dist.

Path
index

Exp.

(app.)
Dist.

Path
index

12.7205.18.7201.1
11185.27181.2
14.7225.38.7201.3
13205.47181.4
12126.18182.1
10106.28182.2
12126.310202.3
14146.48162.4
12126.59162.5
12126.610182.6
15287.18.7203.1
13.3267.27183.2
17307.312.7203.3
15.3287.411183.4
14.3208.110164.1
12.3188.28144.2
12.3188.310164.3
16.3228.412124.4
14.3208.512124.5
14.3208.614144.6

Table 3: Path Performances (case 'B') 

Exp.

(app.)
Dist.

Path
index

Exp.

(app.)
Dist.

Path
index

11.3205.111.3201.1
9.5185.29.5181.2
10.3225.310.3201.3
9.5205.49.5181.4
5126.17182.1
3106.25182.2
3126.35202.3
5146.45162.4
3126.53162.5
3126.63182.6
11.3287.111203.1
9267.28.5183.2
11.3307.311.3203.3
9.5287.49.5183.4
5208.15164.1
3188.23144.2
3188.33164.3
5228.45124.4
3208.53124.5
5208.63144.6

In case 'A' a detector is located at (4,8) and in case 'B' at (8,8), 

as depicted in figure 4. It is assumed that the detection is 

obtained within the lines of sight, which are blocked by the 

line-obstacles. Also assumed is that the robot can move

attached to the obstacles, and that borders of the vision are

visible. Figures 5 and 6 show the performances in the

objective space for case 'A' and 'B' respectively. In these 

figures concepts 1 – 5 are marked by the symbols as given in

table 4. Although the information in tables 2 and 3 appears

somewhat redundant to that of figures 5 and 6, it provides a 

clear association of the performances with the path index. The

front in case 'A' , as depicted in figure 5, contains paths from

concepts 1, 3, 4 and 6. In particular the optimal paths 1.2, 1.4,

and 3.2 all have the same performances of length 18 and 

exposure of 7, path 4.2 has a length of 14 and an exposure of 8

and path 6.2 has both performances with the value of 10. Case

'B', as depicted in figure 6, demonstrates how sensitive the 

results could be with respect to a change of the detector

position. In this case only concept 6 is optimal with a single 

path (#6.2) having the optimal performances of length=10 and

exposure=3.

Figure 5: Performances in case 'A' 

Figure 6: Performances in case 'B' 
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Table 4: Legend for figures 5-8

Clearly a decision that is based on optimality can be taken in

both case 'A' and 'B.' Yet, practical considerations that might

not be included in the model, such as the sudden appearance of

an unforeseen obstacle, calls for a less restrictive optimality

analysis. Allowing =2 for both objectives and calculating

the extended concept-based Pareto set and front gives, for both

case 'A' and 'B,' a much wider spectrum of the extended

concept-based optimal path options. Such additional options

could be useful and might be memorized as reasonable

solutions for later decision making. The effect of the extension

is depicted in the areas marked by dashed rectangles in figures

5 and 6 for case 'A' and 'B' respectively. Interesting to note is 

that the new fronts contains concept 2 (in case 'A') and concept

4 (in case 'B') that do not appear in the original fronts. This is a 

significant result which means that slightly reducing the

optimality restriction might bring up new and worthy

concepts.

IV. A-LIFE IMPLICATIONS

In nature both caution from dangers as well as swift action

to catch food might influence survival chances, and could

occur in a simultaneous and contradicting manners. In fact a 

close review on MOPP related references (e.g., [10]) reveals

that survival criteria other than those used here are common to 

the problem (e.g., weather threat and fuel consumptions). In

some cases the relevance to military applications is apparent

[11]. References, such as the above, emphasize the survival 

nature of the MOPP problem, which makes it relevant to A-

life studies at least from a comparative point of view. Most

MOPP studies aim at optimal solutions, namely the Pareto-

front. However it is not clear to what a degree such a situation

exists in Nature. In fact the term fittest is misleading and

survival in Nature may involve non-optimal survivors. Solving

MOPP with the relaxation of the Pareto notion as done here

has therefore a potential for a closer resemblance to Nature 

than that of studies with the regular Pareto notion. Safe vs. fast

problems, such as in the example of [2], and in the current

paper, could possibly be related to such life-like survival

situations. In spite of this apparent resemblance the approach

presented here needs some modifications to make its relation

to A-life clearer. The development of the concept-based

approach has been motivated by engineering design. In such a

case it is assumed that concepts are predefined by the

designers. In A-life studies this should be avoided. From a 

strong A-life position, changing the concept-based approach to 

accommodate for self organization of concepts should be 

attempted. This, with the employment of a MOEA approach to

the search, as in [7], would support a claim that a life form is

created in the computation media. Relating the concept-based

approach to weak A-life studies would require a better

understanding of the role of non-dominancy and Pareto-

optimality in Nature, as discussed in [9].

V. SUMMARY AND CONCLUSIONS

The concept-based MOPP approach is discussed and

extended. It is demonstrated by a simple example that such a 

relaxation could provide a better insight to concepts that are

otherwise would not be included in the resulting front. Future

work may include an extension of our methodology to multi-

robots planning and piloting, and the incorporation of

evolutionary computations for searching the decision space of

the extended concept-based MOPP. Both implicit and explicit

interactive techniques should be studied for making the

proposed approach a human-machine decision-making tool,

and for its extension to other robotic tasks. Finally, there is a

need for further work to relate the concept-based approach to

both strong and weak A-life standpoints.
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APPENDIX

The development of an optimality-based Pareto front is based

on a comparison between solutions using the idea of vector

domination. Under minimization a vector  is 

said to dominate , denoted by

),...,( 1 nuuu

),...,( 1 nvvv vu , iff u is

partially less than v, i.e., 

. If u

dominates v in the objective space then the corresponding

solution of u is considered a better solution than the one

corresponding to v (with respect to the minimization problem).

The Pareto optimal set, , is the set of optimal solutions such

that:

iiii vunivuni :},...,1{},,...,1{

P

)}()(:|{:
*''* xFxFXxXxP   (A1)

The performances of the optimal solutions constitute the 

Pareto front set which is defined as: PF

. (A2)}:)({:
*** PxxFyPF
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